Knowledge (XXG)

Eckmann–Hilton argument

Source 📝

1886: 866: 1694: 651: 1095: 2096: 1654: 639:
structures or multiplications, but this suggests they are assumed to be associative, a property that is not required for the proof. In fact, associativity follows. Likewise, we do not have to require that the two operations have the same neutral element; this is a consequence.
1466: 1232: 1881:{\displaystyle a\ b={\begin{matrix}a\ \ \bullet \\\bullet \ \ b\end{matrix}}={\begin{matrix}a\\b\end{matrix}}={\begin{matrix}\bullet \ \ a\\b\ \ \bullet \end{matrix}}=b\ a={\begin{matrix}b\ \ \bullet \\\bullet \ \ a\end{matrix}}={\begin{matrix}b\\a\end{matrix}}} 861:{\displaystyle 1_{\circ }=1_{\circ }\circ 1_{\circ }=(1_{\otimes }\otimes 1_{\circ })\circ (1_{\circ }\otimes 1_{\otimes })=(1_{\otimes }\circ 1_{\circ })\otimes (1_{\circ }\circ 1_{\otimes })=1_{\otimes }\otimes 1_{\otimes }=1_{\otimes }} 906: 1932: 1561: 2398: 497: 2265:
It is important that a similar argument does NOT give such a trivial result in the case of monoid objects in the categories of small categories or of groupoids. Instead the notion of group object in the category of
2403:
whenever both sides are defined. For an example of its use, and some discussion, see the paper of Higgins referenced below. The interchange law implies that a double category contains a family of abelian monoids.
382: 2212: 1513: 1357: 324: 1103: 1279: 2285:
is a set, or class, equipped with two category structures, each of which is a morphism for the other structure. If the compositions in the two category structures are written
2309: 1352: 541: 246: 1927: 219: 2476:
attended this conference, and his first work on higher homotopy groups appeared in 1935. Thus the dreams of the early topologists have long been regarded as a mirage.
2144: 1689: 1536: 901: 613: 585: 188: 145: 2466: 1556: 633: 565: 408: 168: 125: 1090:{\displaystyle a\circ b=(1\otimes a)\circ (b\otimes 1)=(1\circ b)\otimes (a\circ 1)=b\otimes a=(b\circ 1)\otimes (1\circ a)=(b\otimes 1)\circ (1\otimes a)=b\circ a} 1305: 2091:{\displaystyle a\ (b\ c)=a\ {\begin{pmatrix}b\\c\end{pmatrix}}={\begin{matrix}a\ \ b\\\bullet \ \ c\end{matrix}}={\begin{matrix}(a\ b)\\c\end{matrix}}=(a\ b)\ c} 2260: 2232: 2124: 1649:{\displaystyle \bullet ={\begin{matrix}\bullet \\\bullet \end{matrix}}={\begin{matrix}\bullet \ \ \circ \\\circ \ \ \bullet \end{matrix}}=\circ \ \circ =\circ } 266: 101: 2317: 416: 2664: 329: 2149: 1461:{\displaystyle {\begin{matrix}(a\ b)\\(c\ d)\end{matrix}}={\begin{pmatrix}a\\c\end{pmatrix}}{\begin{pmatrix}b\\d\end{pmatrix}}} 2486: 1227:{\displaystyle (a\otimes b)\otimes c=(a\otimes b)\otimes (1\otimes c)=(a\otimes 1)\otimes (b\otimes c)=a\otimes (b\otimes c)} 2514:
Eckmann, B.; Hilton, P. J. (1962), "Group-like structures in general categories. I. Multiplications and comultiplications",
1471: 2644: 271: 2566: 2558: 2419:
could be defined in all dimensions; and that for a connected space, the first homology group was the fundamental group
1249: 17: 2659: 1246:. For this version of the proof, we write the two operations as vertical and horizontal juxtaposition, i.e., 2468:, and on these grounds persuaded Čech to withdraw his paper, so that only a small paragraph appeared in the 1242:
The above proof also has a "two-dimensional" presentation that better illustrates the application to higher
2416: 2516: 2288: 2282: 2278: 1888:, so horizontal composition is the same as vertical composition and both operations are commutative. 2239: 1313: 502: 224: 2570: 2411:
is interesting. The workers in topology of the early 20th century were aware that the nonabelian
60: 1894: 197: 2490: 2412: 2129: 1662: 1521: 874: 598: 570: 173: 130: 48: 2563:
Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids
2525: 2445: 2435: 1541: 618: 550: 387: 153: 110: 104: 2609: 2584: 2537: 2423:. So there was a desire to generalise the nonabelian fundamental group to all dimensions. 2605: 2580: 2533: 2473: 1284: 56: 2485:
cited below, which develops basic algebraic topology, including higher analogues to the
2593: 2431: 2427: 2420: 2408: 2271: 2245: 2217: 2109: 1243: 251: 191: 86: 64: 2653: 2235: 2481: 2479:
Cubical higher homotopy groupoids are constructed for filtered spaces in the book
72: 68: 52: 44: 2274:. This leads to the idea of using multiple groupoid objects in homotopy theory. 2106:
If the operations are associative, each one defines the structure of a monoid on
2640:
Eugenia Cheng of 'the Catsters' video team explains the Eckmann–Hilton argument.
2277:
More generally, the Eckmann–Hilton argument is a special case of the use of the
24: 2552:, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 38, pp. 112–119, 521–528 2639: 2439: 2126:, and the conditions above are equivalent to the more abstract condition that 2508: 2503: 2393:{\displaystyle (a\circ b)\otimes (c\circ d)=(a\otimes c)\circ (b\otimes d)} 492:{\displaystyle (a\otimes b)\circ (c\otimes d)=(a\circ c)\otimes (b\circ d)} 55:
for the other. Given this, the structures are the same, and the resulting
2545: 2267: 2214:(or vice versa). An even more abstract way of stating the theorem is: If 1097:. This establishes that the two operations coincide and are commutative. 40: 2594:"Thin elements and commutative shells in cubical $ \omega$ -categories" 1558:
be the units for vertical and horizontal composition respectively. Then
2529: 2575: 2281:
in the theory of (strict) double and multiple categories. A (strict)
636: 2626: 2434:
to the International Congress of Mathematics at Zürich. However,
63:. This can then be used to prove the commutativity of the higher 648:
First, observe that the units of the two operations coincide:
1307:. The interchange property can then be expressed as follows: 377:{\displaystyle 1_{\otimes }\otimes a=a=a\otimes 1_{\otimes }} 2035: 1996: 1971: 1861: 1822: 1771: 1750: 1711: 1593: 1572: 1476: 1437: 1411: 1362: 1254: 2207:{\displaystyle (X,\circ )\times (X,\circ )\to (X,\circ )} 1508:{\displaystyle {\begin{matrix}a\ b\\c\ d\end{matrix}}} 587:
are the same and in fact commutative and associative.
2448: 2320: 2291: 2248: 2220: 2152: 2132: 2112: 1935: 1897: 1697: 1665: 1564: 1544: 1524: 1474: 1360: 1316: 1287: 1252: 1106: 909: 877: 654: 621: 601: 573: 553: 505: 419: 390: 332: 319:{\displaystyle 1_{\circ }\circ a=a=a\circ 1_{\circ }} 274: 254: 227: 200: 176: 156: 133: 113: 89: 16:
For the notion of duality in algebraic topology, see
2569:Tracts in Mathematics, vol. 15, p. 703, 2460: 2415:was of use in geometry and analysis; that abelian 2392: 2303: 2254: 2226: 2206: 2138: 2118: 2090: 1921: 1880: 1683: 1648: 1550: 1530: 1507: 1460: 1346: 1299: 1273: 1226: 1089: 895: 860: 627: 607: 579: 559: 535: 491: 402: 376: 318: 260: 240: 213: 182: 162: 139: 119: 95: 1274:{\displaystyle {\begin{matrix}a\\b\end{matrix}}} 2509:John Baez: Eckmann–Hilton principle (week 100) 2504:John Baez: Eckmann–Hilton principle (week 89) 2442:quickly proved these groups were abelian for 8: 2627:Permutation of elements in double semigroups 2270:turns out to be equivalent to the notion of 2625:Murray Bremner and Sara Madariaga. (2014) 194:, meaning that there are identity elements 2574: 2561:, R.; Higgins, P. J.; Sivera, R. (2011), 2447: 2319: 2290: 2247: 2219: 2151: 2131: 2111: 2034: 1995: 1966: 1934: 1896: 1860: 1821: 1770: 1749: 1710: 1696: 1664: 1592: 1571: 1563: 1543: 1523: 1475: 1473: 1432: 1406: 1361: 1359: 1315: 1286: 1253: 1251: 1105: 908: 876: 852: 839: 826: 810: 797: 778: 765: 746: 733: 714: 701: 685: 672: 659: 653: 620: 600: 572: 552: 504: 418: 389: 368: 337: 331: 310: 279: 273: 253: 232: 226: 205: 199: 175: 155: 132: 112: 88: 2550:Beitrage zur Topologie der Deformationen 7: 2598:Theory and Application of Categories 14: 2262:is in fact a commutative monoid. 2098:, so composition is associative. 2311:then the interchange law reads 2645:Higher dimensional group theory 2304:{\displaystyle \circ ,\otimes } 75:, who used it in a 1962 paper. 67:. The principle is named after 2387: 2375: 2369: 2357: 2351: 2339: 2333: 2321: 2201: 2189: 2186: 2183: 2171: 2165: 2153: 2079: 2067: 2050: 2038: 1954: 1942: 1396: 1384: 1377: 1365: 1221: 1209: 1197: 1185: 1179: 1167: 1161: 1149: 1143: 1131: 1119: 1107: 1072: 1060: 1054: 1042: 1036: 1024: 1018: 1006: 988: 976: 970: 958: 952: 940: 934: 922: 816: 790: 784: 758: 752: 726: 720: 694: 486: 474: 468: 456: 450: 438: 432: 420: 1: 2567:European Mathematical Society 2493:or simplicial approximation. 2482:Nonabelian algebraic topology 2665:Theorems in abstract algebra 2430:submitted a paper on higher 1347:{\displaystyle a,b,c,d\in X} 536:{\displaystyle a,b,c,d\in X} 241:{\displaystyle 1_{\otimes }} 2407:The history in relation to 1656:, so both units are equal. 103:be a set equipped with two 2681: 2487:Seifert–Van Kampen theorem 1922:{\displaystyle a,b,c\in X} 214:{\displaystyle 1_{\circ }} 15: 2146:is a monoid homomorphism 635:are often referred to as 79:The Eckmann–Hilton result 2139:{\displaystyle \otimes } 1684:{\displaystyle a,b\in X} 1531:{\displaystyle \bullet } 896:{\displaystyle a,b\in X} 608:{\displaystyle \otimes } 580:{\displaystyle \otimes } 183:{\displaystyle \otimes } 140:{\displaystyle \otimes } 33:Eckmann–Hilton principle 2592:Higgins, P. J. (2005), 29:Eckmann–Hilton argument 2462: 2461:{\displaystyle n>1} 2394: 2305: 2256: 2228: 2208: 2140: 2120: 2092: 1923: 1882: 1685: 1650: 1552: 1551:{\displaystyle \circ } 1532: 1509: 1462: 1348: 1301: 1275: 1228: 1091: 897: 862: 629: 628:{\displaystyle \circ } 609: 581: 561: 560:{\displaystyle \circ } 537: 493: 404: 403:{\displaystyle a\in X} 378: 320: 262: 242: 215: 184: 164: 163:{\displaystyle \circ } 141: 121: 120:{\displaystyle \circ } 107:, which we will write 97: 37:Eckmann–Hilton theorem 18:Eckmann–Hilton duality 2517:Mathematische Annalen 2463: 2395: 2306: 2257: 2229: 2209: 2141: 2121: 2093: 1924: 1883: 1686: 1651: 1553: 1533: 1510: 1463: 1349: 1302: 1276: 1238:Two-dimensional proof 1229: 1092: 898: 863: 630: 610: 582: 562: 538: 494: 405: 379: 321: 263: 243: 216: 185: 165: 142: 122: 98: 2617:James, I.M. (1999), 2446: 2318: 2289: 2246: 2218: 2150: 2130: 2110: 1933: 1895: 1695: 1663: 1562: 1542: 1522: 1472: 1358: 1314: 1300:{\displaystyle a\ b} 1285: 1250: 1104: 907: 875: 652: 619: 599: 571: 551: 503: 417: 388: 330: 272: 252: 225: 198: 174: 154: 131: 111: 87: 2619:History of Topology 2240:category of monoids 1515:without ambiguity. 1100:For associativity, 2530:10.1007/bf01451367 2472:. It is said that 2458: 2390: 2301: 2252: 2224: 2204: 2136: 2116: 2088: 2062: 2029: 1986: 1919: 1878: 1876: 1855: 1804: 1765: 1744: 1681: 1646: 1626: 1587: 1548: 1528: 1505: 1503: 1468:, so we can write 1458: 1452: 1426: 1401: 1344: 1297: 1271: 1269: 1224: 1087: 893: 858: 625: 605: 577: 557: 533: 489: 400: 374: 316: 258: 238: 211: 180: 160: 137: 117: 93: 61:commutative monoid 2491:singular homology 2436:Pavel Alexandroff 2413:fundamental group 2255:{\displaystyle X} 2227:{\displaystyle X} 2119:{\displaystyle X} 2084: 2075: 2046: 2023: 2020: 2007: 2004: 1965: 1950: 1941: 1891:Finally, for all 1849: 1846: 1833: 1830: 1814: 1798: 1795: 1782: 1779: 1738: 1735: 1722: 1719: 1703: 1636: 1620: 1617: 1604: 1601: 1497: 1484: 1392: 1373: 1293: 261:{\displaystyle X} 105:binary operations 96:{\displaystyle X} 2672: 2622: 2612: 2587: 2578: 2553: 2540: 2489:, without using 2467: 2465: 2464: 2459: 2399: 2397: 2396: 2391: 2310: 2308: 2307: 2302: 2261: 2259: 2258: 2253: 2233: 2231: 2230: 2225: 2213: 2211: 2210: 2205: 2145: 2143: 2142: 2137: 2125: 2123: 2122: 2117: 2097: 2095: 2094: 2089: 2082: 2073: 2063: 2044: 2030: 2021: 2018: 2005: 2002: 1991: 1990: 1963: 1948: 1939: 1928: 1926: 1925: 1920: 1887: 1885: 1884: 1879: 1877: 1856: 1847: 1844: 1831: 1828: 1812: 1805: 1796: 1793: 1780: 1777: 1766: 1745: 1736: 1733: 1720: 1717: 1701: 1690: 1688: 1687: 1682: 1655: 1653: 1652: 1647: 1634: 1627: 1618: 1615: 1602: 1599: 1588: 1557: 1555: 1554: 1549: 1537: 1535: 1534: 1529: 1514: 1512: 1511: 1506: 1504: 1495: 1482: 1467: 1465: 1464: 1459: 1457: 1456: 1431: 1430: 1402: 1390: 1371: 1353: 1351: 1350: 1345: 1306: 1304: 1303: 1298: 1291: 1280: 1278: 1277: 1272: 1270: 1233: 1231: 1230: 1225: 1096: 1094: 1093: 1088: 902: 900: 899: 894: 867: 865: 864: 859: 857: 856: 844: 843: 831: 830: 815: 814: 802: 801: 783: 782: 770: 769: 751: 750: 738: 737: 719: 718: 706: 705: 690: 689: 677: 676: 664: 663: 634: 632: 631: 626: 614: 612: 611: 606: 586: 584: 583: 578: 566: 564: 563: 558: 542: 540: 539: 534: 498: 496: 495: 490: 409: 407: 406: 401: 383: 381: 380: 375: 373: 372: 342: 341: 325: 323: 322: 317: 315: 314: 284: 283: 267: 265: 264: 259: 247: 245: 244: 239: 237: 236: 220: 218: 217: 212: 210: 209: 189: 187: 186: 181: 169: 167: 166: 161: 146: 144: 143: 138: 126: 124: 123: 118: 102: 100: 99: 94: 47:structures on a 2680: 2679: 2675: 2674: 2673: 2671: 2670: 2669: 2660:Category theory 2650: 2649: 2636: 2631: 2621:, North Holland 2616: 2591: 2557: 2544: 2513: 2499: 2474:Witold Hurewicz 2444: 2443: 2432:homotopy groups 2417:homology groups 2409:homotopy groups 2316: 2315: 2287: 2286: 2283:double category 2279:interchange law 2244: 2243: 2216: 2215: 2148: 2147: 2128: 2127: 2108: 2107: 2104: 2061: 2060: 2054: 2053: 2028: 2027: 2012: 2011: 1985: 1984: 1978: 1977: 1967: 1931: 1930: 1893: 1892: 1875: 1874: 1868: 1867: 1854: 1853: 1838: 1837: 1803: 1802: 1787: 1786: 1764: 1763: 1757: 1756: 1743: 1742: 1727: 1726: 1693: 1692: 1661: 1660: 1625: 1624: 1609: 1608: 1586: 1585: 1579: 1578: 1560: 1559: 1540: 1539: 1520: 1519: 1502: 1501: 1489: 1488: 1470: 1469: 1451: 1450: 1444: 1443: 1433: 1425: 1424: 1418: 1417: 1407: 1400: 1399: 1381: 1380: 1356: 1355: 1312: 1311: 1283: 1282: 1268: 1267: 1261: 1260: 1248: 1247: 1244:homotopy groups 1240: 1102: 1101: 905: 904: 873: 872: 848: 835: 822: 806: 793: 774: 761: 742: 729: 710: 697: 681: 668: 655: 650: 649: 646: 617: 616: 597: 596: 595:The operations 593: 569: 568: 549: 548: 501: 500: 415: 414: 411: 386: 385: 364: 333: 328: 327: 306: 275: 270: 269: 250: 249: 228: 223: 222: 201: 196: 195: 172: 171: 152: 151: 147:, and suppose: 129: 128: 109: 108: 85: 84: 81: 65:homotopy groups 51:where one is a 21: 12: 11: 5: 2678: 2676: 2668: 2667: 2662: 2652: 2651: 2648: 2647: 2642: 2635: 2634:External links 2632: 2630: 2629: 2623: 2614: 2589: 2555: 2542: 2524:(3): 227–255, 2511: 2506: 2500: 2498: 2495: 2457: 2454: 2451: 2401: 2400: 2389: 2386: 2383: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2359: 2356: 2353: 2350: 2347: 2344: 2341: 2338: 2335: 2332: 2329: 2326: 2323: 2300: 2297: 2294: 2272:crossed module 2251: 2223: 2203: 2200: 2197: 2194: 2191: 2188: 2185: 2182: 2179: 2176: 2173: 2170: 2167: 2164: 2161: 2158: 2155: 2135: 2115: 2103: 2100: 2087: 2081: 2078: 2072: 2069: 2066: 2059: 2056: 2055: 2052: 2049: 2043: 2040: 2037: 2036: 2033: 2026: 2017: 2014: 2013: 2010: 2001: 1998: 1997: 1994: 1989: 1983: 1980: 1979: 1976: 1973: 1972: 1970: 1962: 1959: 1956: 1953: 1947: 1944: 1938: 1918: 1915: 1912: 1909: 1906: 1903: 1900: 1873: 1870: 1869: 1866: 1863: 1862: 1859: 1852: 1843: 1840: 1839: 1836: 1827: 1824: 1823: 1820: 1817: 1811: 1808: 1801: 1792: 1789: 1788: 1785: 1776: 1773: 1772: 1769: 1762: 1759: 1758: 1755: 1752: 1751: 1748: 1741: 1732: 1729: 1728: 1725: 1716: 1713: 1712: 1709: 1706: 1700: 1680: 1677: 1674: 1671: 1668: 1645: 1642: 1639: 1633: 1630: 1623: 1614: 1611: 1610: 1607: 1598: 1595: 1594: 1591: 1584: 1581: 1580: 1577: 1574: 1573: 1570: 1567: 1547: 1527: 1500: 1494: 1491: 1490: 1487: 1481: 1478: 1477: 1455: 1449: 1446: 1445: 1442: 1439: 1438: 1436: 1429: 1423: 1420: 1419: 1416: 1413: 1412: 1410: 1405: 1398: 1395: 1389: 1386: 1383: 1382: 1379: 1376: 1370: 1367: 1364: 1363: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1296: 1290: 1266: 1263: 1262: 1259: 1256: 1255: 1239: 1236: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 942: 939: 936: 933: 930: 927: 924: 921: 918: 915: 912: 892: 889: 886: 883: 880: 855: 851: 847: 842: 838: 834: 829: 825: 821: 818: 813: 809: 805: 800: 796: 792: 789: 786: 781: 777: 773: 768: 764: 760: 757: 754: 749: 745: 741: 736: 732: 728: 725: 722: 717: 713: 709: 704: 700: 696: 693: 688: 684: 680: 675: 671: 667: 662: 658: 645: 642: 624: 604: 592: 589: 576: 556: 545: 544: 532: 529: 526: 523: 520: 517: 514: 511: 508: 488: 485: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 422: 412: 399: 396: 393: 371: 367: 363: 360: 357: 354: 351: 348: 345: 340: 336: 313: 309: 305: 302: 299: 296: 293: 290: 287: 282: 278: 257: 235: 231: 208: 204: 179: 159: 136: 116: 92: 80: 77: 13: 10: 9: 6: 4: 3: 2: 2677: 2666: 2663: 2661: 2658: 2657: 2655: 2646: 2643: 2641: 2638: 2637: 2633: 2628: 2624: 2620: 2615: 2611: 2607: 2603: 2599: 2595: 2590: 2586: 2582: 2577: 2572: 2568: 2564: 2560: 2556: 2551: 2548:, W. (1935), 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2518: 2512: 2510: 2507: 2505: 2502: 2501: 2496: 2494: 2492: 2488: 2484: 2483: 2477: 2475: 2471: 2455: 2452: 2449: 2441: 2437: 2433: 2429: 2424: 2422: 2418: 2414: 2410: 2405: 2384: 2381: 2378: 2372: 2366: 2363: 2360: 2354: 2348: 2345: 2342: 2336: 2330: 2327: 2324: 2314: 2313: 2312: 2298: 2295: 2292: 2284: 2280: 2275: 2273: 2269: 2263: 2249: 2241: 2237: 2236:monoid object 2221: 2198: 2195: 2192: 2180: 2177: 2174: 2168: 2162: 2159: 2156: 2133: 2113: 2101: 2099: 2085: 2076: 2070: 2064: 2057: 2047: 2041: 2031: 2024: 2015: 2008: 1999: 1992: 1987: 1981: 1974: 1968: 1960: 1957: 1951: 1945: 1936: 1916: 1913: 1910: 1907: 1904: 1901: 1898: 1889: 1871: 1864: 1857: 1850: 1841: 1834: 1825: 1818: 1815: 1809: 1806: 1799: 1790: 1783: 1774: 1767: 1760: 1753: 1746: 1739: 1730: 1723: 1714: 1707: 1704: 1698: 1678: 1675: 1672: 1669: 1666: 1659:Now, for all 1657: 1643: 1640: 1637: 1631: 1628: 1621: 1612: 1605: 1596: 1589: 1582: 1575: 1568: 1565: 1545: 1525: 1516: 1498: 1492: 1485: 1479: 1453: 1447: 1440: 1434: 1427: 1421: 1414: 1408: 1403: 1393: 1387: 1374: 1368: 1341: 1338: 1335: 1332: 1329: 1326: 1323: 1320: 1317: 1308: 1294: 1288: 1264: 1257: 1245: 1237: 1235: 1218: 1215: 1212: 1206: 1203: 1200: 1194: 1191: 1188: 1182: 1176: 1173: 1170: 1164: 1158: 1155: 1152: 1146: 1140: 1137: 1134: 1128: 1125: 1122: 1116: 1113: 1110: 1098: 1084: 1081: 1078: 1075: 1069: 1066: 1063: 1057: 1051: 1048: 1045: 1039: 1033: 1030: 1027: 1021: 1015: 1012: 1009: 1003: 1000: 997: 994: 991: 985: 982: 979: 973: 967: 964: 961: 955: 949: 946: 943: 937: 931: 928: 925: 919: 916: 913: 910: 890: 887: 884: 881: 878: 869: 853: 849: 845: 840: 836: 832: 827: 823: 819: 811: 807: 803: 798: 794: 787: 779: 775: 771: 766: 762: 755: 747: 743: 739: 734: 730: 723: 715: 711: 707: 702: 698: 691: 686: 682: 678: 673: 669: 665: 660: 656: 643: 641: 638: 622: 602: 590: 588: 574: 554: 530: 527: 524: 521: 518: 515: 512: 509: 506: 483: 480: 477: 471: 465: 462: 459: 453: 447: 444: 441: 435: 429: 426: 423: 413: 397: 394: 391: 369: 365: 361: 358: 355: 352: 349: 346: 343: 338: 334: 311: 307: 303: 300: 297: 294: 291: 288: 285: 280: 276: 255: 233: 229: 206: 202: 193: 177: 157: 150: 149: 148: 134: 114: 106: 90: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 19: 2618: 2601: 2597: 2576:math/0407275 2562: 2549: 2521: 2515: 2480: 2478: 2469: 2425: 2421:made abelian 2406: 2402: 2276: 2264: 2105: 1890: 1658: 1517: 1309: 1241: 1099: 870: 647: 594: 546: 82: 73:Peter Hilton 69:Beno Eckmann 53:homomorphism 45:unital magma 36: 32: 28: 22: 2470:Proceedings 2428:Eduard Čech 25:mathematics 2654:Categories 2497:References 2440:Heinz Hopf 384:, for all 268:such that 43:about two 2604:: 60–74, 2426:In 1932, 2382:⊗ 2373:∘ 2364:⊗ 2346:∘ 2337:⊗ 2328:∘ 2299:⊗ 2293:∘ 2268:groupoids 2199:∘ 2187:→ 2181:∘ 2169:× 2163:∘ 2134:⊗ 2016:∙ 1914:∈ 1842:∙ 1835:∙ 1800:∙ 1775:∙ 1731:∙ 1724:∙ 1676:∈ 1644:∘ 1638:∘ 1632:∘ 1622:∙ 1613:∘ 1606:∘ 1597:∙ 1583:∙ 1576:∙ 1566:∙ 1546:∘ 1526:∙ 1339:∈ 1216:⊗ 1207:⊗ 1192:⊗ 1183:⊗ 1174:⊗ 1156:⊗ 1147:⊗ 1138:⊗ 1123:⊗ 1114:⊗ 1082:∘ 1067:⊗ 1058:∘ 1049:⊗ 1031:∘ 1022:⊗ 1013:∘ 998:⊗ 983:∘ 974:⊗ 965:∘ 947:⊗ 938:∘ 929:⊗ 914:∘ 888:∈ 871:Now, let 854:⊗ 841:⊗ 833:⊗ 828:⊗ 812:⊗ 804:∘ 799:∘ 788:⊗ 780:∘ 772:∘ 767:⊗ 748:⊗ 740:⊗ 735:∘ 724:∘ 716:∘ 708:⊗ 703:⊗ 687:∘ 679:∘ 674:∘ 661:∘ 623:∘ 603:⊗ 575:⊗ 555:∘ 528:∈ 499:for all 481:∘ 472:⊗ 463:∘ 445:⊗ 436:∘ 427:⊗ 395:∈ 370:⊗ 362:⊗ 344:⊗ 339:⊗ 312:∘ 304:∘ 286:∘ 281:∘ 234:⊗ 207:∘ 190:are both 178:⊗ 158:∘ 135:⊗ 115:∘ 2546:Hurewicz 1310:For all 41:argument 39:) is an 2610:2122826 2585:2841564 2538:0136642 2242:, then 2238:in the 2102:Remarks 903:. Then 591:Remarks 2608:  2583:  2536:  2083:  2074:  2045:  2022:  2019:  2006:  2003:  1964:  1949:  1940:  1848:  1845:  1832:  1829:  1813:  1797:  1794:  1781:  1778:  1737:  1734:  1721:  1718:  1702:  1635:  1619:  1616:  1603:  1600:  1496:  1483:  1391:  1372:  1292:  637:monoid 192:unital 27:, the 2571:arXiv 2559:Brown 2234:is a 644:Proof 547:Then 59:is a 57:magma 2453:> 2438:and 1538:and 1518:Let 1281:and 615:and 567:and 326:and 221:and 170:and 127:and 83:Let 71:and 31:(or 2526:doi 2522:145 248:of 49:set 35:or 23:In 2656:: 2606:MR 2602:14 2600:, 2596:, 2581:MR 2579:, 2565:, 2534:MR 2532:, 2520:, 1929:, 1691:, 1354:, 1234:. 868:. 2613:. 2588:. 2573:: 2554:. 2541:. 2528:: 2456:1 2450:n 2388:) 2385:d 2379:b 2376:( 2370:) 2367:c 2361:a 2358:( 2355:= 2352:) 2349:d 2343:c 2340:( 2334:) 2331:b 2325:a 2322:( 2296:, 2250:X 2222:X 2202:) 2196:, 2193:X 2190:( 2184:) 2178:, 2175:X 2172:( 2166:) 2160:, 2157:X 2154:( 2114:X 2086:c 2080:) 2077:b 2071:a 2068:( 2065:= 2058:c 2051:) 2048:b 2042:a 2039:( 2032:= 2025:c 2009:b 2000:a 1993:= 1988:) 1982:c 1975:b 1969:( 1961:a 1958:= 1955:) 1952:c 1946:b 1943:( 1937:a 1917:X 1911:c 1908:, 1905:b 1902:, 1899:a 1872:a 1865:b 1858:= 1851:a 1826:b 1819:= 1816:a 1810:b 1807:= 1791:b 1784:a 1768:= 1761:b 1754:a 1747:= 1740:b 1715:a 1708:= 1705:b 1699:a 1679:X 1673:b 1670:, 1667:a 1641:= 1629:= 1590:= 1569:= 1499:d 1493:c 1486:b 1480:a 1454:) 1448:d 1441:b 1435:( 1428:) 1422:c 1415:a 1409:( 1404:= 1397:) 1394:d 1388:c 1385:( 1378:) 1375:b 1369:a 1366:( 1342:X 1336:d 1333:, 1330:c 1327:, 1324:b 1321:, 1318:a 1295:b 1289:a 1265:b 1258:a 1222:) 1219:c 1213:b 1210:( 1204:a 1201:= 1198:) 1195:c 1189:b 1186:( 1180:) 1177:1 1171:a 1168:( 1165:= 1162:) 1159:c 1153:1 1150:( 1144:) 1141:b 1135:a 1132:( 1129:= 1126:c 1120:) 1117:b 1111:a 1108:( 1085:a 1079:b 1076:= 1073:) 1070:a 1064:1 1061:( 1055:) 1052:1 1046:b 1043:( 1040:= 1037:) 1034:a 1028:1 1025:( 1019:) 1016:1 1010:b 1007:( 1004:= 1001:a 995:b 992:= 989:) 986:1 980:a 977:( 971:) 968:b 962:1 959:( 956:= 953:) 950:1 944:b 941:( 935:) 932:a 926:1 923:( 920:= 917:b 911:a 891:X 885:b 882:, 879:a 850:1 846:= 837:1 824:1 820:= 817:) 808:1 795:1 791:( 785:) 776:1 763:1 759:( 756:= 753:) 744:1 731:1 727:( 721:) 712:1 699:1 695:( 692:= 683:1 670:1 666:= 657:1 543:. 531:X 525:d 522:, 519:c 516:, 513:b 510:, 507:a 487:) 484:d 478:b 475:( 469:) 466:c 460:a 457:( 454:= 451:) 448:d 442:c 439:( 433:) 430:b 424:a 421:( 410:. 398:X 392:a 366:1 359:a 356:= 353:a 350:= 347:a 335:1 308:1 301:a 298:= 295:a 292:= 289:a 277:1 256:X 230:1 203:1 91:X 20:.

Index

Eckmann–Hilton duality
mathematics
argument
unital magma
set
homomorphism
magma
commutative monoid
homotopy groups
Beno Eckmann
Peter Hilton
binary operations
unital
monoid
homotopy groups
monoid object
category of monoids
groupoids
crossed module
interchange law
double category
homotopy groups
fundamental group
homology groups
made abelian
Eduard Čech
homotopy groups
Pavel Alexandroff
Heinz Hopf
Witold Hurewicz

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.