Knowledge (XXG)

Consensus splitting

Source 📝

2484:, the protocol can ask either Alice or George to cut a certain piece to two pieces. Suppose w.l.o.g. that the cutter is George and that he cuts piece X to two sub-pieces: X1 and X2. Now, the total number of subsets is 2: half of them already existed and by assumption they are not exact, so the protocol's only chance of finding an exact subset is to look at the new subsets. Each new subset is made of an old subset in which the piece X has been replaced with either X1 or X2. Since George is the cutter, he can cut in a way which makes one of these subsets an exact subset for him (e.g. if a certain subset containing piece X had a value of 3/4, George can cut X such that X1 has a value of 1/4 in his opinion, so that the new subset has a value of exactly 1/2). But, George does not know Alice's valuation and cannot take it into account when cutting. Therefore, there is an uncountable infinity of different values that the pieces X1 and X2 can have for Alice. Since the number of new subsets is finite, there is an infinite number of cases in which no new subset has a value of 1/2 for Alice, hence no new subset is exact. 2499:
The simplest case is when the weights are 1/2, i.e. they want to cut a piece that both of them agree to be half the cake value. This is done as follows. One agent moves two knives over the cake from left to right, always keeping the value between the knives as exactly 1/2. It is possible to prove (by
2065:
Although the agents' preferences are modeled with measures, the proofs do not require the value functions to be positive or additive over subsets; they may be any continuous set functions defined on the Borel sigma-algebra. Thus it is not required that partners' valuations over subsets of the cake be
1590:
union of intervals. Intuition: consider the division procedure for piecewise-homogeneous cakes described above. In general, the cake is not piecewise-homogeneous. However, because the value measures are continuous, it is possible to divide the cake to smaller and smaller regions such that the regions
5762:
The simplest truthful division mechanism is: select a single partner at random (with probabilities determined by the weights) and give him the entire cake. This mechanism is trivially truthful because it asks no questions. Moreover, it is consensus in expectation: the expected value of each partner
1464:
regions, such that all agents agree that the value-density in each region is uniform. For example, consider a circular cake in which each of its 4 quarters has a different topping. The agents may value each of the toppings differently, but do not distinguish between different pieces having the same
46:
people with different tastes agree on the value of each of the pieces. For example, consider a cake which is half chocolate and half vanilla. Alice values only the chocolate and George values only the vanilla. The cake is divided into three pieces: one piece contains 20% of the chocolate and 20% of
2869:
Otherwise (the value in the bowl is less than 1/2 to both partners), if the value in the bowl is larger for Alice than for George, then find a crumb whose value for George is more than its value for Alice (such a crumb must exist because the sum of values of all crumbs is 1 both for Alice and for
2538:
A better way to achieve a consensus division is to identify the two endpoints of the cake and treat it like a circle. I.e, when the right knife gets to the right side, it immediately goes to the left side, and the piece-between-the-knives is now actually the union of the piece to the right of the
2476:
pieces. Without loss of generality, we may assume that each piece has a non-zero value to both partners. This is because, if Alice (for example) cuts a piece which she values as 0, it is possible that George also values the same piece as 0, so we can discard this piece and continue with the other
2464:
Initially, there is only one piece which both partners value as 1, so there is obviously no exact subset. After one step, at most one partner (say, Alice) has had an option to cut the cake. Even if Alice cuts the cake to two pieces that are equal in her opinion, they may be different in George's
5627:
An exact division with different weights is not necessarily fair. Going back to the opening example, if the 20% piece is given to Alice and the other two pieces (of 50% and 30%) are given to George, this is obviously unfair to Alice. But such divisions can be used as subroutines for
5754:
Any algorithm for consensus division relies on the value measures reported by the partners. If the partners know how the algorithm works, they may have an incentive to lie about their value measures in order to receive more than their weight. In order to prevent this, a
295:
are finite, Consensus divisions always exist. However, they cannot be found by discrete protocols (with a finite number of queries). In some cases, exact divisions can be found by moving-knife protocols. Near-exact divisions can be found by discrete protocols.
3023:. This holds even for arbitrary bounded and non-atomic valuations. However, the run-time of this algorithm may be exponential in the problem parameters. In fact, consensus halving is computationally hard in several respects. 2407:
The original version of this theorem works only if the number of dimensions of the cake is equal to the number of partners. E.g, it is not possible to use this theorem to divide a 3-dimensional sandwich to 4 or more partners.
7309:
Pre-requisites on the value functions of the partners. Less pre-requisites mean that the result is more general. Con=Continuous is the most general; Con+Add=Additive is less general; Con+Add+Pwl=Piecewise-linear is the least
3473:-approximate consensus-halving is polynomial-time equivalent to computing an approximation to an exact solution of the Borsuk-Ulam search problem. This means that it is complete for the complexity class BU – a superclass of 3212:
is a constant, two types of approximations can be computed in polynomial time. The algorithms work for general additive valuations (not necessarily piecewise-constant); the valuations are accessed using queries in the
3929: 3394: 3839: 7157:
Filos-Ratsikas, Aris; Hollender, Alexandros; Sotiraki, Katerina; Zampetakis, Manolis (2021-01-01), "A Topological Characterization of Modulo-p Arguments and Implications for Necklace Splitting",
2778: 1077: 3325: 531: 3979: 4439: 1617:, this process converges to a consensus division. However, the number of required cuts in the limit is infinite. Fremlin later showed that it is possible to construct such a division as a 1908: 5796:
regardless of the reported value function, so the mechanism is still truthful – no partner can gain anything from lying. Moreover, a truthful partner is guaranteed a value of exactly 1/
4316: 1002: 475: 361: 2949: 1440: 1224: 885: 707: 5486: 5385: 5277: 5199: 5121: 4618: 4517: 4093: 2504:) that at some point, the value of the piece between the knives to the other partner will also be exactly 1/2. The other agent calls "stop!" at that point and the piece is cut. 598: 2675: 920: 150: 2372: 1329: 793: 1762: 3508:
It is NP-hard to compute a consensus halving with the optimal number of cuts for a given instance. Moreover, it is NP-hard to compute a consensus halving with at most OPT+
2695: 2535:. By combining several such pieces, it is possible to achieve a consensus division with any ratios that are rational numbers. But this may require a large number of cuts. 2160: 2013: 1677: 1615: 1352: 1247: 1158: 1134: 940: 263: 240: 214: 190: 170: 122: 55: = 2), as both Alice and George value the three pieces as 20%, 50% and 30% respectively. Several common variants and special cases are known by different terms: 5596:, since in many cases it is possible to take advantage of the subjective valuations and divide the resources such that all partners receive more than their fair share of 4838: 4745: 4180: 3058:. The input to the problem contains, for each agent, the endpoints and values of his piecewise-constant valuation; and all numbers (including the approximation accuracy 4357: 6470: 1551: 4677: 4234: 3619: 3593: 2797:: the goal is to cut the cake to tiny bits ("crumbs") such that each partner assigns a sufficiently small value to each crumb. This is done in the following way. Let 6053: 5904: 5523: 4383: 3758: 3696: 3567: 2629: 2262: 2059: 2575: 2227: 1857: 1506: 1114: 636: 404: 6109: 4649: 1941: 6667: 5622: 5572: 5055: 4773: 4208: 2533: 2398: 1824: 1718: 1380: 1275: 825: 739: 5410: 4863: 5444: 5343: 5299: 5221: 5143: 5023: 4989: 4963: 4925: 4899: 4807: 4714: 4576: 4539: 4475: 4274: 4149: 4115: 4051: 3251: 3101:
with only two blocks (However, when agents have piecewise-uniform valuations with a single block, the problem can be solved in parametrized-polynomial time for
2200: 2180: 2127: 2107: 1798: 3525:
For agents with non-additive monotone utilities, consensus halving is still PPAD-hard, but there are polynomial-time algorithms for a fixed number of agents.
6669:
for him. But this is not a consensus division, because the partners may not agree on the value of the other pieces besides the piece allocated to them. See
1687:
exists a consensus division with this exact number of cuts. This question was studied extensively, focusing mainly on a one-dimensional cake (an interval).
47:
the vanilla, the second contains 50% of the chocolate and 50% of the vanilla, and the third contains the rest of the cake. This is an exact division (with
3709:
can be improved. Particularly, it is open whether there is an efficient (online or offline) algorithm such that each agent values each part at least 1/
6462: 2411:
However, there are generalizations that enable such a division. They do not use a hyperplane knife but rather a more complicated polynomial surface.
7002:
Filos-Ratsikas, Aris; Frederiksen, Soren Kristoffer Stiil; Goldberg, Paul W.; Zhang, Jie (2018-08-08). "Hardness Results for Consensus-Halving".
5763:
is exactly its weight, and this is true according to all value measures. However, the resulting division is of course not a consensus division.
2889:
Formally, each piece can be represented as a vector of values, one per partner. The length of each vector is bounded, i.e. for each such vector
7109:
Goldberg, Paul W.; Hollender, Alexandros; Igarashi, Ayumi; Manurangsi, Pasin; Suksompong, Warut (2022). "Consensus Halving for Sets of Items".
3848: 2866:
If the value in the bowl becomes more than 1/2 to either partner, give the bowl to that partner and give the other crumbs to the other partner.
2400:
dimensional hyperplane, then there is a half-space whose value is exactly 1/2 to each partner. Hence there exists a consensus division using a
2109:
different measures on the interval, all absolutely continuous with respect to length. The measure of the entire necklace, according to measure
7286: 7176: 6965: 6895: 6821: 6771: 6715: 6228: 2291:. The number of cuts is essentially optimal for general weights. This theorem can be applied recursively to obtain an exact division for any 7088:
Batziou, Eleni; Hansen, Kristoffer Arnsfelt; Høgh, Kasper (2021-03-07). "Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem".
2874:
It is possible to prove by induction, that the difference in the valuation of the bowl between Alice and George is always at most 1/
3334: 3776: 2581:. It is possible to prove that at some point, the value of the piece between the knives to the other partner will also be exactly 3652: 3214: 2435:=2 pieces the weights equal 1/2. This means that the best we can achieve using a discrete algorithm is a near-exact division. 2288: 6670: 5800:
with probability 1 (not only in expectation). Hence the partners have an incentive to reveal their true value functions.
2711: 2493: 1010: 2539:
right knife and the piece to the left of the left knife. This way, it is possible to find a consensus division for every
3055: 1457: 3934:
It is open whether the numbers of cuts can be improved. For online algorithms, a lower bound on the number of cuts for
3263: 1829:
Every element of the vector can be either positive (if it belongs to piece #1) or negative (if it belongs to piece #2).
1683:
pieces which are equal in the eyes of the partner that values this district. This raises the question of whether there
1572: 484: 3941: 3445:
problem – each one can be reduced to the other in polynomial time (this implies that necklace splitting is PPAD hard).
3098: 2856:. Here is an intuitive explanation of the packing step for two partners (Alice and George) when the weights are 1/2. 5735:-1) cuts, and that finding an approximate unanimous-proportional division is in PPA. The number of cuts is tight for 4402: 5665: 2501: 2086: 1558: 3145: 2677:, one can give each partner a piece such that all partners believe that the values they have differ by less than 1865: 4281: 3481:
When the resource to divide is not a cake but rather a set of divisible resources, the problem becomes easier:
3120:
The number of agents is a constant and at least 3 (However, with 2 agents it can be solved in polynomial time).
2480:
The total number of different subsets now is 2, and by the induction assumption none of them is exact. At step
948: 421: 307: 2308: 6957: 5700:
pieces (and equal weights). In particular, it implies that unanimous-proportional division requires at least
2896: 1385: 1169: 830: 652: 6576: 2981: 6269:
Simmons, Forest W.; Su, Francis Edward (2003). "Consensus-halving via theorems of Borsuk-Ulam and Tucker".
1769: 6278: 5582: 3155:
It is allowed to use a constant number of additional cuts (that is, we search for a consensus halving for
2985: 2577:. One agent moves the knives cyclically around the cake, always keeping the value between them at exactly 6803: 5451: 5350: 5242: 5164: 5086: 4583: 4482: 4058: 2453:– a subset of the pieces which both partners value as exactly 1/2. We are going to prove that, for every 7325: 5804: 5576: 3063: 2427:
It is impossible to compute an exact division with a finite number of queries, even when there are only
2327: 547: 152:, the agents may disagree on the pieces values, but the difference between the values should be at most 3466: 2878:. Hence, when one of the partners receives the bowl, its value for both partners is between than 1/2-1/ 2654: 899: 129: 7029: 2348: 1280: 744: 6283: 3534:
From a computational perspective, not much is known about the computation of an exact division with
2964:. To do this, we have to divide the vectors to subsets, such that the sum of vectors in each subset 1723: 6856:
Filos-Ratsikas, Aris; Hollender, Alexandros; Sotiraki, Katerina; Zampetakis, Manolis (2020-07-13).
6187: 3016: 2019: 1773: 271: 3522:
necessary for consensus halving when agents' utilities are drawn from probabilistic distributions.
2680: 2132: 1965: 1644: 1594: 1337: 1232: 1143: 1119: 925: 248: 225: 199: 175: 155: 107: 7292: 7264: 7241: 7215: 7182: 7136: 7118: 7089: 7067: 7041: 7003: 6971: 6935: 6901: 6865: 6827: 6777: 6749: 6585: 6364: 6317: 5756: 5727:
families. In particular, it implies that exact unanimous-proportional division can be done with (
5588: 3442: 2588:
By repeatedly applying the above procedure, it is possible to achieve a consensus division among
2585:. The other agent calls "stop!" at that point and the piece is cut. This requires only two cuts. 1565: 279: 7028:
Deligkas, Argyrios; Fearnley, John; Melissourgos, Themistoklis; Spirakis, Paul G. (2021-05-01).
6526: 5788:
Perform a random permutation on the consensus partition and give each partner one of the pieces.
4814: 4721: 4156: 4323: 7282: 7233: 7172: 7059: 6961: 6891: 6817: 6767: 6711: 6234: 6224: 5629: 3397: 3012: 2507:
The same protocol can be used to cut a piece that both agents agree that its value is exactly
1568: 1530: 407: 35: 4656: 4213: 3598: 3572: 3477:
that involves solutions to problems whose existence is guaranteed by the Borsuk-Ulam theorem.
2182:
parts (not necessarily contiguous), such that the measure of each part, according to measure
7274: 7225: 7162: 7128: 7051: 6953: 6945: 6883: 6875: 6809: 6759: 6595: 6542: 6508: 6479: 6443: 6414: 6356: 6288: 6023: 5874: 5593: 5493: 4362: 3842: 3728: 3699: 3666: 3537: 3486: 3328: 3020: 2599: 2232: 2029: 6556: 5723:
pieces implies a solution to unanimous-proportional division among n+1 agents grouped into
2542: 2205: 1835: 1586:
Woodall showed that it is possible to construct an exact division of an interval cake as a
1484: 1092: 614: 382: 6552: 6242: 6085: 5770:, can be built given any existing algorithm (or oracle) for finding a consensus division: 5656:
pieces and allocate one piece per family. A natural fairness criterion in this setting is
4625: 3474: 2999:
Most results for bounded number of cuts focus on the case in which the weights are equal.
1917: 6644: 5599: 5549: 5034: 4752: 4187: 2991:
A different explanation of the crumb-and-pack procedure is provided by Brams and Taylor.
2510: 2377: 1803: 1697: 1359: 1254: 804: 718: 5392: 4845: 97:– the number of pieces equals the number of agents: the cake should be partitioned into 6808:. STOC 2019. New York, NY, USA: Association for Computing Machinery. pp. 638–649. 5429: 5328: 5284: 5206: 5128: 5008: 4974: 4948: 4910: 4884: 4792: 4699: 4561: 4524: 4460: 4259: 4134: 4100: 4036: 3236: 2185: 2165: 2112: 2092: 1783: 6484: 6292: 3489:, there is a polynomial-time algorithm for computing a consensus halving with at most 7319: 7186: 7140: 7071: 6975: 6905: 6748:. STOC 2018. New York, NY, USA: Association for Computing Machinery. pp. 51–64. 6512: 6419: 6402: 6344: 5704:-1 cuts, and that finding an approximate unanimous-proportional division is PPA-hard. 5660:, which means that all members in all families value their family's share at least 1/ 3519: 3137: 1587: 283:– the resource to divide is made of a finite number of indivisible objects ("beads"). 7296: 6934:. EC '21. New York, NY, USA: Association for Computing Machinery. pp. 347–368. 6864:. EC '20. New York, NY, USA: Association for Computing Machinery. pp. 381–399. 6831: 3019:. An adaptation of this algorithm shows that the problem is in the complexity class 1637:
partners values only a single district. Then, a consensus division of the cake into
7245: 7161:, Proceedings, Society for Industrial and Applied Mathematics, pp. 2615–2634, 6928:"Two's Company, Three's a Crowd: Consensus-Halving for a Constant Number of Agents" 6781: 6368: 3621:, since we are allowed to use a larger number of cuts. What is currently known is: 3047: 2461:
there is no exact subset, and hence the protocol might have to continue endlessly.
1580: 1469:
they get from each region. An exact division can be achieved in the following way:
3140:, which is theoretically weaker than PPA-hard. The proof is by reduction from the 7278: 6499:
Stromquist, Walter; Woodall, D.R (1985). "Sets on which several measures agree".
5766:
A better truthful mechanism, which works for the case in which all weights are 1/
172:. Similarly, the approximate variants of the above-mentioned problems are called 7167: 6434:
Goldberg, Charles H.; West, Douglas B. (1985). "Bisection of Circle Colorings".
6340: 2275:
weights. Stromquist and Woodall proved that there exists an exact division of a
7229: 7055: 6316:; Graur, Andrei (2020-06-30). "Efficient Splitting of Measures and Necklaces". 2634:
As of 2015, there is no known generalization of this moving-knife procedure to
2061:. In that partition, all partners value piece #1 (and piece #2) at exactly 1/2. 6926:
Deligkas, Argyrios; Filos-Ratsikas, Aris; Hollender, Alexandros (2021-07-18).
6600: 6571: 6360: 2339: 2315: 17: 7237: 7203: 7063: 6547: 6530: 3182:-approximate consensus-halving is PPA-hard (which is stronger than PPAD-hard) 7030:"Computing exact solutions of consensus halving and the Borsuk-Ulam theorem" 6949: 6879: 6813: 6763: 6313: 2323: 2082: 1947:-th element is the value of piece #1 in that partition according to partner 1456:
It is easy to prove the existence of an exact division when the agents have
7132: 6616: 6246: 2326:
space, it is possible to divide all of them in half (with respect to their
6927: 6857: 6805:
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
6799: 6746:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
6741: 1564:
An exact division exists in the more general setting in which agents have
6887: 3924:{\displaystyle n\cdot (k-1)\cdot \lceil 2+\log _{2}(3k/\epsilon )\rceil } 3454:
solution, then consensus halving is much harder: finding a solution with
1583:). However, this theorem says nothing about the number of required cuts. 1082:
That is, there is a consensus among all partners that the value of piece
7159:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)
3011:-approximate consensus halving can be computed by an algorithm based on 2984:. The latter protocol generates a division which is both near-exact and 2414:
There are also discrete adaptations of these multi-dimensional results.
66: = 2), and all agents agree that the pieces have equal values. 7263:. Lecture Notes in Computer Science. Vol. 6386. pp. 288–299. 5777:
Use the existing algorithm/oracle to generate a partition in which all
5668:). The problem is equivalent to exact division in the following sense: 3651:
Two types of approximations can be computed using polynomial number of
2374:, and the value measures of the partners are finite and vanish on any 607:, since there is a consensus among all agents that the value of piece 6590: 3659:
Finding a partition such that each agent values each part at least 1/
3458:
cuts is FIXP-hard, and deciding whether there exists a solution with
3229:
Finding a partition such that each agent values each part at least 1/
6800:"The complexity of splitting necklaces and bisecting ham sandwiches" 6447: 3441:-approximate consensus-halving is computationally equivalent to the 7220: 7123: 7094: 7046: 7008: 6940: 6932:
Proceedings of the 22nd ACM Conference on Economics and Computation
6870: 6862:
Proceedings of the 21st ACM Conference on Economics and Computation
6754: 6531:"Partitions of mass–distributions and convex bodies by hyperplanes" 6322: 3256:
Finding a partition such that each agent values each part at 1/2 ±
1465:
topping: the value of each piece to each agent only depends on the
7269: 3512:-1 cuts, where OPT is the optimal number of cuts for the instance. 2303:
Multi-dimensional cake, many partners, many subsets, equal weights
2642:
Computation of near-exact divisions with unbounded number of cuts
7259:
Mossel, Elchanan; Tamuz, Omer (2010). "Truthful Fair Division".
6617:"Consensus division of a cake to two people in arbitrary ratios" 6238: 3201: 3050:. Hardness holds even with the following additional conditions: 2449:
pieces. To provide an exact division, the protocol must find an
2276: 101:
pieces, and all agents agrees that all pieces have equal values.
3765:
Finding a partition such that each agent values each part at 1/
2995:
Computation of near-exact divisions with bounded number of cuts
1557:
is the number of regions. This algorithm can be generalized to
84:
pieces, and all agents agree that the pieces have equal values.
6343:; Lai, John K.; Parkes, David C.; Procaccia, Ariel D. (2013). 6683:
V. Bergström (1930). "Zwei Sätze über ebene Vectorpolygone".
3389:{\displaystyle n\cdot \lceil 2+\log _{2}(1/\epsilon )\rceil } 3071:
The number of pieces in the piecewise-constant valuations is
2817:. These new pieces of course still have a value of at most 1/ 1826:, in which the elements are the lengths of the sub-intervals. 1720:
and equal weights. The lower bound on the number of cuts is
3834:{\displaystyle O({\frac {kn\log {(kn)}}{\varepsilon ^{2}}})} 3595:. Note that the problem is not necessarily harder than for 5785:
according to the value functions reported by the partners.
3225:
valuations. The following approximations can be attained:
6382:
Neyman, Jerzy (January 1946). "Un théoreme d'existence".
2968:
is sufficiently close to a vector all whose elements are
2870:
George). Add this crumb to the bowl and return to step 2.
2809:. Ask partner #2 to trim pieces as needed (using at most 1832:
The set of all partitions is homeomorphic to the sphere
80: > 1 – the cake should be partitioned into 2977:. This is possible thanks to a theorem by V.Bergström, 2813:-1 cuts) such that each piece has a value of at most 1/ 2279:(a circular cake) in which each piece contains at most 6798:
Filos-Ratsikas, Aris; Goldberg, Paul W. (2019-06-23).
6740:
Filos-Ratsikas, Aris; Goldberg, Paul W. (2018-06-20).
5680:, a solution to unanimous-proportional division among 2801:
be a certain constant. Ask partner #1 cut the cake to
1768:
cuts always exists. This is a direct corollary of the
6710:]. Cambridge University Press. pp. 131–133. 6647: 6088: 6026: 5877: 5602: 5552: 5496: 5454: 5432: 5395: 5353: 5331: 5287: 5245: 5209: 5167: 5131: 5089: 5037: 5011: 4977: 4951: 4913: 4887: 4848: 4817: 4795: 4755: 4724: 4702: 4659: 4628: 4586: 4564: 4527: 4485: 4463: 4405: 4365: 4326: 4284: 4262: 4216: 4190: 4159: 4137: 4103: 4061: 4039: 3944: 3851: 3779: 3731: 3669: 3601: 3575: 3540: 3337: 3266: 3239: 2899: 2714: 2683: 2657: 2602: 2545: 2513: 2380: 2351: 2235: 2208: 2188: 2168: 2162:. Then it is possible to partition the interval into 2135: 2115: 2095: 2032: 1968: 1920: 1868: 1838: 1806: 1786: 1726: 1700: 1647: 1597: 1533: 1487: 1388: 1362: 1340: 1283: 1257: 1235: 1172: 1146: 1122: 1095: 1013: 951: 928: 902: 833: 807: 747: 721: 655: 617: 550: 487: 424: 385: 310: 251: 228: 202: 178: 158: 132: 110: 6463:"The Borsuk-Ulam theorem and bisection of necklaces" 5792:
Here, the expected value of each partner is still 1/
5692:
families implies a solution to exact division among
3148:. Hardness holds even in the following conditions: 2980:
The Crumb-and-Pack procedure is a subroutine in the
2843:
subsets, such that the sum of values in each subset
2773:{\displaystyle |V_{i}(X_{j})-w_{j}|<\varepsilon } 1072:{\displaystyle |V_{i}(X_{j})-w_{j}|<\varepsilon } 3403:Note that there is a gap between PPAD-hardness for 2821:
for partner #1. Continue with partners #3, #4, …, #
1679:cuts, since each of the districts must be cut into 1573:
a corollary of the Dubins–Spanier convexity theorem
1460:. This means that the cake can be partitioned into 6661: 6570:de Longueville, Mark; Živaljević, Rade T. (2008). 6103: 6047: 5898: 5616: 5566: 5517: 5480: 5438: 5404: 5379: 5337: 5293: 5271: 5215: 5193: 5137: 5115: 5049: 5017: 4983: 4957: 4919: 4893: 4857: 4832: 4801: 4767: 4739: 4708: 4671: 4643: 4612: 4570: 4533: 4511: 4469: 4433: 4377: 4351: 4310: 4268: 4228: 4202: 4174: 4143: 4109: 4087: 4045: 3973: 3923: 3833: 3752: 3690: 3613: 3587: 3561: 3388: 3319: 3245: 2943: 2772: 2689: 2669: 2623: 2569: 2527: 2492:Two agents can achieve a consensus division using 2392: 2366: 2256: 2221: 2194: 2174: 2154: 2121: 2101: 2053: 2007: 1935: 1902: 1851: 1818: 1792: 1756: 1712: 1671: 1609: 1545: 1500: 1434: 1374: 1346: 1323: 1269: 1241: 1218: 1152: 1128: 1108: 1071: 996: 934: 914: 879: 819: 787: 733: 701: 630: 592: 525: 469: 398: 355: 257: 234: 208: 184: 164: 144: 116: 62:– the cake should be partitioned into two pieces ( 7202:Segal-Halevi, Erel; Nitzan, Shmuel (2019-12-01). 6958:20.500.11820/f92c933a-c6bd-4f93-b56f-de38970860e7 6501:Journal of Mathematical Analysis and Applications 6407:Journal of Mathematical Analysis and Applications 3320:{\displaystyle O((n\log {n})/(\varepsilon ^{2}))} 2829:partners value each resulting crumb as at most 1/ 2783:The near-exact division procedure has two steps: 526:{\displaystyle C=X_{1}\sqcup \cdots \sqcup X_{k}} 6471:Proceedings of the American Mathematical Society 3974:{\displaystyle O({\frac {n}{\varepsilon ^{2}}})} 5652:families; the goal is to partition a cake into 6637:There is a generalization which gives each of 6436:SIAM Journal on Algebraic and Discrete Methods 5664:(for other criteria and related problems, see 4434:{\displaystyle \varepsilon \in \Omega (2^{n})} 3200:is a constant. The proof is by reduction from 2839:: the goal here is to partition the crumbs to 1800:cuts can be represented as a vector of length 6858:"Consensus-Halving: Does It Ever Get Easier?" 6264: 6262: 6260: 6258: 6256: 5774:Ask each partner to report his value measure. 5640:In the problem of cake-cutting among families 4447:PPA-hard for piecewise-constant valuations ). 3079:(the values themselves may be exponential in 2345:Stated differently: if the cake is the space 34:, is a partition of a continuous resource (" 8: 6671:Austin moving-knife procedures#Many partners 3918: 3876: 3383: 3344: 2951:. Our goal is to create, for each partner 2465:opinion, so again there is no exact subset. 6221:Cake-Cutting Algorithms: Be Fair If You Can 3465:When agents' valuations are represented by 1903:{\displaystyle V:S^{n}\to \mathbb {R} ^{n}} 1764:. Indeed, a consensus halving with at most 1633:districts (sub-intervals), and each of the 6702:Brams, Steven J.; Taylor, Alan D. (1996). 1910:in the following way: for every partition 7268: 7219: 7166: 7122: 7093: 7045: 7007: 6939: 6869: 6753: 6651: 6646: 6599: 6589: 6546: 6483: 6418: 6384:Comptes Rendus de l'Académie des Sciences 6321: 6282: 6087: 6025: 5876: 5606: 5601: 5556: 5551: 5495: 5461: 5453: 5431: 5394: 5360: 5352: 5330: 5307:PPA-hard; At least exponential #queries. 5286: 5252: 5244: 5229:PPA-hard; At least exponential #queries. 5208: 5174: 5166: 5130: 5096: 5088: 5036: 5010: 4976: 4950: 4912: 4886: 4847: 4816: 4794: 4754: 4723: 4701: 4658: 4627: 4593: 4585: 4563: 4526: 4492: 4484: 4462: 4422: 4404: 4364: 4337: 4325: 4311:{\displaystyle \Omega ({\text{poly}}(n))} 4291: 4283: 4261: 4215: 4189: 4158: 4136: 4102: 4068: 4060: 4038: 3960: 3951: 3943: 3907: 3889: 3850: 3820: 3801: 3786: 3778: 3730: 3668: 3600: 3574: 3539: 3415:, and the polynomial-time algorithm for 2 3372: 3357: 3336: 3305: 3293: 3285: 3265: 3238: 2933: 2926: 2918: 2913: 2905: 2900: 2898: 2759: 2753: 2737: 2724: 2715: 2713: 2682: 2656: 2601: 2544: 2517: 2512: 2379: 2358: 2354: 2353: 2350: 2234: 2213: 2207: 2187: 2167: 2146: 2134: 2114: 2094: 2089:, proved the following result. There are 2031: 1967: 1919: 1894: 1890: 1889: 1879: 1867: 1843: 1837: 1805: 1785: 1725: 1699: 1646: 1596: 1532: 1492: 1486: 1424: 1412: 1393: 1387: 1361: 1339: 1313: 1301: 1288: 1282: 1256: 1234: 1208: 1196: 1177: 1171: 1145: 1121: 1100: 1094: 1058: 1052: 1036: 1023: 1014: 1012: 997:{\displaystyle w_{1},w_{2},\ldots ,w_{k}} 988: 969: 956: 950: 927: 901: 869: 857: 838: 832: 806: 777: 765: 752: 746: 720: 691: 679: 660: 654: 622: 616: 584: 568: 555: 549: 517: 498: 486: 470:{\displaystyle w_{1},w_{2},\ldots ,w_{k}} 461: 442: 429: 423: 390: 384: 367:weights whose sum is 1. Assume there are 356:{\displaystyle w_{1},w_{2},\ldots ,w_{k}} 347: 328: 315: 309: 250: 227: 201: 177: 157: 131: 109: 6335: 6333: 5814: 3986: 3030:is allowed to be inverse-exponential in 2457:, there are situations in which at step 1629:Suppose the cake is an interval made of 7034:Journal of Computer and System Sciences 6708:From cake-cutting to dispute resolution 6223:. Natick, Massachusetts: A. K. Peters. 6219:Robertson, Jack; Webb, William (1998). 6198: 6063: 3188:Also, deciding whether there exists an 3090:is allowed to be inverse-polynomial in 2955:, a vector all whose elements are near 2944:{\displaystyle ||v||\leq {\sqrt {n}}/k} 2863:Insert into the bowl one of the crumbs. 2423:Impossibility using discrete procedures 1591:become more and more homogeneous. When 1435:{\displaystyle w_{1}=\cdots =w_{n}=1/n} 1219:{\displaystyle w_{1}=\cdots =w_{n}=1/k} 880:{\displaystyle w_{1}=\cdots =w_{n}=1/n} 702:{\displaystyle w_{1}=\cdots =w_{n}=1/k} 7197: 7195: 6572:"Splitting multidimensional necklaces" 6214: 6212: 6210: 6208: 6206: 6204: 6202: 5546:An exact division with equal weights ( 3152:The valuations are piecewise-constant; 2264:cuts are needed, and this is optimal. 7152: 7150: 7083: 7081: 7023: 7021: 7019: 6997: 6995: 6993: 6991: 6989: 6987: 6985: 6921: 6919: 6917: 6915: 6851: 6849: 6847: 6845: 6843: 6841: 6793: 6791: 6735: 6733: 6731: 6729: 6727: 6461:Alon, Noga; West, Douglas B. (1986). 5715:, a solution to exact-division among 3530:Many subsets (consensus 1/k-division) 3433:is constant or inverse-polynomial in 2596:>1 subsets. The number of cuts is 1780:Every partition of an interval using 7: 6308: 6306: 6304: 6302: 3493:cuts, and for computing a consensus 3192:-approximate consensus halving with 1116:, where the difference is less than 6742:"Consensus halving is PPA-complete" 6152: 5942: 5481:{\displaystyle O({\text{poly}}(n))} 5380:{\displaystyle O({\text{poly}}(n))} 5272:{\displaystyle O({\text{poly}}(n))} 5194:{\displaystyle O({\text{poly}}(n))} 5116:{\displaystyle O({\text{poly}}(n))} 4613:{\displaystyle O({\text{poly}}(n))} 4512:{\displaystyle O({\text{poly}}(n))} 4088:{\displaystyle O({\text{poly}}(n))} 3992:-approximate consensus-halving for 3450:If we are interested in finding an 3015:, which is the discrete version of 371:agents, all of whom value the cake 275:– there are infinitely many agents. 7204:"Fair cake-cutting among families" 7111:Mathematics of Operations Research 6345:"Truth, justice, and cake cutting" 5063:ETR-complete to decide existence. 4818: 4725: 4412: 4285: 4160: 3717:), where c(k) is some function of 3644:may be an exponential function of 3178:is a constant, it is open whether 3136:-approximate consensus-halving is 3128:is a constant (does not depend on 3105:cuts, and in polynomial time for 2 3046:-approximate consensus-halving is 1772:. It can also be proved using the 1604: 1579:-division was previously noted by 1477:sub-regions, such that sub-region 593:{\displaystyle V_{i}(X_{j})=w_{j}} 25: 6485:10.1090/s0002-9939-1986-0861764-9 5592:. However, it is not necessarily 5151:Polynomial; Polynomial #queries. 2670:{\displaystyle \varepsilon >0} 2445:, it has a collection of at most 1958:is continuous. Moreover, for all 915:{\displaystyle \varepsilon >0} 375:as 1. The value measure of agent 145:{\displaystyle \varepsilon >0} 6641:partners, a piece worth exactly 6119: 3981:, so there is a logarithmic gap. 2468:Suppose now that we are at step 2367:{\displaystyle \mathbb {R} ^{n}} 1575:(the existence of a consensus 1/ 477:is a partition of the cake into 3003:Two subsets (consensus halving) 2441:: When the protocol is at step 2295:>1 and any weights, using O( 1527:The number of required cuts is 1324:{\displaystyle w_{1}=w_{2}=1/2} 788:{\displaystyle w_{1}=w_{2}=1/2} 6042: 6030: 5914: 5893: 5881: 5542:Comparison with other criteria 5509: 5497: 5475: 5472: 5466: 5458: 5374: 5371: 5365: 5357: 5266: 5263: 5257: 5249: 5188: 5185: 5179: 5171: 5110: 5107: 5101: 5093: 4827: 4821: 4734: 4728: 4607: 4604: 4598: 4590: 4506: 4503: 4497: 4489: 4428: 4415: 4305: 4302: 4296: 4288: 4169: 4163: 4082: 4079: 4073: 4065: 3968: 3948: 3915: 3898: 3870: 3858: 3828: 3811: 3802: 3783: 3744: 3732: 3682: 3670: 3553: 3541: 3380: 3366: 3314: 3311: 3298: 3290: 3273: 3270: 3038:is an exponential function of 2919: 2914: 2906: 2901: 2760: 2743: 2730: 2716: 2618: 2606: 2564: 2552: 2418:Computation of exact divisions 2283:-1 intervals; hence, at most 2 2248: 2236: 2085:, in his 1987 paper about the 2042: 2036: 1996: 1987: 1978: 1972: 1930: 1924: 1885: 1757:{\displaystyle n\cdot (k-1)=n} 1745: 1733: 1666: 1654: 1601: 1059: 1042: 1029: 1015: 574: 561: 1: 6293:10.1016/S0165-4896(02)00087-2 6001: 4781:NP-hard to decide existence. 3196:-1 cuts is NP-hard even when 3056:piecewise-constant valuations 2494:Austin moving-knife procedure 2330:, i.e. volume) with a single 1458:piecewise-constant valuations 7279:10.1007/978-3-642-16170-4_25 6513:10.1016/0022-247x(85)90021-6 6420:10.1016/0022-247x(80)90225-5 6271:Mathematical Social Sciences 5970: 3636:The problem is PPA-hard for 2690:{\displaystyle \varepsilon } 2155:{\displaystyle k\cdot a_{i}} 2008:{\displaystyle V(x)+V(-x)=0} 1672:{\displaystyle n\cdot (k-1)} 1610:{\displaystyle R\to \infty } 1356:– the special case in which 1347:{\displaystyle \varepsilon } 1251:– the special case in which 1242:{\displaystyle \varepsilon } 1166:– the special case in which 1153:{\displaystyle \varepsilon } 1129:{\displaystyle \varepsilon } 935:{\displaystyle \varepsilon } 801:– the special case in which 715:– the special case in which 649:– the special case in which 533:, such that for every agent 258:{\displaystyle \varepsilon } 235:{\displaystyle \varepsilon } 209:{\displaystyle \varepsilon } 185:{\displaystyle \varepsilon } 165:{\displaystyle \varepsilon } 117:{\displaystyle \varepsilon } 7168:10.1137/1.9781611976465.155 6349:Games and Economic Behavior 5852: 3146:Generalised Circuit problem 3097:The agents' valuations are 2805:pieces that he values as 1/ 1559:piecewise-linear valuations 1136:. Some special cases are: 7342: 7230:10.1007/s00355-019-01210-9 7056:10.1016/j.jcss.2020.10.006 6111:(optimal for some weights) 5688:-1)+1 agents grouped into 5666:fair division among groups 5574:) is, in particular, also 4933:Strong approximation is BU 4833:{\displaystyle \Omega (1)} 4740:{\displaystyle \Omega (1)} 4175:{\displaystyle \Omega (1)} 3988:Computational results for 3215:Robertson–Webb query model 2502:intermediate value theorem 2289:Stromquist–Woodall theorem 2087:necklace splitting problem 638:. Some special cases are: 42:pieces, such that each of 7208:Social Choice and Welfare 6685:Hamburgische Abhandlungen 6601:10.1016/j.aim.2008.02.003 6361:10.1016/j.geb.2012.10.009 5658:unanimous proportionality 5636:Unanimous proportionality 5311: 5067: 4550:Parametrized polynomial. 4352:{\displaystyle n+n^{1-d}} 3705:It is open whether the 1/ 3221:-query to the sum of all 3086:The approximation factor 2081:>1 and equal weights. 6548:10.2140/pjm.1960.10.1257 6403:"Dividing a cake fairly" 5739:=2 families but not for 3497:-division with at most ( 3462:-1 cuts is ETR-complete. 3167:cuts, for some constant 2647:Crumb-and-pack procedure 2287:-2 cuts are needed. See 1546:{\displaystyle k\cdot R} 1473:Divide each region into 1452:Unbounded number of cuts 1004:is a division in which: 406:. It is assumed to be a 7261:Algorithmic Game Theory 6950:10.1145/3465456.3467625 6880:10.1145/3391403.3399527 6814:10.1145/3313276.3316334 6764:10.1145/3188745.3188880 6577:Advances in Mathematics 4672:{\displaystyle d\geq 0} 4229:{\displaystyle d\geq 0} 3614:{\displaystyle k\geq 2} 3588:{\displaystyle k\geq 3} 2982:Robertson-Webb protocol 2488:Moving-knife procedures 1519:-th sub-regions in all 7133:10.1287/moor.2021.1249 6663: 6105: 6049: 6048:{\displaystyle n(k-1)} 5900: 5899:{\displaystyle 2(k-1)} 5857:Moving-knife procedure 5618: 5568: 5519: 5518:{\displaystyle (k-1)n} 5482: 5440: 5406: 5381: 5339: 5295: 5273: 5217: 5195: 5139: 5117: 5051: 5019: 4985: 4959: 4921: 4895: 4859: 4834: 4803: 4769: 4741: 4710: 4673: 4645: 4614: 4572: 4535: 4513: 4471: 4435: 4379: 4378:{\displaystyle d>0} 4353: 4312: 4270: 4230: 4204: 4176: 4145: 4111: 4089: 4047: 3975: 3925: 3835: 3754: 3753:{\displaystyle (k-1)n} 3692: 3691:{\displaystyle (k-1)n} 3653:Robertson-Webb queries 3625:The problem is in PPA- 3615: 3589: 3563: 3562:{\displaystyle (k-1)n} 3411:cuts for any constant 3390: 3321: 3247: 3113:cuts for any constant 2986:envy-free cake-cutting 2945: 2774: 2691: 2671: 2625: 2624:{\displaystyle 2(k-1)} 2571: 2529: 2394: 2368: 2267:Consider now the case 2258: 2257:{\displaystyle (k-1)n} 2223: 2196: 2176: 2156: 2123: 2103: 2066:additively separable. 2055: 2054:{\displaystyle V(x)=0} 2009: 1937: 1904: 1853: 1820: 1794: 1758: 1714: 1673: 1625:Bounded number of cuts 1611: 1547: 1502: 1436: 1376: 1348: 1325: 1271: 1243: 1220: 1154: 1130: 1110: 1073: 998: 936: 916: 881: 821: 789: 735: 703: 632: 594: 527: 471: 400: 357: 259: 236: 210: 186: 166: 146: 118: 6664: 6401:Woodall, D.R (1980). 6106: 6050: 5922:Piecewise-homogeneous 5915:Piecewise-homogeneous 5901: 5805:truthful cake-cutting 5781:pieces are exactly 1/ 5619: 5569: 5520: 5483: 5441: 5407: 5382: 5340: 5296: 5274: 5218: 5196: 5140: 5118: 5052: 5020: 4986: 4960: 4922: 4896: 4860: 4835: 4804: 4770: 4742: 4711: 4674: 4646: 4615: 4573: 4536: 4514: 4472: 4436: 4380: 4354: 4313: 4271: 4231: 4205: 4177: 4146: 4112: 4090: 4048: 3976: 3926: 3836: 3755: 3693: 3616: 3590: 3564: 3391: 3322: 3248: 3062:) are represented in 2946: 2775: 2692: 2672: 2626: 2572: 2570:{\displaystyle p\in } 2530: 2395: 2369: 2259: 2224: 2222:{\displaystyle a_{i}} 2197: 2177: 2157: 2124: 2104: 2056: 2010: 1938: 1905: 1854: 1852:{\displaystyle S^{n}} 1821: 1795: 1759: 1715: 1674: 1612: 1548: 1503: 1501:{\displaystyle w_{j}} 1437: 1377: 1349: 1326: 1272: 1244: 1221: 1155: 1131: 1111: 1109:{\displaystyle w_{j}} 1074: 999: 937: 917: 882: 822: 790: 736: 704: 633: 631:{\displaystyle w_{j}} 595: 528: 472: 401: 399:{\displaystyle V_{i}} 358: 260: 243:-consensus-splitting, 237: 211: 187: 167: 147: 119: 6645: 6157:Near-exact procedure 6104:{\displaystyle 2n-2} 6086: 6024: 5875: 5648:agents grouped into 5600: 5550: 5494: 5452: 5430: 5393: 5351: 5329: 5285: 5243: 5207: 5165: 5129: 5087: 5035: 5009: 4975: 4949: 4911: 4885: 4846: 4815: 4793: 4753: 4722: 4700: 4657: 4644:{\displaystyle 2n-d} 4626: 4584: 4562: 4525: 4483: 4461: 4403: 4363: 4324: 4282: 4260: 4214: 4188: 4157: 4135: 4101: 4059: 4037: 3942: 3849: 3777: 3729: 3667: 3599: 3573: 3538: 3335: 3264: 3237: 3132:). Then, finding an 3042:). Then, finding an 3026:First, assumed that 2897: 2712: 2681: 2655: 2600: 2592:=2 partners and any 2543: 2511: 2378: 2349: 2233: 2206: 2186: 2166: 2133: 2113: 2093: 2030: 1966: 1936:{\displaystyle V(x)} 1918: 1866: 1836: 1804: 1784: 1724: 1698: 1645: 1621:union of intervals. 1595: 1531: 1515:be the union of the 1485: 1386: 1360: 1338: 1281: 1255: 1233: 1170: 1144: 1120: 1093: 1011: 949: 943:-near-exact division 926: 900: 831: 805: 745: 719: 653: 615: 603:It is also called a 548: 485: 422: 383: 308: 249: 226: 200: 176: 156: 130: 124:-near-exact division 108: 6662:{\displaystyle 1/n} 6188:Problem of the Nile 5750:Truthful mechanisms 5617:{\displaystyle 1/n} 5567:{\displaystyle 1/n} 5528:piecewise-constant 5415:piecewise-constant 5060:algebraic circuits 5050:{\displaystyle n-1} 4994:algebraic circuits 4930:algebraic circuits 4868:piecewise-constant 4778:piecewise-constant 4768:{\displaystyle n-1} 4239:piecewise-constant 4203:{\displaystyle n+d} 3997: 3017:Borsuk-Ulam theorem 2528:{\displaystyle 1/n} 2393:{\displaystyle n-1} 2309:Stone–Tukey theorem 2020:Borsuk-Ulam theorem 1819:{\displaystyle n+1} 1774:Borsuk-Ulam theorem 1713:{\displaystyle k=2} 1690:Consider first the 1375:{\displaystyle k=n} 1270:{\displaystyle k=2} 892:Near-exact division 820:{\displaystyle k=n} 734:{\displaystyle k=2} 272:Problem of the Nile 126:, for any constant 89:consensus splitting 76:, for any constant 51: = 3 and 28:Consensus splitting 6659: 6101: 6064:Stromquist-Woodall 6045: 6002:Necklace-splitting 5975:Infinite procedure 5919:Discrete procedure 5896: 5757:truthful mechanism 5614: 5564: 5515: 5478: 5436: 5405:{\displaystyle 2n} 5402: 5377: 5335: 5291: 5269: 5213: 5191: 5135: 5113: 5047: 5015: 4981: 4955: 4917: 4891: 4858:{\displaystyle 2n} 4855: 4830: 4799: 4765: 4737: 4706: 4682:piecewise-uniform 4669: 4641: 4610: 4568: 4544:piecewise-uniform 4531: 4509: 4467: 4431: 4388:piecewise-uniform 4375: 4349: 4308: 4266: 4247:whether PPA-hard. 4226: 4200: 4172: 4141: 4107: 4085: 4043: 3987: 3971: 3921: 3831: 3750: 3688: 3611: 3585: 3559: 3487:additive utilities 3467:algebraic circuits 3443:necklace splitting 3386: 3317: 3243: 3124:Next, assume that 2941: 2860:Get an empty bowl. 2770: 2697:, i.e., for every 2687: 2667: 2621: 2567: 2525: 2390: 2364: 2311:states that given 2254: 2219: 2192: 2172: 2152: 2119: 2099: 2051: 2022:, there exists an 2005: 1943:is a vector whose 1933: 1900: 1862:Define a function 1849: 1816: 1790: 1770:Hobby–Rice theorem 1754: 1710: 1669: 1607: 1569:nonatomic measures 1566:countably-additive 1543: 1498: 1432: 1372: 1344: 1321: 1267: 1249:-consensus halving 1239: 1216: 1150: 1126: 1106: 1069: 994: 932: 912: 877: 817: 785: 731: 699: 628: 605:consensus division 590: 523: 467: 396: 353: 280:Necklace splitting 266:-perfect-division. 255: 232: 206: 193:-consensus-halving 182: 162: 142: 114: 7288:978-3-642-16169-8 7178:978-1-61197-646-5 6967:978-1-4503-8554-1 6897:978-1-4503-7975-5 6823:978-1-4503-6705-9 6773:978-1-4503-5559-9 6717:978-0-521-55644-6 6615:Fischer, Daniel. 6230:978-1-56881-076-8 6179: 6178: 5971:Consensus-halving 5934:Num. of districts 5630:fair cake-cutting 5539: 5538: 5464: 5439:{\displaystyle n} 5363: 5338:{\displaystyle n} 5294:{\displaystyle n} 5255: 5216:{\displaystyle n} 5177: 5138:{\displaystyle n} 5099: 5018:{\displaystyle n} 4984:{\displaystyle n} 4958:{\displaystyle n} 4920:{\displaystyle n} 4894:{\displaystyle n} 4802:{\displaystyle n} 4709:{\displaystyle n} 4596: 4571:{\displaystyle n} 4534:{\displaystyle n} 4495: 4470:{\displaystyle n} 4294: 4269:{\displaystyle n} 4144:{\displaystyle n} 4110:{\displaystyle n} 4071: 4046:{\displaystyle n} 3966: 3826: 3398:offline algorithm 3246:{\displaystyle n} 3099:piecewise-uniform 2931: 2195:{\displaystyle i} 2175:{\displaystyle k} 2122:{\displaystyle i} 2102:{\displaystyle n} 2069:Consider now the 1793:{\displaystyle n} 1692:consensus halving 1641:subsets requires 1481:contains exactly 1354:-perfect division 713:Consensus halving 408:nonatomic measure 60:Consensus halving 16:(Redirected from 7333: 7311: 7307: 7301: 7300: 7272: 7256: 7250: 7249: 7223: 7199: 7190: 7189: 7170: 7154: 7145: 7144: 7126: 7117:(4): 3357–3379. 7106: 7100: 7099: 7097: 7085: 7076: 7075: 7049: 7025: 7014: 7013: 7011: 6999: 6980: 6979: 6943: 6923: 6910: 6909: 6873: 6853: 6836: 6835: 6795: 6786: 6785: 6757: 6737: 6722: 6721: 6699: 6693: 6692: 6680: 6674: 6668: 6666: 6665: 6660: 6655: 6635: 6629: 6628: 6626: 6624: 6612: 6606: 6605: 6603: 6593: 6567: 6561: 6560: 6550: 6541:(4): 1257–1261. 6523: 6517: 6516: 6496: 6490: 6489: 6487: 6467: 6458: 6452: 6451: 6431: 6425: 6424: 6422: 6398: 6392: 6391: 6379: 6373: 6372: 6337: 6328: 6327: 6325: 6310: 6297: 6296: 6286: 6266: 6251: 6250: 6216: 6138: 6129: 6110: 6108: 6107: 6102: 6054: 6052: 6051: 6046: 5992: 5905: 5903: 5902: 5897: 5840: 5833: 5815: 5759:should be used. 5623: 5621: 5620: 5615: 5610: 5594:Pareto efficient 5573: 5571: 5570: 5565: 5560: 5524: 5522: 5521: 5516: 5487: 5485: 5484: 5479: 5465: 5462: 5445: 5443: 5442: 5437: 5411: 5409: 5408: 5403: 5386: 5384: 5383: 5378: 5364: 5361: 5344: 5342: 5341: 5336: 5300: 5298: 5297: 5292: 5278: 5276: 5275: 5270: 5256: 5253: 5222: 5220: 5219: 5214: 5200: 5198: 5197: 5192: 5178: 5175: 5144: 5142: 5141: 5136: 5122: 5120: 5119: 5114: 5100: 5097: 5056: 5054: 5053: 5048: 5024: 5022: 5021: 5016: 4990: 4988: 4987: 4982: 4964: 4962: 4961: 4956: 4926: 4924: 4923: 4918: 4900: 4898: 4897: 4892: 4864: 4862: 4861: 4856: 4839: 4837: 4836: 4831: 4808: 4806: 4805: 4800: 4774: 4772: 4771: 4766: 4746: 4744: 4743: 4738: 4715: 4713: 4712: 4707: 4678: 4676: 4675: 4670: 4650: 4648: 4647: 4642: 4619: 4617: 4616: 4611: 4597: 4594: 4577: 4575: 4574: 4569: 4540: 4538: 4537: 4532: 4518: 4516: 4515: 4510: 4496: 4493: 4476: 4474: 4473: 4468: 4440: 4438: 4437: 4432: 4427: 4426: 4384: 4382: 4381: 4376: 4358: 4356: 4355: 4350: 4348: 4347: 4317: 4315: 4314: 4309: 4295: 4292: 4275: 4273: 4272: 4267: 4235: 4233: 4232: 4227: 4209: 4207: 4206: 4201: 4181: 4179: 4178: 4173: 4150: 4148: 4147: 4142: 4116: 4114: 4113: 4108: 4094: 4092: 4091: 4086: 4072: 4069: 4052: 4050: 4049: 4044: 3998: 3980: 3978: 3977: 3972: 3967: 3965: 3964: 3952: 3930: 3928: 3927: 3922: 3911: 3894: 3893: 3843:online algorithm 3840: 3838: 3837: 3832: 3827: 3825: 3824: 3815: 3814: 3787: 3759: 3757: 3756: 3751: 3721:(independent of 3700:online algorithm 3697: 3695: 3694: 3689: 3620: 3618: 3617: 3612: 3594: 3592: 3591: 3586: 3568: 3566: 3565: 3560: 3485:For agents with 3395: 3393: 3392: 3387: 3376: 3362: 3361: 3329:online algorithm 3326: 3324: 3323: 3318: 3310: 3309: 3297: 3289: 3252: 3250: 3249: 3244: 2950: 2948: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2909: 2904: 2779: 2777: 2776: 2771: 2763: 2758: 2757: 2742: 2741: 2729: 2728: 2719: 2696: 2694: 2693: 2688: 2676: 2674: 2673: 2668: 2630: 2628: 2627: 2622: 2576: 2574: 2573: 2568: 2534: 2532: 2531: 2526: 2521: 2399: 2397: 2396: 2391: 2373: 2371: 2370: 2365: 2363: 2362: 2357: 2337: 2321: 2314: 2263: 2261: 2260: 2255: 2228: 2226: 2225: 2220: 2218: 2217: 2201: 2199: 2198: 2193: 2181: 2179: 2178: 2173: 2161: 2159: 2158: 2153: 2151: 2150: 2128: 2126: 2125: 2120: 2108: 2106: 2105: 2100: 2060: 2058: 2057: 2052: 2025: 2014: 2012: 2011: 2006: 1961: 1957: 1950: 1946: 1942: 1940: 1939: 1934: 1913: 1909: 1907: 1906: 1901: 1899: 1898: 1893: 1884: 1883: 1858: 1856: 1855: 1850: 1848: 1847: 1825: 1823: 1822: 1817: 1799: 1797: 1796: 1791: 1763: 1761: 1760: 1755: 1719: 1717: 1716: 1711: 1678: 1676: 1675: 1670: 1616: 1614: 1613: 1608: 1552: 1550: 1549: 1544: 1507: 1505: 1504: 1499: 1497: 1496: 1441: 1439: 1438: 1433: 1428: 1417: 1416: 1398: 1397: 1381: 1379: 1378: 1373: 1353: 1351: 1350: 1345: 1330: 1328: 1327: 1322: 1317: 1306: 1305: 1293: 1292: 1276: 1274: 1273: 1268: 1248: 1246: 1245: 1240: 1225: 1223: 1222: 1217: 1212: 1201: 1200: 1182: 1181: 1159: 1157: 1156: 1151: 1135: 1133: 1132: 1127: 1115: 1113: 1112: 1107: 1105: 1104: 1078: 1076: 1075: 1070: 1062: 1057: 1056: 1041: 1040: 1028: 1027: 1018: 1003: 1001: 1000: 995: 993: 992: 974: 973: 961: 960: 941: 939: 938: 933: 921: 919: 918: 913: 886: 884: 883: 878: 873: 862: 861: 843: 842: 826: 824: 823: 818: 799:Perfect division 794: 792: 791: 786: 781: 770: 769: 757: 756: 740: 738: 737: 732: 708: 706: 705: 700: 695: 684: 683: 665: 664: 637: 635: 634: 629: 627: 626: 599: 597: 596: 591: 589: 588: 573: 572: 560: 559: 537:and every piece 532: 530: 529: 524: 522: 521: 503: 502: 476: 474: 473: 468: 466: 465: 447: 446: 434: 433: 405: 403: 402: 397: 395: 394: 362: 360: 359: 354: 352: 351: 333: 332: 320: 319: 264: 262: 261: 256: 241: 239: 238: 233: 215: 213: 212: 207: 191: 189: 188: 183: 171: 169: 168: 163: 151: 149: 148: 143: 123: 121: 120: 115: 95:Perfect division 87:Another term is 21: 7341: 7340: 7336: 7335: 7334: 7332: 7331: 7330: 7316: 7315: 7314: 7308: 7304: 7289: 7258: 7257: 7253: 7201: 7200: 7193: 7179: 7156: 7155: 7148: 7108: 7107: 7103: 7087: 7086: 7079: 7027: 7026: 7017: 7001: 7000: 6983: 6968: 6925: 6924: 6913: 6898: 6855: 6854: 6839: 6824: 6797: 6796: 6789: 6774: 6739: 6738: 6725: 6718: 6701: 6700: 6696: 6682: 6681: 6677: 6643: 6642: 6636: 6632: 6622: 6620: 6614: 6613: 6609: 6569: 6568: 6564: 6535:Pacific J. Math 6525: 6524: 6520: 6498: 6497: 6493: 6465: 6460: 6459: 6455: 6448:10.1137/0606010 6433: 6432: 6428: 6400: 6399: 6395: 6381: 6380: 6376: 6339: 6338: 6331: 6312: 6311: 6300: 6284:10.1.1.203.1189 6268: 6267: 6254: 6231: 6218: 6217: 6200: 6196: 6184: 6136: 6127: 6124:Existence proof 6084: 6083: 6068:Existence proof 6022: 6021: 6006:Existence proof 5990: 5947:Existence proof 5873: 5872: 5838: 5831: 5813: 5752: 5638: 5598: 5597: 5548: 5547: 5544: 5492: 5491: 5450: 5449: 5428: 5427: 5391: 5390: 5349: 5348: 5327: 5326: 5283: 5282: 5241: 5240: 5205: 5204: 5163: 5162: 5127: 5126: 5085: 5084: 5033: 5032: 5007: 5006: 4973: 4972: 4947: 4946: 4936: 4909: 4908: 4883: 4882: 4844: 4843: 4813: 4812: 4791: 4790: 4751: 4750: 4720: 4719: 4698: 4697: 4655: 4654: 4624: 4623: 4582: 4581: 4560: 4559: 4523: 4522: 4481: 4480: 4459: 4458: 4448: 4444: 4418: 4401: 4400: 4397: 4361: 4360: 4333: 4322: 4321: 4280: 4279: 4258: 4257: 4212: 4211: 4186: 4185: 4155: 4154: 4133: 4132: 4120:any continuous 4099: 4098: 4057: 4056: 4035: 4034: 3956: 3940: 3939: 3885: 3847: 3846: 3816: 3788: 3775: 3774: 3727: 3726: 3665: 3664: 3597: 3596: 3571: 3570: 3536: 3535: 3532: 3353: 3333: 3332: 3301: 3262: 3261: 3235: 3234: 3005: 2997: 2976: 2963: 2895: 2894: 2855: 2749: 2733: 2720: 2710: 2709: 2679: 2678: 2653: 2652: 2649: 2644: 2598: 2597: 2541: 2540: 2509: 2508: 2490: 2425: 2420: 2376: 2375: 2352: 2347: 2346: 2331: 2319: 2312: 2305: 2231: 2230: 2209: 2204: 2203: 2184: 2183: 2164: 2163: 2142: 2131: 2130: 2111: 2110: 2091: 2090: 2028: 2027: 2023: 1964: 1963: 1959: 1955: 1948: 1944: 1916: 1915: 1911: 1888: 1875: 1864: 1863: 1839: 1834: 1833: 1802: 1801: 1782: 1781: 1722: 1721: 1696: 1695: 1643: 1642: 1627: 1593: 1592: 1529: 1528: 1508:of the regions. 1488: 1483: 1482: 1454: 1449: 1408: 1389: 1384: 1383: 1358: 1357: 1336: 1335: 1297: 1284: 1279: 1278: 1253: 1252: 1231: 1230: 1192: 1173: 1168: 1167: 1142: 1141: 1118: 1117: 1096: 1091: 1090: 1048: 1032: 1019: 1009: 1008: 984: 965: 952: 947: 946: 924: 923: 898: 897: 894: 853: 834: 829: 828: 803: 802: 761: 748: 743: 742: 717: 716: 675: 656: 651: 650: 618: 613: 612: 580: 564: 551: 546: 545: 513: 494: 483: 482: 457: 438: 425: 420: 419: 386: 381: 380: 343: 324: 311: 306: 305: 302: 247: 246: 224: 223: 198: 197: 174: 173: 154: 153: 128: 127: 106: 105: 23: 22: 15: 12: 11: 5: 7339: 7337: 7329: 7328: 7318: 7317: 7313: 7312: 7302: 7287: 7251: 7214:(4): 709–740. 7191: 7177: 7146: 7101: 7077: 7015: 6981: 6966: 6911: 6896: 6837: 6822: 6787: 6772: 6723: 6716: 6694: 6675: 6658: 6654: 6650: 6630: 6607: 6584:(3): 926–939. 6562: 6518: 6491: 6453: 6426: 6393: 6374: 6355:(1): 284–297. 6329: 6298: 6252: 6229: 6197: 6195: 6192: 6191: 6190: 6183: 6180: 6177: 6176: 6173: 6170: 6167: 6164: 6161: 6158: 6155: 6153:Crumb-and-pack 6149: 6148: 6145: 6142: 6139: 6134: 6131: 6125: 6122: 6116: 6115: 6112: 6100: 6097: 6094: 6091: 6081: 6078: 6075: 6072: 6069: 6066: 6060: 6059: 6056: 6044: 6041: 6038: 6035: 6032: 6029: 6019: 6016: 6013: 6010: 6007: 6004: 5998: 5997: 5994: 5988: 5985: 5982: 5979: 5976: 5973: 5967: 5966: 5963: 5960: 5957: 5954: 5951: 5948: 5945: 5943:Dubins–Spanier 5939: 5938: 5935: 5932: 5929: 5926: 5923: 5920: 5917: 5911: 5910: 5907: 5895: 5892: 5889: 5886: 5883: 5880: 5870: 5867: 5864: 5861: 5858: 5855: 5849: 5848: 5845: 5842: 5835: 5828: 5825: 5822: 5819: 5812: 5809: 5790: 5789: 5786: 5775: 5751: 5748: 5747: 5746: 5705: 5637: 5634: 5613: 5609: 5605: 5563: 5559: 5555: 5543: 5540: 5537: 5536: 5529: 5526: 5514: 5511: 5508: 5505: 5502: 5499: 5488: 5477: 5474: 5471: 5468: 5460: 5457: 5447: 5435: 5424: 5420: 5419: 5416: 5413: 5401: 5398: 5387: 5376: 5373: 5370: 5367: 5359: 5356: 5346: 5334: 5323: 5319: 5318: 5309: 5308: 5305: 5302: 5290: 5279: 5268: 5265: 5262: 5259: 5251: 5248: 5238: 5235: 5231: 5230: 5227: 5224: 5212: 5201: 5190: 5187: 5184: 5181: 5173: 5170: 5160: 5157: 5153: 5152: 5149: 5146: 5134: 5123: 5112: 5109: 5106: 5103: 5095: 5092: 5082: 5079: 5075: 5074: 5065: 5064: 5061: 5058: 5046: 5043: 5040: 5029: 5026: 5014: 5003: 4999: 4998: 4995: 4992: 4980: 4969: 4966: 4954: 4943: 4939: 4938: 4934: 4931: 4928: 4916: 4905: 4902: 4890: 4879: 4875: 4874: 4869: 4866: 4854: 4851: 4840: 4829: 4826: 4823: 4820: 4810: 4798: 4787: 4783: 4782: 4779: 4776: 4764: 4761: 4758: 4747: 4736: 4733: 4730: 4727: 4717: 4705: 4694: 4690: 4689: 4686: 4680: 4668: 4665: 4662: 4640: 4637: 4634: 4631: 4620: 4609: 4606: 4603: 4600: 4592: 4589: 4579: 4567: 4556: 4552: 4551: 4548: 4542: 4530: 4519: 4508: 4505: 4502: 4499: 4491: 4488: 4478: 4466: 4455: 4451: 4450: 4446: 4430: 4425: 4421: 4417: 4414: 4411: 4408: 4398: 4395: 4392: 4390:with 2 blocks 4386: 4374: 4371: 4368: 4346: 4343: 4340: 4336: 4332: 4329: 4318: 4307: 4304: 4301: 4298: 4290: 4287: 4277: 4265: 4254: 4250: 4249: 4240: 4237: 4225: 4222: 4219: 4199: 4196: 4193: 4182: 4171: 4168: 4165: 4162: 4152: 4140: 4129: 4125: 4124: 4121: 4118: 4106: 4095: 4084: 4081: 4078: 4075: 4067: 4064: 4054: 4042: 4031: 4027: 4026: 4023: 4020: 4017: 4011: 4005: 3985: 3984: 3983: 3982: 3970: 3963: 3959: 3955: 3950: 3947: 3920: 3917: 3914: 3910: 3906: 3903: 3900: 3897: 3892: 3888: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3863: 3860: 3857: 3854: 3830: 3823: 3819: 3813: 3810: 3807: 3804: 3800: 3797: 3794: 3791: 3785: 3782: 3763: 3762: 3761: 3749: 3746: 3743: 3740: 3737: 3734: 3687: 3684: 3681: 3678: 3675: 3672: 3649: 3648: 3634: 3610: 3607: 3604: 3584: 3581: 3578: 3558: 3555: 3552: 3549: 3546: 3543: 3531: 3528: 3527: 3526: 3523: 3513: 3506: 3479: 3478: 3463: 3448: 3426: 3425: 3424: 3423: 3385: 3382: 3379: 3375: 3371: 3368: 3365: 3360: 3356: 3352: 3349: 3346: 3343: 3340: 3316: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3284: 3281: 3278: 3275: 3272: 3269: 3254: 3242: 3217:, including a 3206: 3205: 3186: 3172: 3153: 3122: 3121: 3118: 3095: 3084: 3068: 3067: 3013:Tucker's lemma 3004: 3001: 2996: 2993: 2972: 2959: 2940: 2936: 2930: 2925: 2921: 2916: 2912: 2908: 2903: 2872: 2871: 2867: 2864: 2861: 2851: 2825:. Finally all 2781: 2780: 2769: 2766: 2762: 2756: 2752: 2748: 2745: 2740: 2736: 2732: 2727: 2723: 2718: 2686: 2666: 2663: 2660: 2651:For any given 2648: 2645: 2643: 2640: 2638:>2 agents. 2620: 2617: 2614: 2611: 2608: 2605: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2524: 2520: 2516: 2489: 2486: 2472:and there are 2431:=2 agents and 2424: 2421: 2419: 2416: 2389: 2386: 2383: 2361: 2356: 2304: 2301: 2253: 2250: 2247: 2244: 2241: 2238: 2216: 2212: 2191: 2171: 2149: 2145: 2141: 2138: 2118: 2098: 2063: 2062: 2050: 2047: 2044: 2041: 2038: 2035: 2018:Hence, by the 2016: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1952: 1932: 1929: 1926: 1923: 1897: 1892: 1887: 1882: 1878: 1874: 1871: 1860: 1846: 1842: 1830: 1827: 1815: 1812: 1809: 1789: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1732: 1729: 1709: 1706: 1703: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1626: 1623: 1606: 1603: 1600: 1542: 1539: 1536: 1525: 1524: 1509: 1495: 1491: 1453: 1450: 1448: 1445: 1444: 1443: 1431: 1427: 1423: 1420: 1415: 1411: 1407: 1404: 1401: 1396: 1392: 1371: 1368: 1365: 1343: 1332: 1320: 1316: 1312: 1309: 1304: 1300: 1296: 1291: 1287: 1266: 1263: 1260: 1238: 1227: 1215: 1211: 1207: 1204: 1199: 1195: 1191: 1188: 1185: 1180: 1176: 1149: 1125: 1103: 1099: 1088:nearly-exactly 1080: 1079: 1068: 1065: 1061: 1055: 1051: 1047: 1044: 1039: 1035: 1031: 1026: 1022: 1017: 991: 987: 983: 980: 977: 972: 968: 964: 959: 955: 945:in the ratios 931: 911: 908: 905: 893: 890: 889: 888: 876: 872: 868: 865: 860: 856: 852: 849: 846: 841: 837: 816: 813: 810: 796: 784: 780: 776: 773: 768: 764: 760: 755: 751: 730: 727: 724: 710: 698: 694: 690: 687: 682: 678: 674: 671: 668: 663: 659: 625: 621: 601: 600: 587: 583: 579: 576: 571: 567: 563: 558: 554: 520: 516: 512: 509: 506: 501: 497: 493: 490: 464: 460: 456: 453: 450: 445: 441: 437: 432: 428: 418:in the ratios 416:exact division 393: 389: 379:is denoted by 350: 346: 342: 339: 336: 331: 327: 323: 318: 314: 301: 298: 285: 284: 276: 268: 254: 231: 205: 181: 161: 141: 138: 135: 113: 102: 92: 67: 32:exact division 30:, also called 24: 18:Exact division 14: 13: 10: 9: 6: 4: 3: 2: 7338: 7327: 7324: 7323: 7321: 7306: 7303: 7298: 7294: 7290: 7284: 7280: 7276: 7271: 7266: 7262: 7255: 7252: 7247: 7243: 7239: 7235: 7231: 7227: 7222: 7217: 7213: 7209: 7205: 7198: 7196: 7192: 7188: 7184: 7180: 7174: 7169: 7164: 7160: 7153: 7151: 7147: 7142: 7138: 7134: 7130: 7125: 7120: 7116: 7112: 7105: 7102: 7096: 7091: 7084: 7082: 7078: 7073: 7069: 7065: 7061: 7057: 7053: 7048: 7043: 7039: 7035: 7031: 7024: 7022: 7020: 7016: 7010: 7005: 6998: 6996: 6994: 6992: 6990: 6988: 6986: 6982: 6977: 6973: 6969: 6963: 6959: 6955: 6951: 6947: 6942: 6937: 6933: 6929: 6922: 6920: 6918: 6916: 6912: 6907: 6903: 6899: 6893: 6889: 6888:1721.1/146185 6885: 6881: 6877: 6872: 6867: 6863: 6859: 6852: 6850: 6848: 6846: 6844: 6842: 6838: 6833: 6829: 6825: 6819: 6815: 6811: 6807: 6806: 6801: 6794: 6792: 6788: 6783: 6779: 6775: 6769: 6765: 6761: 6756: 6751: 6747: 6743: 6736: 6734: 6732: 6730: 6728: 6724: 6719: 6713: 6709: 6705: 6704:Fair Division 6698: 6695: 6690: 6686: 6679: 6676: 6672: 6656: 6652: 6648: 6640: 6634: 6631: 6618: 6611: 6608: 6602: 6597: 6592: 6587: 6583: 6579: 6578: 6573: 6566: 6563: 6558: 6554: 6549: 6544: 6540: 6536: 6532: 6528: 6522: 6519: 6514: 6510: 6506: 6502: 6495: 6492: 6486: 6481: 6477: 6473: 6472: 6464: 6457: 6454: 6449: 6445: 6441: 6437: 6430: 6427: 6421: 6416: 6412: 6408: 6404: 6397: 6394: 6389: 6385: 6378: 6375: 6370: 6366: 6362: 6358: 6354: 6350: 6346: 6342: 6336: 6334: 6330: 6324: 6319: 6315: 6309: 6307: 6305: 6303: 6299: 6294: 6290: 6285: 6280: 6276: 6272: 6265: 6263: 6261: 6259: 6257: 6253: 6248: 6244: 6240: 6236: 6232: 6226: 6222: 6215: 6213: 6211: 6209: 6207: 6205: 6203: 6199: 6193: 6189: 6186: 6185: 6181: 6174: 6171: 6168: 6165: 6162: 6159: 6156: 6154: 6151: 6150: 6146: 6143: 6140: 6135: 6132: 6126: 6123: 6121: 6118: 6117: 6113: 6098: 6095: 6092: 6089: 6082: 6079: 6076: 6073: 6070: 6067: 6065: 6062: 6061: 6057: 6039: 6036: 6033: 6027: 6020: 6017: 6014: 6011: 6008: 6005: 6003: 6000: 5999: 5995: 5989: 5986: 5983: 5980: 5977: 5974: 5972: 5969: 5968: 5964: 5961: 5958: 5955: 5952: 5949: 5946: 5944: 5941: 5940: 5936: 5933: 5930: 5927: 5924: 5921: 5918: 5916: 5913: 5912: 5908: 5890: 5887: 5884: 5878: 5871: 5868: 5865: 5862: 5859: 5856: 5854: 5851: 5850: 5846: 5843: 5836: 5829: 5826: 5823: 5820: 5817: 5816: 5811:Summary table 5810: 5808: 5806: 5801: 5799: 5795: 5787: 5784: 5780: 5776: 5773: 5772: 5771: 5769: 5764: 5760: 5758: 5749: 5745: 5742: 5738: 5734: 5730: 5726: 5722: 5718: 5714: 5710: 5706: 5703: 5699: 5695: 5691: 5687: 5683: 5679: 5675: 5671: 5670: 5669: 5667: 5663: 5659: 5655: 5651: 5647: 5643: 5635: 5633: 5631: 5625: 5611: 5607: 5603: 5595: 5591: 5590: 5585: 5584: 5579: 5578: 5561: 5557: 5553: 5541: 5534: 5530: 5527: 5525: 5512: 5506: 5503: 5500: 5489: 5469: 5455: 5448: 5446: 5433: 5425: 5422: 5421: 5417: 5414: 5412: 5399: 5396: 5388: 5368: 5354: 5347: 5345: 5332: 5324: 5321: 5320: 5317: 5315: 5310: 5306: 5303: 5301: 5288: 5280: 5260: 5246: 5239: 5236: 5233: 5232: 5228: 5225: 5223: 5210: 5202: 5182: 5168: 5161: 5158: 5155: 5154: 5150: 5147: 5145: 5132: 5124: 5104: 5090: 5083: 5080: 5077: 5076: 5073: 5071: 5066: 5062: 5059: 5057: 5044: 5041: 5038: 5030: 5027: 5025: 5012: 5004: 5001: 5000: 4996: 4993: 4991: 4978: 4970: 4967: 4965: 4952: 4944: 4941: 4940: 4932: 4929: 4927: 4914: 4906: 4903: 4901: 4888: 4880: 4877: 4876: 4873: 4870: 4867: 4865: 4852: 4849: 4841: 4824: 4811: 4809: 4796: 4788: 4785: 4784: 4780: 4777: 4775: 4762: 4759: 4756: 4748: 4731: 4718: 4716: 4703: 4695: 4692: 4691: 4687: 4685: 4684:with 1 block 4681: 4679: 4666: 4663: 4660: 4651: 4638: 4635: 4632: 4629: 4621: 4601: 4587: 4580: 4578: 4565: 4557: 4554: 4553: 4549: 4547: 4546:with 1 block 4543: 4541: 4528: 4520: 4500: 4486: 4479: 4477: 4464: 4456: 4453: 4452: 4449: 4443: 4423: 4419: 4409: 4406: 4399:PPA-hard for 4393: 4391: 4387: 4385: 4372: 4369: 4366: 4344: 4341: 4338: 4334: 4330: 4327: 4319: 4299: 4278: 4276: 4263: 4255: 4252: 4251: 4248: 4246: 4241: 4238: 4236: 4223: 4220: 4217: 4197: 4194: 4191: 4183: 4166: 4153: 4151: 4138: 4130: 4127: 4126: 4122: 4119: 4117: 4104: 4096: 4076: 4062: 4055: 4053: 4040: 4032: 4029: 4028: 4024: 4021: 4018: 4016: 4012: 4010: 4006: 4004: 4000: 3999: 3995: 3991: 3961: 3957: 3953: 3945: 3937: 3933: 3932: 3912: 3908: 3904: 3901: 3895: 3890: 3886: 3882: 3879: 3873: 3867: 3864: 3861: 3855: 3852: 3844: 3821: 3817: 3808: 3805: 3798: 3795: 3792: 3789: 3780: 3772: 3768: 3764: 3747: 3741: 3738: 3735: 3724: 3720: 3716: 3712: 3708: 3704: 3703: 3701: 3685: 3679: 3676: 3673: 3662: 3658: 3657: 3656: 3654: 3647: 3643: 3639: 3635: 3632: 3628: 3624: 3623: 3622: 3608: 3605: 3602: 3582: 3579: 3576: 3556: 3550: 3547: 3544: 3529: 3524: 3521: 3520:almost surely 3517: 3514: 3511: 3507: 3504: 3500: 3496: 3492: 3488: 3484: 3483: 3482: 3476: 3472: 3468: 3464: 3461: 3457: 3453: 3449: 3447: 3444: 3440: 3436: 3432: 3428: 3427: 3422: 3418: 3414: 3410: 3406: 3402: 3401: 3399: 3377: 3373: 3369: 3363: 3358: 3354: 3350: 3347: 3341: 3338: 3330: 3306: 3302: 3294: 3286: 3282: 3279: 3276: 3267: 3259: 3255: 3240: 3232: 3228: 3227: 3226: 3224: 3220: 3216: 3211: 3203: 3199: 3195: 3191: 3187: 3185: 3181: 3177: 3173: 3170: 3166: 3162: 3159:agents using 3158: 3154: 3151: 3150: 3149: 3147: 3144:-approximate 3143: 3139: 3135: 3131: 3127: 3119: 3116: 3112: 3108: 3104: 3100: 3096: 3093: 3089: 3085: 3082: 3078: 3074: 3070: 3069: 3065: 3061: 3057: 3053: 3052: 3051: 3049: 3045: 3041: 3037: 3033: 3029: 3024: 3022: 3018: 3014: 3010: 3002: 3000: 2994: 2992: 2989: 2987: 2983: 2978: 2975: 2971: 2967: 2962: 2958: 2954: 2938: 2934: 2928: 2923: 2910: 2892: 2887: 2885: 2881: 2877: 2868: 2865: 2862: 2859: 2858: 2857: 2854: 2850: 2846: 2842: 2838: 2834: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2795:Crumbing step 2792: 2790: 2786: 2767: 2764: 2754: 2750: 2746: 2738: 2734: 2725: 2721: 2708: 2707: 2706: 2704: 2700: 2684: 2664: 2661: 2658: 2646: 2641: 2639: 2637: 2632: 2615: 2612: 2609: 2603: 2595: 2591: 2586: 2584: 2580: 2561: 2558: 2555: 2549: 2546: 2536: 2522: 2518: 2514: 2505: 2503: 2497: 2495: 2487: 2485: 2483: 2478: 2475: 2471: 2466: 2462: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2434: 2430: 2422: 2417: 2415: 2412: 2409: 2405: 2403: 2387: 2384: 2381: 2359: 2343: 2341: 2338:-dimensional 2335: 2329: 2325: 2318:"objects" in 2317: 2310: 2302: 2300: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2265: 2251: 2245: 2242: 2239: 2214: 2210: 2202:, is exactly 2189: 2169: 2147: 2143: 2139: 2136: 2116: 2096: 2088: 2084: 2080: 2076: 2074: 2067: 2048: 2045: 2039: 2033: 2021: 2017: 2002: 1999: 1993: 1990: 1984: 1981: 1975: 1969: 1954:The function 1953: 1927: 1921: 1895: 1880: 1876: 1872: 1869: 1861: 1844: 1840: 1831: 1828: 1813: 1810: 1807: 1787: 1779: 1778: 1777: 1775: 1771: 1767: 1751: 1748: 1742: 1739: 1736: 1730: 1727: 1707: 1704: 1701: 1693: 1688: 1686: 1682: 1663: 1660: 1657: 1651: 1648: 1640: 1636: 1632: 1624: 1622: 1620: 1598: 1589: 1584: 1582: 1578: 1574: 1570: 1567: 1562: 1560: 1556: 1540: 1537: 1534: 1522: 1518: 1514: 1510: 1493: 1489: 1480: 1476: 1472: 1471: 1470: 1468: 1463: 1459: 1451: 1446: 1429: 1425: 1421: 1418: 1413: 1409: 1405: 1402: 1399: 1394: 1390: 1369: 1366: 1363: 1355: 1341: 1333: 1318: 1314: 1310: 1307: 1302: 1298: 1294: 1289: 1285: 1264: 1261: 1258: 1250: 1236: 1228: 1213: 1209: 1205: 1202: 1197: 1193: 1189: 1186: 1183: 1178: 1174: 1165: 1163: 1160:-consensus 1/ 1147: 1139: 1138: 1137: 1123: 1101: 1097: 1089: 1085: 1066: 1063: 1053: 1049: 1045: 1037: 1033: 1024: 1020: 1007: 1006: 1005: 989: 985: 981: 978: 975: 970: 966: 962: 957: 953: 944: 929: 909: 906: 903: 891: 874: 870: 866: 863: 858: 854: 850: 847: 844: 839: 835: 814: 811: 808: 800: 797: 782: 778: 774: 771: 766: 762: 758: 753: 749: 728: 725: 722: 714: 711: 696: 692: 688: 685: 680: 676: 672: 669: 666: 661: 657: 648: 646: 641: 640: 639: 623: 619: 610: 606: 585: 581: 577: 569: 565: 556: 552: 544: 543: 542: 540: 536: 518: 514: 510: 507: 504: 499: 495: 491: 488: 480: 462: 458: 454: 451: 448: 443: 439: 435: 430: 426: 417: 413: 409: 391: 387: 378: 374: 370: 366: 348: 344: 340: 337: 334: 329: 325: 321: 316: 312: 299: 297: 294: 290: 282: 281: 277: 274: 273: 269: 267: 252: 244: 229: 221: 219: 216:-consensus 1/ 203: 194: 179: 159: 139: 136: 133: 125: 111: 103: 100: 96: 93: 90: 86: 83: 79: 75: 73: 68: 65: 61: 58: 57: 56: 54: 50: 45: 41: 38:") into some 37: 33: 29: 19: 7326:Cake-cutting 7305: 7260: 7254: 7211: 7207: 7158: 7114: 7110: 7104: 7037: 7033: 6931: 6861: 6804: 6745: 6707: 6703: 6697: 6688: 6684: 6678: 6638: 6633: 6621:. Retrieved 6610: 6591:math/0610800 6581: 6575: 6565: 6538: 6534: 6521: 6504: 6500: 6494: 6475: 6469: 6456: 6439: 6435: 6429: 6410: 6406: 6396: 6387: 6383: 6377: 6352: 6348: 6341:Chen, Yiling 6274: 6270: 6220: 6144:1 half-plane 6130:-dimensional 5802: 5797: 5793: 5791: 5782: 5778: 5767: 5765: 5761: 5753: 5744: 5740: 5736: 5732: 5728: 5724: 5720: 5716: 5712: 5708: 5701: 5697: 5696:agents with 5693: 5689: 5685: 5681: 5677: 5673: 5661: 5657: 5653: 5649: 5645: 5641: 5639: 5626: 5587: 5581: 5577:proportional 5575: 5545: 5532: 5490: 5426: 5423:prime power 5389: 5325: 5313: 5312: 5281: 5203: 5125: 5069: 5068: 5031: 5005: 4971: 4945: 4907: 4881: 4871: 4842: 4789: 4749: 4696: 4688:Polynomial. 4683: 4653: 4622: 4558: 4545: 4521: 4457: 4445: 4442: 4389: 4320: 4256: 4244: 4243: 4184: 4131: 4097: 4033: 4014: 4008: 4002: 3993: 3989: 3935: 3770: 3766: 3722: 3718: 3714: 3710: 3706: 3698:cuts, in an 3660: 3650: 3645: 3641: 3637: 3630: 3626: 3533: 3515: 3509: 3502: 3498: 3494: 3490: 3480: 3470: 3459: 3455: 3451: 3446: 3438: 3434: 3430: 3420: 3416: 3412: 3408: 3404: 3257: 3230: 3222: 3218: 3209: 3207: 3197: 3193: 3189: 3183: 3179: 3175: 3168: 3164: 3160: 3156: 3141: 3133: 3129: 3125: 3123: 3114: 3110: 3106: 3102: 3091: 3087: 3080: 3076: 3072: 3059: 3054:Agents have 3043: 3039: 3035: 3034:(that is, 1/ 3031: 3027: 3025: 3008: 3006: 2998: 2990: 2979: 2973: 2969: 2965: 2960: 2956: 2952: 2890: 2888: 2883: 2879: 2875: 2873: 2852: 2848: 2844: 2840: 2837:Packing step 2836: 2835: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2793: 2788: 2784: 2782: 2702: 2698: 2650: 2635: 2633: 2593: 2589: 2587: 2582: 2578: 2537: 2506: 2498: 2491: 2481: 2479: 2473: 2469: 2467: 2463: 2458: 2454: 2451:exact subset 2450: 2446: 2442: 2438: 2437: 2432: 2428: 2426: 2413: 2410: 2406: 2401: 2344: 2333: 2306: 2296: 2292: 2284: 2280: 2272: 2268: 2266: 2078: 2072: 2071:consensus 1/ 2070: 2068: 2064: 1951:, minus 1/2. 1765: 1691: 1689: 1684: 1680: 1638: 1634: 1630: 1628: 1618: 1585: 1581:Jerzy Neyman 1576: 1563: 1554: 1526: 1520: 1516: 1512: 1478: 1474: 1466: 1461: 1455: 1334: 1229: 1161: 1140: 1087: 1083: 1081: 942: 895: 798: 712: 644: 643:Consensus 1/ 642: 608: 604: 602: 538: 534: 478: 415: 411: 376: 372: 368: 364: 303: 292: 288: 286: 278: 270: 265: 242: 217: 196: 192: 104: 98: 94: 88: 85: 81: 77: 71: 70:Consensus 1/ 69: 63: 59: 52: 48: 43: 39: 31: 27: 26: 6527:B. Grünbaum 6507:: 241–248. 6413:: 233–247. 6120:Stone–Tukey 5925:Con+Add+Pwl 5830:#partners ( 5719:agents and 5418:PPAD-hard. 4997:FIXP-hard. 4937:-complete. 4396:(PPAD-hard; 4242:PPAD-hard; 4022:Valuations 4013:Accuracy 1/ 3845:, or using 3841:cuts in an 3640:=3, when 1/ 3396:cuts in an 3331:, or using 3327:cuts in an 2324:dimensional 611:is exactly 300:Definitions 7221:1510.03903 7124:2007.06754 7095:2103.04452 7047:1903.03101 7009:1609.05136 6941:2007.15125 6871:2002.11437 6755:1711.04503 6691:: 205–219. 6478:(4): 623. 6442:: 93–106. 6390:: 843–845. 6323:2006.16613 6314:Alon, Noga 6194:References 6133:Con(+Add?) 6012:Con(+Add?) 5837:#subsets ( 5827:Valuations 5803:See also: 5707:For every 5672:For every 5644:there are 4394:PPA-hard. 3073:polynomial 2882:and 1/2+1/ 2701:and every 2340:hyperplane 2316:measurable 2229:. At most 2077:case: any 2026:such that 1571:. This is 1511:Let piece 896:For every 287:When both 7270:1003.5480 7238:1432-217X 7187:214667000 7141:246764981 7072:228908526 7064:0022-0000 7040:: 75–98. 6976:220871193 6906:211505917 6619:. Math.SE 6279:CiteSeerX 6277:: 15–25. 6172:Unbounded 6096:− 6055:(optimal) 6037:− 5993:(optimal) 5962:Unbounded 5906:(optimal) 5888:− 5589:equitable 5583:envy-free 5504:− 5226:monotone 5148:monotone 5042:− 4819:Ω 4760:− 4726:Ω 4664:≥ 4636:− 4413:Ω 4410:∈ 4407:ε 4342:− 4286:Ω 4221:≥ 4161:Ω 4007:# agents 3958:ε 3919:⌉ 3913:ϵ 3896:⁡ 3877:⌈ 3874:⋅ 3865:− 3856:⋅ 3818:ε 3799:⁡ 3739:− 3725:), using 3677:− 3606:≥ 3580:≥ 3569:cuts for 3548:− 3518:cuts are 3384:⌉ 3378:ϵ 3364:⁡ 3345:⌈ 3342:⋅ 3303:ε 3283:⁡ 3138:PPAD-hard 2924:≤ 2768:ε 2747:− 2685:ε 2659:ε 2613:− 2550:∈ 2385:− 2273:arbitrary 2243:− 2140:⋅ 2083:Noga Alon 2075:-division 1991:− 1886:→ 1740:− 1731:⋅ 1661:− 1652:⋅ 1605:∞ 1602:→ 1588:countable 1538:⋅ 1447:Existence 1403:⋯ 1342:ε 1237:ε 1187:⋯ 1148:ε 1124:ε 1067:ε 1046:− 979:… 930:ε 904:ε 848:⋯ 670:⋯ 511:⊔ 508:⋯ 505:⊔ 452:… 338:… 253:ε 230:ε 220:-division 204:ε 180:ε 160:ε 134:ε 112:ε 74:-division 7320:Category 7310:general. 7297:11732339 6832:44085263 6529:(1960). 6247:2730675W 6239:97041258 6182:See also 6009:Interval 5978:Interval 5860:Interval 5847:weights 5304:general 4123:In PPA. 4001:#pieces 3773:, using 3663:, using 3629:for any 3260:, using 3233:, using 3048:PPA-hard 2847:is near 2785:crumbing 2477:pieces. 2299:) cuts. 1553:, where 1523:regions. 1164:division 647:division 481:pieces: 7246:1602396 6782:8111195 6623:23 June 6557:0124818 6369:2096977 6163:Con+Add 6074:Con+Add 5953:Con+Add 5531:In PPA- 4025:Status 4019:# cuts 3996:agents 3419:+O(log( 2789:packing 2328:measure 2271:=2 and 7295:  7285:  7244:  7236:  7185:  7175:  7139:  7070:  7062:  6974:  6964:  6904:  6894:  6830:  6820:  6780:  6770:  6714:  6555:  6367:  6281:  6245:  6237:  6227:  6147:Equal 6071:Circle 6058:Equal 5996:Equal 5853:Austin 5743:>2. 5316:>2: 5072:fixed: 3938:=2 is 3931:cuts. 3064:binary 2402:single 1694:case: 1685:always 1619:finite 1467:amount 7293:S2CID 7265:arXiv 7242:S2CID 7216:arXiv 7183:S2CID 7137:S2CID 7119:arXiv 7090:arXiv 7068:S2CID 7042:arXiv 7004:arXiv 6972:S2CID 6936:arXiv 6902:S2CID 6866:arXiv 6828:S2CID 6778:S2CID 6750:arXiv 6706:[ 6586:arXiv 6466:(PDF) 6365:S2CID 6318:arXiv 5844:#cuts 4872:Open. 3760:cuts. 3452:exact 3429:When 3253:cuts. 3208:When 3174:When 2439:Proof 2404:cut. 2129:, is 922:, An 414:. An 7283:ISBN 7234:ISSN 7173:ISBN 7060:ISSN 6962:ISBN 6892:ISBN 6818:ISBN 6768:ISBN 6712:ISBN 6625:2015 6235:LCCN 6225:ISBN 6175:Any 6169:Many 6166:Many 6114:Any 6077:Many 6018:Many 6015:Many 5984:Many 5965:Any 5959:Many 5956:Many 5937:Any 5931:Many 5928:Many 5909:Any 5869:Many 5824:Cake 5821:Type 5818:Name 5731:-1)( 5711:and 5676:and 5586:and 5463:poly 5362:poly 5254:poly 5176:poly 5098:poly 4595:poly 4494:poly 4370:> 4293:poly 4245:Open 4070:poly 3505:cuts 3475:FIXP 3421:ε)). 3219:mark 3202:3SAT 2787:and 2765:< 2662:> 2500:the 2336:− 1) 2307:The 1382:and 1277:and 1064:< 907:> 827:and 741:and 304:Let 291:and 245:and 137:> 36:cake 7275:doi 7226:doi 7163:doi 7129:doi 7052:doi 7038:117 6954:hdl 6946:doi 6884:hdl 6876:doi 6810:doi 6760:doi 6596:doi 6582:218 6543:doi 6509:doi 6505:108 6480:doi 6444:doi 6415:doi 6388:222 6357:doi 6289:doi 6160:Any 5981:Con 5950:Any 5863:Con 5028:∞ 4968:∞ 3887:log 3796:log 3501:-1) 3355:log 3280:log 3075:in 3021:PPA 3007:An 2297:n k 2277:pie 1561:. 1086:is 410:on 363:be 222:or 7322:: 7291:. 7281:. 7273:. 7240:. 7232:. 7224:. 7212:53 7210:. 7206:. 7194:^ 7181:, 7171:, 7149:^ 7135:. 7127:. 7115:47 7113:. 7080:^ 7066:. 7058:. 7050:. 7036:. 7032:. 7018:^ 6984:^ 6970:. 6960:. 6952:. 6944:. 6930:. 6914:^ 6900:. 6890:. 6882:. 6874:. 6860:. 6840:^ 6826:. 6816:. 6802:. 6790:^ 6776:. 6766:. 6758:. 6744:. 6726:^ 6687:. 6594:. 6580:. 6574:. 6553:MR 6551:. 6539:10 6537:. 6533:. 6503:. 6476:98 6474:. 6468:. 6438:. 6411:78 6409:. 6405:. 6386:. 6363:. 6353:77 6351:. 6347:. 6332:^ 6301:^ 6287:. 6275:45 6273:. 6255:^ 6243:OL 6241:. 6233:. 6201:^ 5807:. 5632:. 5624:. 5580:, 5535:. 5322:3 5237:2 5234:2 5159:3 5156:2 5081:2 5078:2 5002:2 4942:2 4904:? 4878:2 4786:2 4693:2 4652:, 4555:2 4454:2 4359:, 4253:2 4210:, 4128:2 4030:2 3769:± 3707:kn 3702:. 3661:kn 3655:: 3646:n. 3469:, 3437:, 3400:. 3231:2n 3171:). 3115:d) 3083:). 2988:. 2893:: 2886:. 2833:. 2791:. 2705:: 2631:. 2496:. 2342:. 1962:, 1914:, 1776:: 541:: 195:, 7299:. 7277:: 7267:: 7248:. 7228:: 7218:: 7165:: 7143:. 7131:: 7121:: 7098:. 7092:: 7074:. 7054:: 7044:: 7012:. 7006:: 6978:. 6956:: 6948:: 6938:: 6908:. 6886:: 6878:: 6868:: 6834:. 6812:: 6784:. 6762:: 6752:: 6720:. 6689:8 6673:. 6657:n 6653:/ 6649:1 6639:n 6627:. 6604:. 6598:: 6588:: 6559:. 6545:: 6515:. 6511:: 6488:. 6482:: 6450:. 6446:: 6440:6 6423:. 6417:: 6371:. 6359:: 6326:. 6320:: 6295:. 6291:: 6249:. 6141:2 6137:n 6128:n 6099:2 6093:n 6090:2 6080:2 6043:) 6040:1 6034:k 6031:( 6028:n 5991:n 5987:2 5894:) 5891:1 5885:k 5882:( 5879:2 5866:2 5841:) 5839:k 5834:) 5832:n 5798:n 5794:n 5783:n 5779:n 5768:n 5741:k 5737:k 5733:k 5729:n 5725:k 5721:k 5717:n 5713:k 5709:n 5702:n 5698:k 5694:n 5690:k 5686:k 5684:( 5682:n 5678:k 5674:n 5662:k 5654:k 5650:k 5646:n 5642:, 5612:n 5608:/ 5604:1 5562:n 5558:/ 5554:1 5533:k 5513:n 5510:) 5507:1 5501:k 5498:( 5476:) 5473:) 5470:n 5467:( 5459:( 5456:O 5434:n 5400:n 5397:2 5375:) 5372:) 5369:n 5366:( 5358:( 5355:O 5333:n 5314:k 5289:n 5267:) 5264:) 5261:n 5258:( 5250:( 5247:O 5211:n 5189:) 5186:) 5183:n 5180:( 5172:( 5169:O 5133:n 5111:) 5108:) 5105:n 5102:( 5094:( 5091:O 5070:n 5045:1 5039:n 5013:n 4979:n 4953:n 4935:a 4915:n 4889:n 4853:n 4850:2 4828:) 4825:1 4822:( 4797:n 4763:1 4757:n 4735:) 4732:1 4729:( 4704:n 4667:0 4661:d 4639:d 4633:n 4630:2 4608:) 4605:) 4602:n 4599:( 4591:( 4588:O 4566:n 4529:n 4507:) 4504:) 4501:n 4498:( 4490:( 4487:O 4465:n 4441:; 4429:) 4424:n 4420:2 4416:( 4373:0 4367:d 4345:d 4339:1 4335:n 4331:+ 4328:n 4306:) 4303:) 4300:n 4297:( 4289:( 4264:n 4224:0 4218:d 4198:d 4195:+ 4192:n 4170:) 4167:1 4164:( 4139:n 4105:n 4083:) 4080:) 4077:n 4074:( 4066:( 4063:O 4041:n 4015:ε 4009:n 4003:k 3994:n 3990:ε 3969:) 3962:2 3954:n 3949:( 3946:O 3936:k 3916:) 3909:/ 3905:k 3902:3 3899:( 3891:2 3883:+ 3880:2 3871:) 3868:1 3862:k 3859:( 3853:n 3829:) 3822:2 3812:) 3809:n 3806:k 3803:( 3793:n 3790:k 3784:( 3781:O 3771:ε 3767:k 3748:n 3745:) 3742:1 3736:k 3733:( 3723:n 3719:k 3715:k 3713:( 3711:c 3686:n 3683:) 3680:1 3674:k 3671:( 3642:ε 3638:k 3633:. 3631:k 3627:k 3609:2 3603:k 3583:3 3577:k 3557:n 3554:) 3551:1 3545:k 3542:( 3516:n 3510:n 3503:n 3499:k 3495:k 3491:n 3471:ε 3460:n 3456:n 3439:ε 3435:n 3431:ε 3417:n 3413:d 3409:d 3407:+ 3405:n 3381:) 3374:/ 3370:1 3367:( 3359:2 3351:+ 3348:2 3339:n 3315:) 3312:) 3307:2 3299:( 3295:/ 3291:) 3287:n 3277:n 3274:( 3271:( 3268:O 3258:ε 3241:n 3223:n 3210:ε 3204:. 3198:ε 3194:n 3190:ε 3184:. 3180:ε 3176:ε 3169:d 3165:d 3163:+ 3161:n 3157:n 3142:ε 3134:ε 3130:n 3126:ε 3117:. 3111:d 3109:- 3107:n 3103:n 3094:. 3092:n 3088:ε 3081:n 3077:n 3066:. 3060:ε 3044:ε 3040:n 3036:ε 3032:n 3028:ε 3009:ε 2974:j 2970:w 2966:j 2961:j 2957:w 2953:j 2939:k 2935:/ 2929:n 2920:| 2915:| 2911:v 2907:| 2902:| 2891:v 2884:k 2880:k 2876:k 2853:j 2849:w 2845:j 2841:n 2831:k 2827:n 2823:n 2819:k 2815:k 2811:k 2807:k 2803:k 2799:k 2761:| 2755:j 2751:w 2744:) 2739:j 2735:X 2731:( 2726:i 2722:V 2717:| 2703:j 2699:i 2665:0 2636:n 2619:) 2616:1 2610:k 2607:( 2604:2 2594:k 2590:n 2583:p 2579:p 2565:] 2562:1 2559:, 2556:0 2553:[ 2547:p 2523:n 2519:/ 2515:1 2482:k 2474:k 2470:k 2459:k 2455:k 2447:k 2443:k 2433:k 2429:n 2388:1 2382:n 2360:n 2355:R 2334:n 2332:( 2322:- 2320:n 2313:n 2293:k 2285:n 2281:n 2269:k 2252:n 2249:) 2246:1 2240:k 2237:( 2215:i 2211:a 2190:i 2170:k 2148:i 2144:a 2137:k 2117:i 2097:n 2079:k 2073:k 2049:0 2046:= 2043:) 2040:x 2037:( 2034:V 2024:x 2015:. 2003:0 2000:= 1997:) 1994:x 1988:( 1985:V 1982:+ 1979:) 1976:x 1973:( 1970:V 1960:x 1956:V 1949:i 1945:i 1931:) 1928:x 1925:( 1922:V 1912:x 1896:n 1891:R 1881:n 1877:S 1873:: 1870:V 1859:. 1845:n 1841:S 1814:1 1811:+ 1808:n 1788:n 1766:n 1752:n 1749:= 1746:) 1743:1 1737:k 1734:( 1728:n 1708:2 1705:= 1702:k 1681:k 1667:) 1664:1 1658:k 1655:( 1649:n 1639:k 1635:n 1631:n 1599:R 1577:k 1555:R 1541:R 1535:k 1521:R 1517:j 1513:j 1494:j 1490:w 1479:j 1475:k 1462:R 1442:. 1430:n 1426:/ 1422:1 1419:= 1414:n 1410:w 1406:= 1400:= 1395:1 1391:w 1370:n 1367:= 1364:k 1331:. 1319:2 1315:/ 1311:1 1308:= 1303:2 1299:w 1295:= 1290:1 1286:w 1265:2 1262:= 1259:k 1226:. 1214:k 1210:/ 1206:1 1203:= 1198:n 1194:w 1190:= 1184:= 1179:1 1175:w 1162:k 1102:j 1098:w 1084:j 1060:| 1054:j 1050:w 1043:) 1038:j 1034:X 1030:( 1025:i 1021:V 1016:| 990:k 986:w 982:, 976:, 971:2 967:w 963:, 958:1 954:w 910:0 887:. 875:n 871:/ 867:1 864:= 859:n 855:w 851:= 845:= 840:1 836:w 815:n 812:= 809:k 795:. 783:2 779:/ 775:1 772:= 767:2 763:w 759:= 754:1 750:w 729:2 726:= 723:k 709:. 697:k 693:/ 689:1 686:= 681:n 677:w 673:= 667:= 662:1 658:w 645:k 624:j 620:w 609:j 586:j 582:w 578:= 575:) 570:j 566:X 562:( 557:i 553:V 539:j 535:i 519:k 515:X 500:1 496:X 492:= 489:C 479:k 463:k 459:w 455:, 449:, 444:2 440:w 436:, 431:1 427:w 412:C 392:i 388:V 377:i 373:C 369:n 365:k 349:k 345:w 341:, 335:, 330:2 326:w 322:, 317:1 313:w 293:k 289:n 218:k 140:0 99:n 91:. 82:k 78:k 72:k 64:k 53:n 49:k 44:n 40:k 20:)

Index

Exact division
cake
Problem of the Nile
Necklace splitting
nonatomic measure
piecewise-constant valuations
piecewise-linear valuations
countably-additive
nonatomic measures
a corollary of the Dubins–Spanier convexity theorem
Jerzy Neyman
countable
Hobby–Rice theorem
Borsuk-Ulam theorem
Borsuk-Ulam theorem
Noga Alon
necklace splitting problem
pie
Stromquist–Woodall theorem
Stone–Tukey theorem
measurable
dimensional
measure
hyperplane
Austin moving-knife procedure
intermediate value theorem
Robertson-Webb protocol
envy-free cake-cutting
Tucker's lemma
Borsuk-Ulam theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.