Knowledge (XXG)

Spin echo

Source 📝

424:
echoes. The FSE/TSE pulse sequence superficially resembles a conventional spin-echo (CSE) sequence in that it uses a series of 180º-refocusing pulses after a single 90º-pulse to generate a train of echoes. The FSE/TSE technique, however, changes the phase-encoding gradient for each of these echoes (a conventional multi-echo sequence collects all echoes in a train with the same phase encoding). As a result of changing the phase-encoding gradient between echoes, multiple lines of k-space (i.e., phase-encoding steps) can be acquired within a given repetition time (TR). As multiple phase-encoding lines are acquired during each TR interval, FSE/TSE techniques may significantly reduce imaging time.
431: 215: 461: 446: 243:
Due to local magnetic field inhomogeneities (variations in the magnetic field at different parts of the sample that are constant in time), as the net moment precesses, some spins slow down due to lower local field strength (and so begin to progressively trail behind) while some speed up due to higher
423:
Fast spin echo (RARE, FAISE or FSE), also called turbo spin echo (TSE) is an MRI sequence that results in fast scan times. In this sequence, several 180 refocusing radio-frequency pulses are delivered during each echo time (TR) interval, and the phase-encoding gradient is briefly switched on between
185:
In 2020 two teams demonstrated that when strongly coupling an ensemble of spins to a resonator, the Hahn pulse sequence does not just lead to a single echo, but rather to a whole train of periodic echoes. In this process the first Hahn echo acts back on the spins as a refocusing pulse, leading to
342:
Hahn's 1950 paper showed that another method for generating spin echoes is to apply three successive 90° pulses. After the first 90° pulse, the magnetization vector spreads out as described above, forming what can be thought of as a "pancake" in the x-y plane. The spreading continues for a time
297:
is included and each spin experiences perfect pulses during which the environment provides no spreading. Six spins are shown above and these are not given the chance to dephase significantly. The spin-echo technique is more useful when the spins have dephased more significantly such as in the
198:
when he applied two successive 90° pulses separated by short time period, but detected a signal, the echo, when no pulse was applied. This phenomenon of spin echo was explained by Erwin Hahn in his 1950 paper, and further developed by
460: 430: 181:
introduced spin-echo neutron scattering, a technique that can be used to study magnons and phonons in single crystals. The technique is now applied in research facilities using triple axis spectrometers.
228:
The vertical red arrow is the average magnetic moment of a group of spins, such as protons. All are vertical in the vertical magnetic field and spinning on their long axis, but this illustration is in a
318:
time, as shown in the animation below. The size of the echo is recorded for different spacings of the two pulses. This reveals the decoherence which is not refocused by the π pulse. In simple cases, an
445: 302: 258:
Progressively, the fast moments catch up with the main moment and the slow moments drift back toward the main moment. At some moment between E and F the sampling of the echo starts.
207:
who pointed out the advantages of using a 180° refocusing pulse for the second pulse. The pulse sequence may be better understood by breaking it down into the following steps:
415:
absorption resonance. Instead of using two spin states in a magnetic field, photon echoes use two energy levels that are present in the material even in zero magnetic field.
92:
at different rates. The first of these, relaxation, leads to an irreversible loss of magnetisation. But the inhomogeneous dephasing can be removed by applying a 180°
401: 361: 381: 332: 785:
Debnath, Kamanasish; Dold, David; Morton, John J. L.; Mølmer, Klaus (2020). "Self-Stimulated Pulse Echo Trains from Inhomogeneously Broadened Spin Ensembles".
1180: 501: 521:
J. E. Tanner & E. O. Stejskal (2003). "Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method".
1124: 1103: 1078: 1035: 1165: 1160: 720:
Weichselbaumer, Stefan; Zens, Matthias; Zollitsch, Christoph W.; Brandt, Martin S.; Rotter, Stefan; Gross, Rudolf; Huebl, Hans (2020).
31: 301: 496: 1175: 846:
Carr, H. Y.; Purcell, E. M. (1954). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments".
253:
A 180 degree pulse is now applied so that the slower spins lead ahead of the main moment and the fast ones trail behind.
411:
Hahn echos have also been observed at optical frequencies. For this, resonant light is applied to a material with an
1170: 486: 481: 167: 163: 70: 66: 46: 214: 62: 315: 436: 363:, and then a second 90° pulse is applied such that the "pancake" is now in the x-z plane. After a further time 230: 930:"Partial RF echo planar imaging with the FAISE method. I. Experimental and theoretical assessment of artifact" 277:
effects removed. Quite separately, return of the red arrow towards the vertical (not shown) would reflect the
977:"Partial RF echo-planar imaging with the FAISE method. II. Contrast equivalence with spin-echo sequences" 466:
T1-weighted turbo spin echo MRI confirms a fracture, as the surrounding bone marrow has low signal from
331: 855: 804: 743: 677: 637: 572: 530: 204: 77: 100:
vectors. Examples of inhomogeneous effects include a magnetic field gradient and a distribution of
1004: 957: 910: 828: 794: 767: 733: 139: 881:
Melki, Philippe S.; Mulkern, Robert V.; Panych, Lawrence P.; Jolesz, Ferenc A. (May–June 1991).
1120: 1099: 1074: 1031: 996: 949: 902: 882: 820: 759: 702:
Mezei, F. (1972), "Neutron spin echo: A new concept in polarized thermal neutron techniques",
491: 320: 178: 143: 1028:
How does MRI work?: An Introduction to the Physics and Function of Magnetic Resonance Imaging
1023: 976: 929: 988: 941: 894: 863: 812: 751: 685: 645: 580: 538: 81: 386: 346: 412: 112:. In simple cases, the intensity of the echo relative to the initial signal is given by 859: 808: 747: 681: 641: 576: 534: 556: 366: 171: 101: 58: 39: 628:
Kurnit, N. A.; Abella, I. D.; Hartmann, S. R. (1964). "Observation of a photon echo".
1154: 832: 771: 584: 97: 1008: 961: 914: 383:
a third pulse is applied and a stimulated echo is observed after waiting for a time
816: 755: 722:"Echo Trains in Pulsed Electron Spin Resonance of a Strongly Coupled Spin Ensemble" 244:
field strength and start getting ahead of the others. This makes the signal decay.
135: 35: 721: 238:
A 90° pulse has been applied that flips the arrow into the horizontal (x–y) plane.
1092: 80:
observed following an initial excitation pulse decays with time due to both spin
560: 294: 200: 108:
of dephasing, the inhomogeneous evolution will rephase to form an echo at time 2
1145: 649: 34:
Animation of spin echo, showing the response of spins (red arrows) in the blue
1051: 604: 284:
relaxation. 180 degrees is π radians so 180° pulses are often called π pulses.
195: 155: 89: 599: 898: 992: 945: 867: 824: 763: 689: 1000: 953: 906: 30: 975:
Melki, Philippe S.; Jolesz, Ferenc A.; Mulkern, Robert V. (August 1992).
928:
Melki, Philippe S.; Jolesz, Ferenc A.; Mulkern, Robert V. (August 1992).
17: 439:
showing a suspected compressive subcapital fracture as a radiodense line
451: 138:
which have been used in fields other than magnetic resonance including
131:) is the time between the excitation pulse and the peak of the signal. 542: 454:
shows the same, atypical for a fracture since the cortex is coherent
1030:(2nd ed.). Springer Science & Business Media. p. 64. 799: 738: 883:"Comparing the FAISE method with conventional dual-echo sequences" 467: 29: 263:
Complete refocusing has occurred and at this time, an accurate
563:(1979). "NMR population inversion using a composite pulse". 300: 213: 154:
Echoes were first detected in nuclear magnetic resonance by
314:
A Hahn-echo decay experiment can be used to measure the
293:
Several simplifications are used in this sequence: no
158:
in 1950, and spin echoes are sometimes referred to as
1071:
Spin Choreography: Basic Steps in High Resolution NMR
389: 369: 349: 1117:
Principles of Pulse Electron Paramagnetic Resonance
1094:
Spin Dynamics: Basics of Nuclear Magnetic Resonance
123:is the time constant for spin–spin relaxation. The 104:. If the inversion pulse is applied after a period 1091: 395: 375: 355: 134:Echo phenomena are important features of coherent 305:A spin echo with more spins and more dephasing 27:Response of spin to electromagnetic radiation 8: 623: 621: 209: 1022:Weishaupt D, Köchli VD, Marincek B (2008). 88:effects which cause spins in the sample to 233:where the spins are stationary on average. 1115:Arthur Schweiger; Gunnar Jeschke (2001). 1052:"What is Fast (Turbo) Spin Echo imaging?" 798: 737: 388: 368: 348: 513: 426: 323:is measured which is described by the T 194:The spin-echo effect was discovered by 663: 661: 659: 887:Journal of Magnetic Resonance Imaging 502:Photon echoes in semiconductor optics 61:magnetisation by a pulse of resonant 7: 1146:Spin Echo Simulation scratch.mit.edu 668:Hahn, E.L. (1950). "Spin echoes". 186:self-stimulated secondary echoes. 25: 1024:"Chapter 8: Fast Pulse sequences" 174:radiation is most commonly used. 459: 444: 429: 330: 1181:Electron paramagnetic resonance 523:The Journal of Chemical Physics 497:Electron paramagnetic resonance 73:(MRI) make use of this effect. 981:Magnetic Resonance in Medicine 934:Magnetic Resonance in Medicine 817:10.1103/PhysRevLett.125.137702 756:10.1103/PhysRevLett.125.137701 270:echo can be measured with all 1: 565:Journal of Magnetic Resonance 585:10.1016/0022-2364(79)90265-8 1119:. Oxford University Press. 1073:. Oxford University Press. 1197: 1166:Nuclear magnetic resonance 1161:Magnetic resonance imaging 1140:Animations and simulations 1090:Malcolm H. Levitt (2001). 650:10.1103/PhysRevLett.13.567 487:Magnetic resonance imaging 482:Nuclear magnetic resonance 223: 168:magnetic resonance imaging 164:nuclear magnetic resonance 71:magnetic resonance imaging 67:nuclear magnetic resonance 413:inhomogeneously broadened 249: 224: 212: 63:electromagnetic radiation 598:Dan J Bell and J Yeung. 231:rotating reference frame 899:10.1002/jmri.1880010310 787:Physical Review Letters 726:Physical Review Letters 630:Physical Review Letters 250: 96:pulse that inverts the 993:10.1002/mrm.1910260213 946:10.1002/mrm.1910260212 868:10.1103/PhysRev.94.630 704:Zeitschrift für Physik 690:10.1103/PhysRev.80.580 403:after the last pulse. 397: 377: 357: 306: 219: 218:The spin-echo sequence 42: 1176:Scientific techniques 398: 396:{\displaystyle \tau } 378: 358: 356:{\displaystyle \tau } 304: 217: 57:is the refocusing of 33: 1069:Ray Freeman (1999). 387: 367: 347: 316:spin–spin relaxation 860:1954PhRv...94..630C 809:2020PhRvL.125m7702D 748:2020PhRvL.125m7701W 682:1950PhRv...80..580H 642:1964PhRvL..13..567K 577:1979JMagR..33..473L 535:1968JChPh..49.1768T 393: 373: 353: 307: 220: 144:neutron scattering 140:laser spectroscopy 47:magnetic resonance 43: 1171:Quantum mechanics 1126:978-0-19-850634-8 1105:978-0-471-48922-1 1080:978-0-19-850481-8 1037:978-3-540-37845-7 710:(2), pp. 146–160. 557:Malcolm H. Levitt 543:10.1063/1.1670306 492:Neutron spin echo 376:{\displaystyle T} 321:exponential decay 298:animation below: 291: 290: 16:(Redirected from 1188: 1130: 1109: 1097: 1084: 1056: 1055: 1048: 1042: 1041: 1019: 1013: 1012: 972: 966: 965: 925: 919: 918: 878: 872: 871: 843: 837: 836: 802: 782: 776: 775: 741: 717: 711: 700: 694: 693: 665: 654: 653: 625: 616: 615: 613: 612: 595: 589: 588: 553: 547: 546: 518: 463: 448: 433: 402: 400: 399: 394: 382: 380: 379: 374: 362: 360: 359: 354: 334: 285: 259: 254: 245: 239: 234: 210: 21: 1196: 1195: 1191: 1190: 1189: 1187: 1186: 1185: 1151: 1150: 1137: 1127: 1114: 1106: 1089: 1081: 1068: 1065: 1063:Further reading 1060: 1059: 1050: 1049: 1045: 1038: 1021: 1020: 1016: 974: 973: 969: 927: 926: 922: 880: 879: 875: 848:Physical Review 845: 844: 840: 784: 783: 779: 719: 718: 714: 701: 697: 670:Physical Review 667: 666: 657: 636:(19): 567–568. 627: 626: 619: 610: 608: 597: 596: 592: 555: 554: 550: 520: 519: 515: 510: 478: 471: 464: 455: 449: 440: 434: 421: 409: 385: 384: 365: 364: 345: 344: 340: 338:Stimulated echo 326: 312: 310:Spin-echo decay 283: 276: 269: 262: 257: 252: 242: 237: 227: 192: 152: 122: 102:chemical shifts 28: 23: 22: 15: 12: 11: 5: 1194: 1192: 1184: 1183: 1178: 1173: 1168: 1163: 1153: 1152: 1149: 1148: 1142: 1141: 1136: 1135:External links 1133: 1132: 1131: 1125: 1111: 1110: 1104: 1086: 1085: 1079: 1064: 1061: 1058: 1057: 1043: 1036: 1014: 987:(2): 342–354. 967: 940:(2): 328–341. 920: 893:(3): 319–326. 873: 854:(3): 630–638. 838: 793:(13): 137702. 777: 732:(13): 137701. 712: 695: 676:(4): 580–594. 655: 617: 590: 571:(2): 473–476. 548: 512: 511: 509: 506: 505: 504: 499: 494: 489: 484: 477: 474: 473: 472: 465: 458: 456: 450: 443: 441: 435: 428: 420: 419:Fast spin echo 417: 408: 405: 392: 372: 352: 339: 336: 324: 311: 308: 289: 288: 287: 286: 281: 274: 267: 260: 255: 248: 247: 246: 240: 235: 222: 221: 191: 188: 172:radiofrequency 151: 148: 120: 40:pulse sequence 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1193: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1158: 1156: 1147: 1144: 1143: 1139: 1138: 1134: 1128: 1122: 1118: 1113: 1112: 1107: 1101: 1096: 1095: 1088: 1087: 1082: 1076: 1072: 1067: 1066: 1062: 1053: 1047: 1044: 1039: 1033: 1029: 1025: 1018: 1015: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 971: 968: 963: 959: 955: 951: 947: 943: 939: 935: 931: 924: 921: 916: 912: 908: 904: 900: 896: 892: 888: 884: 877: 874: 869: 865: 861: 857: 853: 849: 842: 839: 834: 830: 826: 822: 818: 814: 810: 806: 801: 796: 792: 788: 781: 778: 773: 769: 765: 761: 757: 753: 749: 745: 740: 735: 731: 727: 723: 716: 713: 709: 705: 699: 696: 691: 687: 683: 679: 675: 671: 664: 662: 660: 656: 651: 647: 643: 639: 635: 631: 624: 622: 618: 607: 606: 601: 594: 591: 586: 582: 578: 574: 570: 566: 562: 558: 552: 549: 544: 540: 536: 532: 528: 524: 517: 514: 507: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 479: 475: 469: 462: 457: 453: 447: 442: 438: 432: 427: 425: 418: 416: 414: 406: 404: 390: 370: 350: 337: 335: 333: 328: 322: 317: 309: 303: 299: 296: 280: 273: 266: 261: 256: 251: 241: 236: 232: 226: 225: 216: 211: 208: 206: 202: 197: 189: 187: 183: 180: 175: 173: 169: 165: 161: 157: 149: 147: 145: 141: 137: 132: 130: 126: 119: 115: 111: 107: 103: 99: 98:magnetisation 95: 91: 87: 86:inhomogeneous 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 41: 38:to the green 37: 32: 19: 1116: 1093: 1070: 1046: 1027: 1017: 984: 980: 970: 937: 933: 923: 890: 886: 876: 851: 847: 841: 790: 786: 780: 729: 725: 715: 707: 703: 698: 673: 669: 633: 629: 609:. Retrieved 603: 593: 568: 564: 551: 526: 522: 516: 422: 410: 341: 329: 313: 292: 278: 271: 264: 193: 184: 176: 159: 153: 136:spectroscopy 133: 128: 124: 117: 113: 109: 105: 93: 85: 75: 54: 50: 44: 36:Bloch sphere 600:"Echo time" 561:Ray Freeman 529:(4): 1768. 407:Photon echo 295:decoherence 160:Hahn echoes 1155:Categories 800:2004.01116 739:1809.10116 611:2017-09-24 605:Radiopedia 508:References 196:Erwin Hahn 156:Erwin Hahn 82:relaxation 78:NMR signal 69:(NMR) and 1098:. Wiley. 833:214774750 772:119521123 391:τ 351:τ 190:Principle 125:echo time 94:inversion 65:. Modern 55:Hahn echo 51:spin echo 18:Echo time 1009:45145834 962:26351582 915:26083556 825:33034472 764:33034465 476:See also 179:F. Mezei 177:In 1972 84:and any 1001:1513255 954:1513254 907:1802145 856:Bibcode 805:Bibcode 744:Bibcode 678:Bibcode 638:Bibcode 573:Bibcode 531:Bibcode 452:CT scan 205:Purcell 150:History 90:precess 1123:  1102:  1077:  1034:  1007:  999:  960:  952:  913:  905:  831:  823:  770:  762:  327:time. 116:where 1005:S2CID 958:S2CID 911:S2CID 829:S2CID 795:arXiv 768:S2CID 734:arXiv 468:edema 437:X-ray 162:. In 1121:ISBN 1100:ISBN 1075:ISBN 1032:ISBN 997:PMID 950:PMID 903:PMID 821:PMID 760:PMID 203:and 201:Carr 166:and 142:and 76:The 59:spin 49:, a 989:doi 942:doi 895:doi 864:doi 813:doi 791:125 752:doi 730:125 708:255 686:doi 646:doi 581:doi 539:doi 53:or 45:In 1157:: 1026:. 1003:. 995:. 985:26 983:. 979:. 956:. 948:. 938:26 936:. 932:. 909:. 901:. 889:. 885:. 862:. 852:94 850:. 827:. 819:. 811:. 803:. 789:. 766:. 758:. 750:. 742:. 728:. 724:. 706:, 684:. 674:80 672:. 658:^ 644:. 634:13 632:. 620:^ 602:. 579:. 569:33 567:. 559:; 537:. 527:49 525:. 170:, 146:. 129:TE 1129:. 1108:. 1083:. 1054:. 1040:. 1011:. 991:: 964:. 944:: 917:. 897:: 891:1 870:. 866:: 858:: 835:. 815:: 807:: 797:: 774:. 754:: 746:: 736:: 692:. 688:: 680:: 652:. 648:: 640:: 614:. 587:. 583:: 575:: 545:. 541:: 533:: 470:. 371:T 325:2 282:1 279:T 275:2 272:T 268:2 265:T 127:( 121:2 118:T 114:e 110:t 106:t 20:)

Index

Echo time

Bloch sphere
pulse sequence
magnetic resonance
spin
electromagnetic radiation
nuclear magnetic resonance
magnetic resonance imaging
NMR signal
relaxation
precess
magnetisation
chemical shifts
spectroscopy
laser spectroscopy
neutron scattering
Erwin Hahn
nuclear magnetic resonance
magnetic resonance imaging
radiofrequency
F. Mezei
Erwin Hahn
Carr
Purcell
The spin-echo sequence
rotating reference frame
decoherence
A spin echo with more spins and more dephasing
spin–spin relaxation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.