Knowledge (XXG)

Extended X-ray absorption fine structure

Source đź“ť

1539: 1551: 25: 75: 209:
of the backscattered wave are dependent on the type of atom doing the backscattering and the distance of the backscattering atom from the central atom. The dependence of the scattering on atomic species makes it possible to obtain information pertaining to the chemical coordination environment of the
162:
spectra. These spectra can be used to determine the average oxidation state of the element in the sample. The XANES spectra are also sensitive to the coordination environment of the absorbing atom in the sample. Finger printing methods have been used to match the XANES spectra of an unknown sample
154:
of an element in the sample. The x-ray absorption coefficient is usually normalized to unit step height. This is done by regressing a line to the region before and after the absorption edge, subtracting the pre-edge line from the entire data set and dividing by the absorption step height, which is
124:
of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons,
189:
of the measured absorption coefficient, thereby causing the oscillation in the EXAFS spectra. A simplified plane-wave single-scattering theory has been used for interpretation of EXAFS spectra for many years, although modern methods (like FEFF, GNXAS) have shown that curved-wave corrections and
129:
because the high intensity of synchrotron X-ray sources allows the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source were too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids.
334:, a highly sensitive technique with elemental specificity. As such, EXAFS is an extremely useful way to determine the chemical state of practically important species which occur in very low abundance or concentration. Frequent use of EXAFS occurs in 190:
multiple-scattering effects can not be neglected. The photelectron scattering amplitude in the low energy range (5-200 eV) of the photoelectron kinetic energy become much larger so that multiple scattering events become dominant in the
112:
of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented.
943:
Sayers, Dale E.; Stern, Edward A.; Lytle, Farrel W. (1 October 1971). "New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure".
373:. A more modern and accurate account of the history of XAFS (EXAFS and XANES) is given by the leader of the group that developed the modern version of EXAFS in an award lecture by Edward A. Stern. 201:
of the photoelectron is dependent on the energy and phase of the backscattered wave which exists at the central atom. The wavelength changes as a function of the energy of the incoming photon. The
163:
to those of known "standards". Linear combination fitting of several different standard spectra can give an estimate to the amount of each of the known standard spectra within an unknown sample.
170:
from the absorbing atom, leaving behind a core hole. The atom with the core hole is now excited. The ejected photoelectron's energy will be equal to that of the absorbed photon minus the
1370: 832:
Filipponi, Adriano; Di Cicco, Andrea; Natoli, Calogero Renzo (1 November 1995). "X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory".
979:
A. Kodre, I. ArÄŤon, Proceedings of 36th International Conference on Microelectronics, Devices and Materials, MIDEM, Postojna, Slovenia, October 28–20, (2000), p. 191-196
674: 43: 238:
XAS is an interdisciplinary technique and its unique properties, as compared to x-ray diffraction, have been exploited for understanding the details of local structure in:
1043: 587: 392: 591: 546: 1261: 311:
XAS provides complementary to diffraction information on peculiarities of local structural and thermal disorder in crystalline and multi-component materials.
1194: 1139: 1108: 1103: 1476: 1294: 1156: 166:
X-ray absorption spectra are produced over the range of 200 – 35,000 eV. The dominant physical process is one where the absorbed photon ejects a core
1425: 1088: 1365: 1167: 1068: 1577: 1311: 1289: 1036: 1377: 1299: 1129: 1234: 1179: 387: 1461: 1213: 1029: 696: 608: 563: 522: 61: 678: 226:
which are especially optimized for the purpose. The utility of a particular synchrotron to study a particular solid depends on the
1466: 1284: 756: 369:
A very detailed, balanced and informative account about the history of EXAFS (originally called Kossel's structures) is given by
1481: 1451: 1382: 1316: 1410: 1201: 1098: 634: 1208: 1113: 382: 347: 94: 1342: 1189: 1078: 1498: 997: 1337: 1306: 1239: 174:
of the initial core state. The ejected photoelectron interacts with electrons in the surrounding non-excited atoms.
1488: 1430: 1279: 1151: 658: 155:
determined by the difference between the pre-edge and post-edge lines at the value of E0 (on the absorption edge).
1514: 1493: 1256: 1134: 795: 185:
electron waves interfering with the forward-propagating waves. The resulting interference pattern shows up as a
280: 1555: 1387: 1083: 335: 98: 370: 1174: 937:"The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure" 261: 109: 1543: 1415: 1146: 1060: 181:-like nature and the surrounding atoms are described as point scatterers, it is possible to imagine the 793:
Rehr, J. J.; Albers, R. C. (1 June 2000). "Theoretical approaches to x-ray absorption fine structure".
102: 952: 843: 804: 421: 302: 1471: 1184: 1093: 319: 139: 1519: 1456: 1435: 1251: 1229: 1162: 1073: 924: 748: 720: 652: 581: 540: 315: 1420: 1347: 1321: 968: 916: 908: 867: 859: 834: 820: 781: 773: 692: 640: 630: 614: 604: 569: 559: 528: 518: 486: 478: 437: 358: 290: 556:
Introduction to XAFS : a practical guide to X-ray absorption fine structure spectroscopy
960: 898: 890: 881: 879:
de Groot, Frank (2001). "High-Resolution X-ray Emission and X-ray Absorption Spectroscopy".
851: 812: 765: 684: 468: 429: 265: 1001: 732: 285: 275: 151: 956: 847: 808: 627:
X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS, and XANES
425: 433: 355: 256: 171: 117: 1571: 202: 167: 147: 928: 702: 673:
Kelly, S. D.; Hesterberg, D.; Ravel, B.; Ulery, April L.; Richard Drees, L. (2008).
1052: 964: 269: 219: 182: 142:
are displayed as plots of the absorption coefficient of a given material versus
126: 936: 688: 412:
Bordwehr, R. Stumm von (1989). "A History of X-ray absorption fine structure".
322:
method can help in extracting more reliable and richer structural information.
855: 816: 769: 473: 456: 227: 218:
Since EXAFS requires a tunable x-ray source, data are frequently collected at
198: 186: 972: 912: 863: 824: 777: 618: 573: 532: 482: 441: 994: 644: 343: 339: 246: 206: 920: 785: 490: 210:
original absorbing (centrally excited) atom by analyzing these EXAFS data.
871: 351: 223: 121: 125:
giving XAS element selectivity. XAS spectra are most often collected at
903: 894: 250: 143: 16:
Measurement of X-ray absorption of a material as a function of energy
675:"Analysis of Soils and Minerals Using X-ray Absorption Spectroscopy" 230:
of the x-ray flux at the absorption edges of the relevant elements.
1016: 331: 242: 191: 159: 106: 90: 74: 298: 178: 1025: 1021: 629:. Koningsberger, D. C., Prins, Roelof. New York: Wiley. 1988. 18: 1011: 989: 764:(2). International Union of Crystallography (IUCr): 49–54. 1006: 1007:
GNXAS project and XAS laboratory, UniversitĂ  di Camerino
338:, where scientists try to understand the propagation of 39: 842:(21). American Physical Society (APS): 15122–15134. 89:), along with X-ray absorption near edge structure ( 1507: 1444: 1403: 1396: 1358: 1330: 1272: 1222: 1122: 1059: 158:The normalized absorption spectra are often called 34:
may be too technical for most readers to understand
951:(18). American Physical Society (APS): 1204–1207. 603:. Berlin, Heidelberg: Springer Berlin Heidelberg. 889:(6). American Chemical Society (ACS): 1779–1808. 93:), is a subset of X-ray absorption spectroscopy ( 393:Surface-extended X-ray absorption fine structure 177:If the ejected photoelectron is taken to have a 995:FEFF Project, University of Washington, Seattle 803:(3). American Physical Society (APS): 621–654. 1037: 8: 1109:Vibrational spectroscopy of linear molecules 1012:EXAFS Spectroscopy Laboratory (Riga, Latvia) 586:: CS1 maint: multiple names: authors list ( 116:When the incident x-ray energy matches the 1400: 1104:Nuclear resonance vibrational spectroscopy 1044: 1030: 1022: 590:) CS1 maint: numeric names: authors list ( 545:: CS1 maint: location missing publisher ( 1477:Inelastic electron tunneling spectroscopy 1157:Resonance-enhanced multiphoton ionization 902: 601:EXAFS: Basic Principles and Data Analysis 558:. Cambridge: Cambridge University Press. 472: 314:The use of atomistic simulations such as 62:Learn how and when to remove this message 46:, without removing the technical details. 1245:Extended X-ray absorption fine structure 83:Extended X-ray absorption fine structure 73: 749:"Musings about the development of XAFS" 457:"Musings about the development of XAFS" 404: 990:International X-ray Absorption Society 728: 718: 650: 579: 538: 44:make it understandable to non-experts 7: 1550: 747:Stern, Edward A. (1 February 2001). 388:X-ray absorption near edge structure 683:. Soil Science Society of America. 517:. Furst, Kirin Emlet. Boca Raton. 14: 1462:Deep-level transient spectroscopy 1214:Saturated absorption spectroscopy 1549: 1538: 1537: 1467:Dual-polarization interferometry 757:Journal of Synchrotron Radiation 461:Journal of Synchrotron Radiation 434:10.1051/anphys:01989001404037700 23: 1482:Scanning tunneling spectroscopy 1457:Circular dichroism spectroscopy 1452:Acoustic resonance spectroscopy 680:Methods of Soil Analysis Part 5 455:Stern, Edward A. (2001-03-01). 346:. EXAFS can be used along with 1411:Fourier-transform spectroscopy 1099:Vibrational circular dichroism 354:examinations, particularly in 1: 1578:X-ray absorption spectroscopy 1209:Cavity ring-down spectroscopy 1114:Thermal infrared spectroscopy 554:Bunker, Grant, 1954- (2010). 513:Calvin, Scott. (2013-05-20). 383:X-ray absorption spectroscopy 348:accelerator mass spectrometry 1343:Inelastic neutron scattering 307:chemical speciation analysis 146:, typically in a 500 – 1000 1404:Data collection, processing 1280:Photoelectron/photoemission 1017:Community web site for XAFS 965:10.1103/physrevlett.27.1204 214:Experimental considerations 1594: 1489:Photoacoustic spectroscopy 1431:Time-resolved spectroscopy 689:10.2136/sssabookser5.5.c14 150:range beginning before an 1533: 1515:Astronomical spectroscopy 1494:Photothermal spectroscopy 856:10.1103/physrevb.52.15122 817:10.1103/revmodphys.72.621 796:Reviews of Modern Physics 770:10.1107/s0909049500014138 474:10.1107/S0909049500014138 99:absorption spectroscopies 78:Three regions of XAS data 281:organometallic compounds 101:, XAS techniques follow 1499:Pump–probe spectroscopy 1388:Ferromagnetic resonance 1180:Laser-induced breakdown 945:Physical Review Letters 336:environmental chemistry 1195:Glow-discharge optical 1175:Raman optical activity 1089:Rotational–vibrational 657:: CS1 maint: others ( 110:absorption coefficient 79: 1416:Hyperspectral imaging 599:Teo, Boon K. (1986). 371:R. Stumm von Bordwehr 274:local distortions of 194:(or NEXAFS) spectra. 77: 1168:Coherent anti-Stokes 1123:UV–Vis–NIR "Optical" 295:vibrational dynamics 1472:Hadron spectroscopy 1262:Conversion electron 1223:X-ray and Gamma ray 1130:Ultraviolet–visible 957:1971PhRvL..27.1204S 848:1995PhRvB..5215122F 809:2000RvMP...72..621R 426:1989AnPh...14..377S 414:Annales de Physique 320:reverse Monte Carlo 1520:Force spectroscopy 1445:Measured phenomena 1436:Video spectroscopy 1140:Cold vapour atomic 1000:2022-01-21 at the 316:molecular dynamics 266:ionic implantation 80: 1565: 1564: 1529: 1528: 1421:Spectrophotometry 1348:Neutron spin echo 1322:Beta spectroscopy 1235:Energy-dispersive 895:10.1021/cr9900681 835:Physical Review B 515:XAFS for everyone 359:non-proliferation 268:of materials for 72: 71: 64: 1585: 1553: 1552: 1541: 1540: 1401: 1312:phenomenological 1061:Vibrational (IR) 1046: 1039: 1032: 1023: 976: 932: 906: 882:Chemical Reviews 875: 828: 789: 753: 736: 730: 726: 724: 716: 714: 713: 707: 701:. Archived from 662: 656: 648: 622: 595: 585: 577: 550: 544: 536: 495: 494: 476: 452: 446: 445: 409: 276:crystal lattices 67: 60: 56: 53: 47: 27: 26: 19: 1593: 1592: 1588: 1587: 1586: 1584: 1583: 1582: 1568: 1567: 1566: 1561: 1525: 1503: 1440: 1392: 1354: 1326: 1268: 1218: 1118: 1079:Resonance Raman 1055: 1050: 1002:Wayback Machine 986: 942: 878: 831: 792: 751: 746: 743: 727: 717: 711: 709: 705: 699: 672: 669: 649: 637: 625: 611: 598: 578: 566: 553: 537: 525: 512: 509: 504: 499: 498: 454: 453: 449: 411: 410: 406: 401: 379: 367: 330:EXAFS is, like 328: 286:metalloproteins 257:solid solutions 236: 216: 152:absorption edge 136: 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 1591: 1589: 1581: 1580: 1570: 1569: 1563: 1562: 1560: 1559: 1547: 1534: 1531: 1530: 1527: 1526: 1524: 1523: 1517: 1511: 1509: 1505: 1504: 1502: 1501: 1496: 1491: 1486: 1485: 1484: 1474: 1469: 1464: 1459: 1454: 1448: 1446: 1442: 1441: 1439: 1438: 1433: 1428: 1423: 1418: 1413: 1407: 1405: 1398: 1394: 1393: 1391: 1390: 1385: 1380: 1375: 1374: 1373: 1362: 1360: 1356: 1355: 1353: 1352: 1351: 1350: 1340: 1334: 1332: 1328: 1327: 1325: 1324: 1319: 1314: 1309: 1304: 1303: 1302: 1297: 1295:Angle-resolved 1292: 1287: 1276: 1274: 1270: 1269: 1267: 1266: 1265: 1264: 1254: 1249: 1248: 1247: 1242: 1237: 1226: 1224: 1220: 1219: 1217: 1216: 1211: 1206: 1205: 1204: 1199: 1198: 1197: 1182: 1177: 1172: 1171: 1170: 1160: 1154: 1149: 1144: 1143: 1142: 1132: 1126: 1124: 1120: 1119: 1117: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1065: 1063: 1057: 1056: 1051: 1049: 1048: 1041: 1034: 1026: 1020: 1019: 1014: 1009: 1004: 992: 985: 984:External links 982: 981: 980: 977: 940: 933: 876: 829: 790: 742: 739: 738: 737: 697: 668: 665: 664: 663: 635: 623: 609: 596: 564: 551: 523: 508: 505: 503: 500: 497: 496: 447: 420:(4): 377–465. 403: 402: 400: 397: 396: 395: 390: 385: 378: 375: 366: 363: 361:applications. 327: 324: 309: 308: 305: 296: 293: 291:metal clusters 288: 283: 278: 272: 259: 254: 235: 232: 215: 212: 172:binding energy 135: 132: 118:binding energy 97:). Like other 70: 69: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1590: 1579: 1576: 1575: 1573: 1558: 1557: 1548: 1546: 1545: 1536: 1535: 1532: 1521: 1518: 1516: 1513: 1512: 1510: 1506: 1500: 1497: 1495: 1492: 1490: 1487: 1483: 1480: 1479: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1449: 1447: 1443: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1408: 1406: 1402: 1399: 1395: 1389: 1386: 1384: 1381: 1379: 1376: 1372: 1369: 1368: 1367: 1364: 1363: 1361: 1357: 1349: 1346: 1345: 1344: 1341: 1339: 1336: 1335: 1333: 1329: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1282: 1281: 1278: 1277: 1275: 1271: 1263: 1260: 1259: 1258: 1255: 1253: 1250: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1231: 1228: 1227: 1225: 1221: 1215: 1212: 1210: 1207: 1203: 1200: 1196: 1193: 1192: 1191: 1188: 1187: 1186: 1183: 1181: 1178: 1176: 1173: 1169: 1166: 1165: 1164: 1161: 1158: 1155: 1153: 1152:Near-infrared 1150: 1148: 1145: 1141: 1138: 1137: 1136: 1133: 1131: 1128: 1127: 1125: 1121: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1066: 1064: 1062: 1058: 1054: 1047: 1042: 1040: 1035: 1033: 1028: 1027: 1024: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 999: 996: 993: 991: 988: 987: 983: 978: 974: 970: 966: 962: 958: 954: 950: 946: 941: 938: 934: 930: 926: 922: 918: 914: 910: 905: 900: 896: 892: 888: 884: 883: 877: 873: 869: 865: 861: 857: 853: 849: 845: 841: 837: 836: 830: 826: 822: 818: 814: 810: 806: 802: 798: 797: 791: 787: 783: 779: 775: 771: 767: 763: 759: 758: 750: 745: 744: 740: 734: 722: 708:on 2019-07-16 704: 700: 698:9780891188575 694: 690: 686: 682: 681: 676: 671: 670: 667:Book chapters 666: 660: 654: 646: 642: 638: 632: 628: 624: 620: 616: 612: 610:9783642500312 606: 602: 597: 593: 589: 583: 575: 571: 567: 565:9780511809194 561: 557: 552: 548: 542: 534: 530: 526: 524:9781439878637 520: 516: 511: 510: 506: 501: 492: 488: 484: 480: 475: 470: 466: 462: 458: 451: 448: 443: 439: 435: 431: 427: 423: 419: 415: 408: 405: 398: 394: 391: 389: 386: 384: 381: 380: 376: 374: 372: 364: 362: 360: 357: 353: 349: 345: 341: 337: 333: 325: 323: 321: 317: 312: 306: 304: 300: 297: 294: 292: 289: 287: 284: 282: 279: 277: 273: 271: 267: 263: 260: 258: 255: 252: 248: 244: 241: 240: 239: 233: 231: 229: 225: 221: 213: 211: 208: 204: 200: 195: 193: 188: 184: 183:backscattered 180: 175: 173: 169: 168:photoelectron 164: 161: 156: 153: 149: 145: 141: 133: 131: 128: 123: 119: 114: 111: 108: 104: 100: 96: 92: 88: 84: 76: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 1554: 1542: 1522:(a misnomer) 1508:Applications 1426:Time-stretch 1317:paramagnetic 1244: 1135:Fluorescence 1053:Spectroscopy 948: 944: 935:F.W. Lytle, 886: 880: 839: 833: 800: 794: 761: 755: 710:. Retrieved 703:the original 679: 626: 600: 555: 514: 502:Bibliography 467:(2): 49–54. 464: 460: 450: 417: 413: 407: 368: 329: 313: 310: 237: 234:Applications 220:synchrotrons 217: 196: 176: 165: 157: 137: 127:synchrotrons 115: 86: 82: 81: 58: 49: 33: 1094:Vibrational 904:1874/386323 729:|work= 342:through an 270:electronics 222:, often at 1300:Two-photon 1202:absorption 1084:Rotational 712:2019-07-16 636:0471875473 399:References 340:pollutants 228:brightness 199:wavelength 187:modulation 134:Background 103:Beer's law 1378:Terahertz 1359:Radiowave 1257:Mössbauer 973:0031-9007 913:0009-2665 864:0163-1829 825:0034-6861 778:0909-0495 731:ignored ( 721:cite book 653:cite book 619:851822691 582:cite book 574:646816275 541:cite book 533:711041662 483:0909-0495 442:0003-4169 344:ecosystem 303:solutions 247:amorphous 224:beamlines 207:amplitude 52:June 2019 1572:Category 1544:Category 1273:Electron 1240:Emission 1190:emission 1147:Vibronic 998:Archived 929:44020569 921:11709999 786:11512825 645:14904784 491:11512825 377:See also 352:forensic 326:Examples 122:electron 1556:Commons 1383:ESR/EPR 1331:Nucleon 1159:(REMPI) 953:Bibcode 872:9980866 844:Bibcode 805:Bibcode 422:Bibcode 365:History 356:nuclear 318:or the 253:systems 140:spectra 38:Please 1397:Others 1185:Atomic 971:  927:  919:  911:  870:  862:  823:  784:  776:  741:Papers 695:  643:  633:  617:  607:  572:  562:  531:  521:  489:  481:  440:  262:doping 251:liquid 144:energy 138:EXAFS 120:of an 105:. The 1338:Alpha 1307:Auger 1285:X-ray 1252:Gamma 1230:X-ray 1163:Raman 1074:Raman 1069:FT-IR 925:S2CID 752:(PDF) 706:(PDF) 507:Books 332:XANES 243:glass 203:phase 192:XANES 160:XANES 107:X-ray 91:XANES 87:EXAFS 969:ISSN 917:PMID 909:ISSN 868:PMID 860:ISSN 821:ISSN 782:PMID 774:ISSN 733:help 693:ISBN 659:link 641:OCLC 631:ISBN 615:OCLC 605:ISBN 592:link 588:link 570:OCLC 560:ISBN 547:link 529:OCLC 519:ISBN 487:PMID 479:ISSN 438:ISSN 299:ions 264:and 249:and 205:and 197:The 179:wave 1366:NMR 961:doi 899:hdl 891:doi 887:101 852:doi 813:doi 766:doi 685:doi 469:doi 430:doi 350:in 301:in 95:XAS 42:to 1574:: 1371:2D 1290:UV 967:. 959:. 949:27 947:. 923:. 915:. 907:. 897:. 885:. 866:. 858:. 850:. 840:52 838:. 819:. 811:. 801:72 799:. 780:. 772:. 760:. 754:. 725:: 723:}} 719:{{ 691:. 677:. 655:}} 651:{{ 639:. 613:. 584:}} 580:{{ 568:. 543:}} 539:{{ 527:. 485:. 477:. 463:. 459:. 436:. 428:. 418:14 416:. 245:, 148:eV 1045:e 1038:t 1031:v 975:. 963:: 955:: 939:, 931:. 901:: 893:: 874:. 854:: 846:: 827:. 815:: 807:: 788:. 768:: 762:8 735:) 715:. 687:: 661:) 647:. 621:. 594:) 576:. 549:) 535:. 493:. 471:: 465:8 444:. 432:: 424:: 85:( 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

XANES
XAS
absorption spectroscopies
Beer's law
X-ray
absorption coefficient
binding energy
electron
synchrotrons
spectra
energy
eV
absorption edge
XANES
photoelectron
binding energy
wave
backscattered
modulation
XANES
wavelength
phase
amplitude
synchrotrons
beamlines
brightness

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑