Knowledge (XXG)

Exocytosis

Source 📝

342:. There is no clear consensus about the machinery and molecular processes that drive the formation, budding, translocation and fusion of the post-Golgi vesicles to the plasma membrane. The fusion involves membrane tethering (recognition) and membrane fusion. It is still unclear if the machinery between the constitutive and regulated secretion is different. The machinery required for constitutive exocytosis has not been studied as much as the mechanism of regulated exocytosis. Two tethering complexes are associated with constitutive exocytosis in mammals, ELKS and Exocyst. ELKS is a large coiled-coil protein, also involved in synaptic exocytosis, marking the 'hotspots' fusion points of the secretory carriers fusion. Exocyst is an octameric protein complex. In mammals, exocyst components localize in both plasma membrane, and Golgi apparatus and the exocyst proteins are colocalized at the fusion point of the post-Golgi vesicles. The membrane fusion of the constitutive exocytosis, probably, is mediated by SNAP29 and Syntaxin19 at the plasma membrane and YKT6 or VAMP3 at the vesicle membrane. 471: 38: 324:
synaptotagmin proteins are absent in plants and unicellular eukaryotes. Other potential calcium sensors for exocytosis are EF-hand proteins (Ex: Calmodulin) and C2-domain (Ex: Ferlins, E-synaptotagmin, Doc2b) containing proteins. It is unclear how the different calcium sensors can cooperate together and mediate the calcium triggered kinetics of exocytosis in a specific fashion.
381: 401:
to the cell surface area, will be likely to use motor proteins and a cytoskeletal track to get closer to their target. Before tethering would have been appropriate, many of the proteins used for the active transport would have been instead set for passive transport, because the Golgi apparatus does
555:
Examination of cells following secretion using electron microscopy demonstrate increased presence of partially empty vesicles following secretion. This suggested that during the secretory process, only a portion of the vesicular content is able to exit the cell. This could only be possible if the
323:
is Ca triggered and serves interneuronal signalling. The calcium sensors that trigger exocytosis might interact either with the SNARE complex or with the phospholipids of the fusing membranes. Synaptotagmin has been recognized as the major sensor for Ca triggered exocytosis in animals. However,
306:
coat, as well as an increase in intracellular calcium. In multicellular organisms, this mechanism initiates many forms of intercellular communication such as synaptic transmission, hormone secretion by neuroendocrine cells, and immune cells' secretion. In neurons and endocrine cells, the
451:
has been used to include all of the molecular rearrangements and ATP-dependent protein and lipid modifications that take place after initial docking of a synaptic vesicle but before exocytosis, such that the influx of calcium ions is all that is needed to trigger nearly instantaneous
474:
In the lipid-lined pore theory, both membranes curve toward each other to form the early fusion pore. When the two membranes are brought to a "critical" distance, the lipid head-groups from one membrane insert into the other, creating the basis for the fusion
384:
Molecular machinery driving exocytosis in neuromediator release. The core SNARE complex is formed by four α-helices contributed by synaptobrevin, syntaxin and SNAP-25, synaptotagmin serves as a calcium sensor and regulates intimately the SNARE
422:
interactions. Tethering involves links over distances of more than about half the diameter of a vesicle from a given membrane surface (>25 nm). Tethering interactions are likely to be involved in concentrating synaptic vesicles at the
560:, expel a portion of its contents, then detach, reseal, and withdraw into the cytosol (endocytose). In this way, the secretory vesicle could be reused for subsequent rounds of exo-endocytosis, until completely empty of its contents. 363:
host cells or other microbes located nearby, accomplishing control of the secreting microbe on its environment - including invasion of host, endotoxemia, competing with other microbes for nutrition, etc. This finding of
199:
means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called
203:. Porosomes are permanent cup-shaped lipoprotein structures at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell. 903: 307:
SNARE-proteins and SM-proteins catalyze the fusion by forming a complex that brings the two fusion membranes together. For instance, in synapses, the SNARE complex is formed by
994:
Georgiev, Danko D .; James F . Glazebrook (2007). "Subneuronal processing of information by solitary waves and stochastic processes". In Lyshevski, Sergey Edward (ed.).
397:
Certain vesicle-trafficking steps require the transportation of a vesicle over a moderately small distance. For example, vesicles that transport proteins from the
490:
The surface of the plasma membrane increases (by the surface of the fused vesicle). This is important for the regulation of cell size, e.g., during cell growth.
1137: 265:, and other components into the cell membrane. Vesicles containing these membrane components fully fuse with and become part of the outer cell membrane. 904:
https://www.researchgate.net/publication/230817087_Electron_microscope_studies_of_surface_pilli_and_vesicles_of_Salmonella_310r-_organisms?ev=prf_pub
1011: 726: 691: 456:
release. In other cell types, whose secretion is constitutive (i.e. continuous, calcium ion independent, non-triggered) there is no priming.
1267: 402:
not require ATP to transport proteins. Both the actin- and the microtubule-base are implicated in these processes, along with several
356: 175:). As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, 1130: 483:
proteins, resulting in release of vesicle contents into the extracellular space (or in case of neurons in the synaptic cleft).
1287: 624: 31: 365: 369: 1331: 1123: 293:
triggered non-constitutive (i.e., regulated exocytosis) and 2) non-Ca triggered constitutive (i.e., non-regulated).
1235: 243: 515:
embedded in the vesicle membrane are now part of the plasma membrane. The side of the protein that was facing the
1341: 969: 1336: 1230: 1109: 406:. Once the vesicles reach their targets, they come into contact with tethering factors that can restrain them. 1086: 1037:"Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume" 635: 352: 218:
and their contents (i.e., water-soluble molecules) are secreted into the extracellular environment. This
1197: 1182: 506: 470: 258: 331: 1156: 537: 493:
The substances within the vesicle are released into the exterior. These might be waste products or
1176: 1146: 1017: 779: 751: 297: 290: 180: 523:
of the cell. This mechanism is important for the regulation of transmembrane and transporters.
1164: 1067: 1041: 1007: 950: 877: 828: 771: 732: 722: 687: 584: 339: 274: 250: 239: 227: 207: 196: 184: 54: 1207: 1172: 1057: 1049: 999: 940: 932: 867: 859: 818: 810: 763: 714: 502: 453: 403: 320: 231: 156: 144: 96: 72:
Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential)
50: 658: 398: 75: 708: 653: 27:
Active transport and bulk transport in which a cell transports molecules out of the cell
1062: 1036: 872: 847: 823: 798: 589: 465: 355:
is a third mechanism and latest finding in exocytosis. The periplasm is pinched off as
235: 223: 1105: 970:"Discovery of vesicular exocytosis in procaryotes and its role in Salmonella invasion" 945: 916: 1325: 1308: 1262: 1021: 936: 783: 604: 599: 335: 302:
exocytosis requires an external signal, a specific sorting signal on the vesicles, a
211: 192: 380: 1292: 1272: 579: 549: 148: 45: 556:
vesicle were to temporarily establish continuity with the cell plasma membrane at
863: 681: 1282: 1277: 1254: 1192: 594: 574: 569: 545: 533: 334:
or delivery of newly synthesized membrane proteins that are incorporated in the
254: 188: 176: 894:
YashRoy R C (1993) Electron microscope studies of surface pili and vesicles of
767: 536:. Most synaptic vesicles are recycled without a full fusion into the membrane ( 1225: 1053: 814: 639: 486:
The merging of the donor and the acceptor membranes accomplishes three tasks:
372:
also dispels the myth that exocytosis is purely a eukaryotic cell phenomenon.
360: 349: 1003: 848:"Direct trafficking pathways from the Golgi apparatus to the plasma membrane" 1220: 1215: 557: 286: 219: 215: 66: 1071: 881: 832: 775: 736: 37: 17: 954: 41:
Exocytosis of neurotransmitters into a synapse from neuron A to neuron B.
718: 541: 436: 303: 200: 165: 152: 1245: 1187: 512: 498: 424: 171: 160: 62: 330:
is performed by all cells and serves the release of components of the
1115: 921:
on other bacterial including pathogens: conceptually new antibiotics"
629: 312: 262: 998:. Nano and Microengineering Series. CRC Press. pp. 17–1–17–41. 238:
via exocytosis; however, neurotransmitters can also be released via
548:
are highly energy expending processes, and thus, are dependent on
494: 480: 469: 439:
at the cell plasma membrane, via a tight t-/v-SNARE ring complex.
379: 316: 308: 680:
Rieger, Rigomar; Michaelis, Arnd; Green, Melvin M. (2012-12-06).
249:
Exocytosis is also a mechanism by which cells are able to insert
1119: 359:(OMVs) for translocating microbial biochemical signals into 126: 117: 111: 102: 132: 30:
For the meaning of "exocytosis" in dermatopathology, see
846:
Stalder, Danièle; Gershlick, David C. (November 2020).
414:
It is useful to distinguish between the initial, loose
1088:
Medical Physiology. A Cellular and Molecular Approach
713:. Vol. 4 (1 ed.). Wiley. pp. 149–175. 418:
of vesicles to their objective from the more stable,
135: 129: 114: 108: 105: 99: 435:
Secretory vesicles transiently dock and fuse at the
123: 1301: 1253: 1244: 1206: 1163: 120: 797:Pang, Zhiping P; Südhof, Thomas C (August 2010). 707:Shin, O. H. (2011-01-17). Terjung, Ronald (ed.). 917:"Bacteriolytic effect of membrane vesicles from 319:at the vesicle membrane. Exocytosis in neuronal 230:, neurotransmitters are typically released from 1131: 683:Glossary of Genetics: Classical and Molecular 544:. Non-constitutive exocytosis and subsequent 8: 852:Seminars in Cell & Developmental Biology 226:with the plasma membrane. In the context of 222:is possible because the vesicle transiently 799:"Cell biology of Ca2+-triggered exocytosis" 750:Wolfes, Anne C; Dean, Camin (August 2020). 1250: 1155:Mechanisms for chemical transport through 1138: 1124: 1116: 915:Kadurugamuwa, J L; Beveridge, T J (1996). 1108:at the U.S. National Library of Medicine 1061: 944: 871: 822: 752:"The diversity of synaptotagmin isoforms" 686:. Springer Science & Business Media. 532:Retrieval of synaptic vesicles occurs by 289:, there are two types of exocytosis: 1) 206:In exocytosis, membrane-bound secretory 36: 996:Nano and Molecular Electronics Handbook 616: 389:Five steps are involved in exocytosis: 187:molecules that cannot pass through the 479:Transient vesicle fusion is driven by 1091:, vol. 2, Philadelphia: Elsevier 1085:Boron, WF & Boulpaep, EL (2012), 179:, are used by all cells because most 7: 1268:Non-specific, adsorptive pinocytosis 1035:Ivannikov, M.; et al. (2013). 338:after the fusion of the transport 25: 900:Indian Journal of Animal Sciences 447:In neuronal exocytosis, the term 357:bacterial outer membrane vesicles 937:10.1128/jb.178.10.2767-2774.1996 95: 65:with neurotransmitter released ( 803:Current Opinion in Cell Biology 756:Current Opinion in Neurobiology 659:Merriam-Webster.com Dictionary 497:, or signaling molecules like 214:, where they dock and fuse at 1: 1288:Receptor-mediated endocytosis 519:of the vesicle now faces the 32:exocytosis (dermatopathology) 864:10.1016/j.semcdb.2020.04.001 366:membrane vesicle trafficking 183:important to them are large 315:at the plasma membrane and 244:membrane transport proteins 151:in which a cell transports 83:Recaptured neurotransmitter 1358: 1236:Secondary active transport 768:10.1016/j.conb.2020.04.006 463: 300:triggered non-constitutive 29: 1153: 1054:10.1007/s12031-012-9848-8 815:10.1016/j.ceb.2010.05.001 273:The term was proposed by 1231:Primary active transport 1110:Medical Subject Headings 1004:10.1201/9781315221670-17 710:Comprehensive Physiology 925:Journal of Bacteriology 636:Oxford University Press 595:Presynaptic active zone 370:host–pathogen interface 328:Constitutive exocytosis 80:Exocytosis of a vesicle 968:YashRoy, R.C. (1998). 919:Pseudomonas aeruginosa 902:, vol. 63, pp. 99-102. 476: 386: 353:gram negative bacteria 259:cell surface receptors 87: 1183:Facilitated diffusion 632:UK English Dictionary 507:synaptic transmission 473: 464:Further information: 383: 40: 1157:biological membranes 898:3,10:r:- organisms. 719:10.1002/cphy.c130021 346:Vesicular exocytosis 332:extracellular matrix 538:kiss-and-run fusion 393:Vesicle trafficking 210:are carried to the 181:chemical substances 163:) out of the cell ( 1332:Cellular processes 1177:mediated transport 1147:Membrane transport 477: 387: 88: 1319: 1318: 1315: 1314: 1165:Passive transport 1042:J. Mol. Neurosci. 1013:978-0-8493-8528-5 931:(10): 2767–2774. 728:978-0-470-65071-4 693:978-3-642-75333-6 662:. Merriam-Webster 585:Membrane nanotube 528:Vesicle retrieval 503:neurotransmitters 410:Vesicle tethering 368:occurring at the 321:chemical synapses 251:membrane proteins 240:reverse transport 232:synaptic vesicles 228:neurotransmission 157:neurotransmitters 55:neurotransmitters 16:(Redirected from 1349: 1342:Membrane biology 1251: 1208:Active transport 1173:Simple diffusion 1140: 1133: 1126: 1117: 1093: 1092: 1082: 1076: 1075: 1065: 1032: 1026: 1025: 991: 985: 984: 983:(10): 1062–1066. 974: 965: 959: 958: 948: 912: 906: 892: 886: 885: 875: 843: 837: 836: 826: 794: 788: 787: 747: 741: 740: 704: 698: 697: 677: 671: 670: 668: 667: 650: 644: 643: 638:. Archived from 621: 454:neurotransmitter 145:active transport 142: 141: 138: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 107: 104: 101: 51:Synaptic vesicle 21: 1357: 1356: 1352: 1351: 1350: 1348: 1347: 1346: 1337:Neurophysiology 1322: 1321: 1320: 1311: 1297: 1240: 1202: 1159: 1149: 1144: 1102: 1097: 1096: 1084: 1083: 1079: 1034: 1033: 1029: 1014: 993: 992: 988: 977:Current Science 972: 967: 966: 962: 914: 913: 909: 893: 889: 845: 844: 840: 796: 795: 791: 749: 748: 744: 729: 706: 705: 701: 694: 679: 678: 674: 665: 663: 652: 651: 647: 623: 622: 618: 613: 566: 530: 468: 462: 445: 443:Vesicle priming 433: 431:Vesicle docking 412: 399:Golgi apparatus 395: 378: 336:plasma membrane 283: 271: 191:portion of the 143:) is a form of 98: 94: 86: 76:Calcium channel 35: 28: 23: 22: 15: 12: 11: 5: 1355: 1353: 1345: 1344: 1339: 1334: 1324: 1323: 1317: 1316: 1313: 1312: 1307: 1305: 1299: 1298: 1296: 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1259: 1257: 1248: 1242: 1241: 1239: 1238: 1233: 1228: 1223: 1218: 1212: 1210: 1204: 1203: 1201: 1200: 1195: 1190: 1185: 1180: 1169: 1167: 1161: 1160: 1154: 1151: 1150: 1145: 1143: 1142: 1135: 1128: 1120: 1114: 1113: 1101: 1100:External links 1098: 1095: 1094: 1077: 1048:(1): 223–230. 1027: 1012: 986: 960: 907: 887: 838: 809:(4): 496–505. 789: 742: 727: 699: 692: 672: 645: 642:on 2020-03-22. 615: 614: 612: 609: 608: 607: 602: 597: 592: 590:Viral shedding 587: 582: 577: 572: 565: 562: 529: 526: 525: 524: 510: 491: 466:Vesicle fusion 461: 460:Vesicle fusion 458: 444: 441: 432: 429: 411: 408: 404:motor proteins 394: 391: 377: 374: 282: 279: 270: 267: 236:synaptic cleft 149:bulk transport 85: 84: 81: 78: 73: 70: 60: 57: 48: 42: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1354: 1343: 1340: 1338: 1335: 1333: 1330: 1329: 1327: 1310: 1309:Degranulation 1306: 1304: 1300: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1263:Efferocytosis 1261: 1260: 1258: 1256: 1252: 1249: 1247: 1243: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1213: 1211: 1209: 1205: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1178: 1174: 1171: 1170: 1168: 1166: 1162: 1158: 1152: 1148: 1141: 1136: 1134: 1129: 1127: 1122: 1121: 1118: 1111: 1107: 1104: 1103: 1099: 1090: 1089: 1081: 1078: 1073: 1069: 1064: 1059: 1055: 1051: 1047: 1044: 1043: 1038: 1031: 1028: 1023: 1019: 1015: 1009: 1005: 1001: 997: 990: 987: 982: 978: 971: 964: 961: 956: 952: 947: 942: 938: 934: 930: 926: 922: 920: 911: 908: 905: 901: 897: 891: 888: 883: 879: 874: 869: 865: 861: 857: 853: 849: 842: 839: 834: 830: 825: 820: 816: 812: 808: 804: 800: 793: 790: 785: 781: 777: 773: 769: 765: 761: 757: 753: 746: 743: 738: 734: 730: 724: 720: 716: 712: 711: 703: 700: 695: 689: 685: 684: 676: 673: 661: 660: 655: 649: 646: 641: 637: 633: 631: 626: 620: 617: 610: 606: 605:Degranulation 603: 601: 600:Residual body 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 567: 563: 561: 559: 553: 551: 547: 543: 539: 535: 527: 522: 518: 514: 511: 508: 504: 500: 496: 492: 489: 488: 487: 484: 482: 472: 467: 459: 457: 455: 450: 442: 440: 438: 430: 428: 426: 421: 417: 409: 407: 405: 400: 392: 390: 382: 375: 373: 371: 367: 362: 358: 354: 351: 347: 343: 341: 337: 333: 329: 325: 322: 318: 314: 310: 305: 301: 299: 294: 292: 288: 280: 278: 276: 268: 266: 264: 260: 256: 252: 247: 245: 241: 237: 233: 229: 225: 221: 217: 213: 212:cell membrane 209: 204: 202: 198: 194: 193:cell membrane 190: 186: 182: 178: 174: 173: 168: 167: 162: 158: 154: 150: 146: 140: 92: 82: 79: 77: 74: 71: 68: 64: 61: 58: 56: 52: 49: 47: 46:Mitochondrion 44: 43: 39: 33: 19: 1302: 1293:Transcytosis 1273:Phagocytosis 1087: 1080: 1045: 1040: 1030: 995: 989: 980: 976: 963: 928: 924: 918: 910: 899: 895: 890: 855: 851: 841: 806: 802: 792: 759: 755: 745: 709: 702: 682: 675: 664:. Retrieved 657: 654:"Exocytosis" 648: 640:the original 628: 625:"Exocytosis" 619: 580:Phagocytosis 554: 550:mitochondria 531: 520: 516: 485: 478: 448: 446: 434: 419: 415: 413: 396: 388: 345: 344: 327: 326: 296: 295: 284: 272: 255:ion channels 248: 205: 170: 164: 90: 89: 59:Autoreceptor 1283:Potocytosis 1278:Pinocytosis 1255:Endocytosis 858:: 112–125. 762:: 198–209. 575:Pinocytosis 570:Endocytosis 546:endocytosis 534:endocytosis 189:hydrophobic 177:endocytosis 18:Exocytosing 1326:Categories 1303:Exocytosis 1226:Antiporter 1106:Exocytosis 896:Salmonella 666:2016-01-21 611:References 361:eukaryotic 350:prokaryote 309:syntaxin-1 287:eukaryotes 91:Exocytosis 1221:Symporter 1216:Uniporter 1022:199021983 784:220480746 558:porosomes 416:tethering 277:in 1963. 253:(such as 234:into the 220:secretion 216:porosomes 201:porosomes 153:molecules 67:serotonin 1198:Carriers 1193:Channels 1175:(or non- 1072:22772899 882:32317144 833:20561775 776:32663762 737:24692137 564:See also 542:porosome 513:Proteins 499:hormones 437:porosome 385:zipping. 304:clathrin 242:through 208:vesicles 161:proteins 1246:Cytosis 1188:Osmosis 1063:3488359 955:8631663 873:7152905 824:2963628 521:outside 505:during 449:priming 425:synapse 420:packing 340:vesicle 275:De Duve 269:History 197:passive 172:cytosis 155:(e.g., 63:Synapse 1112:(MeSH) 1070:  1060:  1020:  1010:  953:  946:178010 943:  880:  870:  831:  821:  782:  774:  735:  725:  690:  630:Lexico 540:) via 517:inside 495:toxins 313:SNAP25 263:lipids 1018:S2CID 973:(PDF) 780:S2CID 481:SNARE 475:pore. 376:Steps 317:VAMP2 281:Types 224:fuses 185:polar 53:with 1068:PMID 1008:ISBN 951:PMID 878:PMID 829:PMID 772:PMID 733:PMID 723:ISBN 688:ISBN 311:and 257:and 166:exo- 159:and 147:and 1058:PMC 1050:doi 1000:doi 941:PMC 933:doi 929:178 868:PMC 860:doi 856:107 819:PMC 811:doi 764:doi 715:doi 501:or 348:in 285:In 261:), 195:by 1328:: 1066:. 1056:. 1046:49 1039:. 1016:. 1006:. 981:75 979:. 975:. 949:. 939:. 927:. 923:. 876:. 866:. 854:. 850:. 827:. 817:. 807:22 805:. 801:. 778:. 770:. 760:63 758:. 754:. 731:. 721:. 656:. 634:. 627:. 552:. 427:. 298:Ca 291:Ca 246:. 169:+ 127:oʊ 118:aɪ 112:oʊ 1179:) 1139:e 1132:t 1125:v 1074:. 1052:: 1024:. 1002:: 957:. 935:: 884:. 862:: 835:. 813:: 786:. 766:: 739:. 717:: 696:. 669:. 509:. 139:/ 136:s 133:ɪ 130:s 124:t 121:ˈ 115:s 109:s 106:k 103:ɛ 100:ˌ 97:/ 93:( 69:) 34:. 20:)

Index

Exocytosing
exocytosis (dermatopathology)

Mitochondrion
Synaptic vesicle
neurotransmitters
Synapse
serotonin
Calcium channel
/ˌɛkssˈtsɪs/
active transport
bulk transport
molecules
neurotransmitters
proteins
exo-
cytosis
endocytosis
chemical substances
polar
hydrophobic
cell membrane
passive
porosomes
vesicles
cell membrane
porosomes
secretion
fuses
neurotransmission

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.