Knowledge (XXG)

Dirac large numbers hypothesis

Source 📝

1430: 31: 1374:, itself a constant of nature, approx. 1.44 solar masses) and an electron approximates to 10, an interesting variation on the 10 and 10 that are typically associated with Dirac and Eddington respectively. (The physics defining the Chandrasekhar mass produces a ratio that is the −3/2 power of the gravitational fine-structure constant, 10.) 1330:: In 1978, G. Blake argued that paleontological data is consistent with the "multiplicative" scenario but not the "additive" scenario. Arguments both for and against LNH are also made from astrophysical considerations. For example, D. Falik argued that LNH is inconsistent with experimental results for 274: 1369:
Various authors have introduced new sets of numbers into the original "coincidence" considered by Dirac and his contemporaries, thus broadening or even departing from Dirac's own conclusions. Jordan (1947) noted that the mass ratio for a typical star (specifically, a star of the
503: 392: 725: 1414:(for example Planck density). This ratio of densities, and other ratios (using four fundamental constants: speed of light in vacuum c, Newtonian constant of gravity G, reduced Planck constant ℏ, and Hubble constant H) computes to an exact number, 1090: 1309:
Dirac's theory has inspired and continues to inspire a significant body of scientific literature in a variety of disciplines, with it sparking off many speculations, arguments and new ideas in terms of applications. In the context of
1292:
that describes the structure of spacetime in terms of a ratio of gravitational and electromagnetic units. He also provided alternative scenarios for the continuous creation of matter, one of the other significant issues in LNH:
921: 173: 577: 817: 1326:
demonstrated in 1962 how a simple revision of the parameters (in this case, the age of the Solar System) can invalidate Teller's conclusions. The debate is further complicated by the choice of LNH
398: 285: 631: 1210: 142: 107: 1559: 1268: 1177: 1150: 1886: 58:
in the present cosmological epoch. According to Dirac's hypothesis, the apparent similarity of these ratios might not be a mere coincidence but instead could imply a
1007: 1234: 1116: 948: 2224: 2154: 851: 751:. For Milne, space was not a structured object but simply a system of reference in which relations such as this could accommodate Einstein's conclusions: 269:{\displaystyle {\frac {R_{\text{U}}}{r_{\text{e}}}}\approx {\frac {r_{\text{H}}}{r_{\text{e}}}}\approx 4.1666763\cdot 10^{42}\approx 10^{42.62\ldots },} 156:
LNH was Dirac's personal response to a set of large number "coincidences" that had intrigued other theorists of his time. The "coincidences" began with
1455: 508: 1429: 2464: 1706: 1669: 757: 2439: 1318:
seemed to raise a serious objection to LNH in 1948 when he argued that variations in the strength of gravity are not consistent with
2429: 167:, might also be the hypothetical radius of a particle whose rest energy is equal to the gravitational self-energy of the electron: 2474: 1395: 1443: 498:{\displaystyle r_{\text{H}}={\frac {e^{2}}{4\pi \epsilon _{0}\ m_{\text{H}}c^{2}}}\approx 1.5671987\cdot 10^{27}\,\mathrm {m} } 387:{\displaystyle r_{\text{e}}={\frac {e^{2}}{4\pi \epsilon _{0}\ m_{\text{e}}c^{2}}}\approx 3.7612682\cdot 10^{-16}\mathrm {m} } 1410:
in the universe. Valev (2019) found an equation connecting cosmological parameters (for example density of the universe) and
1331: 2434: 1960:
V. Canuto, S. Hsieh (1978). "The 3 K blackbody radiation, Dirac's Large Numbers Hypothesis, and scale-covariant cosmology".
747:
a few years before Dirac formulated LNH. Milne was inspired not by large number coincidences but by a dislike of Einstein's
1350:, it simply states that the large numbers in LNH are a necessary coincidence for intelligent beings since they parametrize 2312: 1383: 55: 748: 720:{\displaystyle {\frac {e^{2}}{4\pi \epsilon _{0}\ Gm_{\text{e}}^{2}}}\approx 4.1666763\cdot 10^{42}\approx {\sqrt {N}}} 2479: 2459: 1722:
J. P.Uzan (2003). "The fundamental constants and their variation, Observational status and theoretical motivations".
1274:
noted that such a temporal variation does not necessarily follow from Dirac's assumptions, a corresponding change of
2310:
C.-G. Shao; J. Shen; B. Wang; R.-K. Su (2006). "Dirac Cosmology and the Acceleration of the Contemporary Universe".
1694: 1657: 845:
The Weyl and Eddington ratios above can be rephrased in a variety of ways, as for instance in the context of time:
1418:. This provides evidence of the Dirac large numbers hypothesis by connecting the macro-world and the micro-world. 1382:
Several authors have recently identified and pondered the significance of yet another large number, approximately
1282:
is constant, otherwise the law of conserved energy is violated. Dirac met this difficulty by introducing into the
2099: 2003: 1962: 1925: 1724: 590: 1283: 732: 1636: 1213: 67: 1858: 1398:
identified 10 with the ratio of the universe's volume to the volume of a typical nucleon bounded by its
1391: 1343: 1182: 983: 2484: 2395: 2374:
A. Unzicker (2009). "A Look at the Abandoned Contributions to Cosmology of Dirac, Sciama and Dicke".
2331: 2282: 2233: 2194: 2163: 2049: 2012: 1971: 1934: 1895: 1827: 1790: 1743: 1568: 1557:
A. Eddington (1931). "Preliminary Note on the Masses of the Electron, the Proton, and the Universe".
1531: 1490: 114: 77: 2469: 1390:, which Nottale (1993) and Matthews (1997) associated in an LNH context with a scaling law for the 1371: 1347: 744: 736: 71: 1239: 1155: 1128: 2411: 2385: 2376: 2360: 2347: 2321: 2298: 2272: 2249: 2210: 2129: 1759: 1733: 1584: 1522: 1481: 1399: 1300:'multiplicative' creation (new matter is created where there are already concentrations of mass). 979: 59: 1778: 1698: 1606: 2128:
H. Lyre (2003). "C. F. Weizsäcker's Reconstruction of Physics: Yesterday, Today and Tomorrow".
2263: 1862: 1702: 1665: 1449: 1661: 1651: 147:
Physical constants are actually not constant. Their values depend on the age of the Universe.
2403: 2339: 2290: 2241: 2202: 2185: 2171: 2108: 2057: 2020: 1979: 1942: 1903: 1835: 1798: 1751: 1576: 1539: 1498: 1085:{\displaystyle {\frac {e^{2}}{4\pi \epsilon _{0}Gm_{\text{p}}m_{\text{e}}}}\approx 10^{40}.} 618: 1818: 1096: 2399: 2335: 2286: 2237: 2198: 2167: 2053: 2016: 1975: 1938: 1899: 1831: 1794: 1747: 1572: 1535: 1494: 1687: 1435: 1351: 1219: 1101: 951: 933: 625:, the estimated number of charged particles in the universe, with the following ratio: 54:
to that of force scales. The ratios constitute very large, dimensionless numbers: some
2343: 2261:
G. A. Mena Marugan; S. Carneiro (2002). "Holography and the large number hypothesis".
2076: 1386:. This is for example the ratio of the theoretical and observational estimates of the 17: 2453: 2351: 2302: 2253: 1763: 1653:
Cosmology and Controversy: The historical development of two theories of the universe
1588: 1387: 1338:
consistent. One argument that has created significant controversy was put forward by
1315: 987: 916:{\displaystyle {\frac {c\,t}{r_{\text{e}}}}\approx 3.47\cdot 10^{41}\approx 10^{42},} 2444: 2415: 1923:
D. Falik (1979). "Primordial Nucleosynthesis and Dirac's Large Numbers Hypothesis".
731:
In addition to the examples of Weyl and Eddington, Dirac was also influenced by the
2214: 1411: 1339: 1323: 1319: 1271: 157: 2359:
S. Ray; U. Mukhopadhyay; P. P. Ghosh (2007). "Large Number Hypothesis: A Review".
1407: 2294: 2222:
P. A. M. Dirac (1974). "Cosmological Models and the Large Numbers Hypothesis".
2113: 2094: 2077:"Mach's Principle, Dirac's Large Numbers and the Cosmological Constant Problem" 30: 1908: 1881: 1802: 1755: 1580: 1425: 1311: 111:
The mass of the universe is proportional to the square of the universe's age:
47: 2407: 2061: 1543: 1502: 1327: 2245: 2175: 1839: 1777:
Saibal, Ray; Mukhopadhyay, Utpal; Ray, Soham; Bhattacharjee, Arjak (2019).
572:{\displaystyle m_{\text{H}}c^{2}={\frac {Gm_{\text{e}}^{2}}{r_{\text{e}}}}} 1297:'additive' creation (new matter is created uniformly throughout space) and 739:, who lectured on the topic in Cambridge in 1933. The notion of a varying- 2134: 1458: â€“ Hypothetical conflict with the laws of physics as currently known 1355: 1119: 998: 51: 1779:"Dirac's large number hypothesis: A journey from concept to implication" 1738: 2326: 2277: 978:, the age of the universe is about 10 units of time. This is the same 2206: 994: 1517: 1476: 1402:, and he identified this ratio with the sum of elementary events or 2025: 1998: 1983: 1946: 2390: 2365: 990: 812:{\displaystyle G=\left(\!{\frac {c^{3}}{M_{\text{U}}}}\!\right)t,} 29: 1999:"Primordial nucleosynthesis and Dirac's large numbers hypothesis" 160:(1919), who speculated that the observed radius of the universe, 1866: 1363: 1359: 1123: 840: 1403: 1278:
has not been found. According to general relativity, however,
1287: 27:
Hypothesis relating age of the universe to physical constants
1882:"The Large Numbers Hypothesis and the rotation of the Earth" 2430:
Audio of Dirac talking about the large numbers hypothesis
1816:
E. Teller (1948). "On the change of physical constants".
1216:
is approximately 10. Dirac interpreted this to mean that
1179:
of the proton and electron, and the permittivity factor
961:
is the classical electron radius. Hence, in units where
833:
is the age of the universe. According to this relation,
841:
Dirac's interpretation of the large number coincidences
2183:
P. A. M. Dirac (1937). "The Cosmological Constants".
1242: 1222: 1185: 1158: 1131: 1104: 1010: 936: 854: 760: 634: 511: 401: 288: 176: 117: 80: 2440:
Robert Matthews: Dirac's coincidences sixty years on
2152:
P. A. M. Dirac (1938). "A New Basis for Cosmology".
607:denotes the mass of the hypothetical particle, and 1686: 1560:Proceedings of the Cambridge Philosophical Society 1262: 1228: 1204: 1171: 1144: 1110: 1084: 942: 915: 811: 719: 571: 497: 386: 268: 136: 101: 1887:Monthly Notices of the Royal Astronomical Society 797: 772: 1518:"Eine neue Erweiterung der Relativitätstheorie" 1212:in atomic units (equal to 1), the value of the 66:The strength of gravity, as represented by the 50:in 1937 relating ratios of size scales in the 2040:P. Jordan (1947). "Die Herkunft der Sterne". 8: 2225:Proceedings of the Royal Society of London A 2155:Proceedings of the Royal Society of London A 1607:"Evidence of Dirac large numbers hypothesis" 2389: 2364: 2325: 2276: 2133: 2112: 2024: 1907: 1783:International Journal of Modern Physics D 1737: 1252: 1241: 1221: 1196: 1184: 1163: 1157: 1136: 1130: 1103: 1073: 1057: 1047: 1034: 1017: 1011: 1009: 935: 904: 891: 870: 861: 855: 853: 789: 779: 773: 759: 710: 701: 679: 674: 658: 641: 635: 633: 617:The coincidence was further developed by 561: 550: 545: 535: 526: 516: 510: 490: 489: 483: 461: 451: 438: 421: 415: 406: 400: 379: 370: 348: 338: 325: 308: 302: 293: 287: 254: 241: 220: 210: 204: 193: 183: 177: 175: 128: 116: 98: 90: 79: 1334:whereas Canuto and Hsieh argued that it 1633:Relativity, Gravity and World Structure 1467: 1456:Time-variation of fundamental constants 1446: â€“ Physical constant with no units 743:cosmology first appears in the work of 621:(1931) who related the above ratios to 1305:Later developments and interpretations 2445:The Mysterious Eddington–Dirac Number 2095:"Dirac's coincidences sixty years on" 7: 1600: 1598: 1614:Proceedings of the Romanian Academy 1452: â€“ Unsolved problem in physics 70:, is inversely proportional to the 2435:Full transcript of Dirac's speech. 1205:{\displaystyle 4\pi \epsilon _{0}} 491: 380: 25: 1428: 829:is the mass of the universe and 1444:Dimensionless physical constant 1332:microwave background radiation 137:{\displaystyle M\propto t^{2}} 102:{\displaystyle G\propto 1/t\,} 40:Dirac large numbers hypothesis 1: 2313:Classical and Quantum Gravity 1805:– via World Scientific. 1689:Dirac: A Scientific Biography 1396:Carl Friedrich von Weizsäcker 614:is its electrostatic radius. 600:is the mass of the electron, 62:with these unusual features: 2465:Obsolete scientific theories 1997:V. Canuto, S. Hsieh (1980). 1388:energy density of the vacuum 1263:{\displaystyle G\approx 1/t} 1172:{\displaystyle m_{\text{e}}} 1145:{\displaystyle m_{\text{p}}} 930:is the age of the universe, 749:general theory of relativity 46:) is an observation made by 2344:10.1088/0264-9381/23/11/003 1366:would not arise otherwise. 2501: 2295:10.1103/PhysRevD.65.087303 2100:Astronomy & Geophysics 1695:Cambridge University Press 1658:Princeton University Press 1288: 2042:Astronomische Nachrichten 2004:The Astrophysical Journal 1963:The Astrophysical Journal 1926:The Astrophysical Journal 1803:10.1142/S0218271819300143 1756:10.1103/RevModPhys.75.403 1725:Reviews of Modern Physics 1581:10.1017/S0305004100009269 1477:"Zur Gravitationstheorie" 591:classical electron radius 2408:10.1002/andp.20095210108 2114:10.1093/astrog/39.6.6.19 2062:10.1002/asna.19472751012 1544:10.1002/andp.19193641002 1503:10.1002/andp.19173591804 1284:Einstein field equations 1095:Hence, interpreting the 733:primeval-atom hypothesis 2475:Astronomical hypotheses 1909:10.1093/mnras/185.2.399 1637:Oxford University Press 1384:120 orders of magnitude 1362:and hence carbon-based 2246:10.1098/rspa.1974.0095 2176:10.1098/rspa.1938.0053 1840:10.1103/PhysRev.73.801 1789:(8): 1930014–1930096. 1342:in 1961. Known as the 1264: 1230: 1214:gravitational constant 1206: 1173: 1146: 1112: 1086: 944: 917: 813: 721: 573: 499: 388: 270: 138: 103: 68:gravitational constant 56:40 orders of magnitude 35: 18:Eddington–Dirac number 1392:cosmological constant 1344:anthropic coincidence 1265: 1231: 1207: 1174: 1147: 1113: 1087: 945: 918: 837:increases over time. 814: 722: 574: 500: 389: 271: 139: 104: 33: 2093:R. Matthews (1998). 1861:. pp. 138–141. 1631:E. A. Milne (1935). 1240: 1236:varies with time as 1220: 1183: 1156: 1129: 1102: 1008: 982:as the ratio of the 934: 852: 758: 632: 509: 399: 286: 174: 115: 78: 2400:2009AnP...521...57U 2336:2006CQGra..23.3707S 2287:2002PhRvD..65h7303M 2238:1974RSPSA.338..439D 2199:1937Natur.139..323D 2168:1938RSPSA.165..199D 2054:1947dhds.book.....J 2017:1980ApJ...239L..91C 1976:1978ApJ...224..302C 1939:1979ApJ...231L...1F 1900:1978MNRAS.185..399B 1832:1948PhRv...73..801T 1795:2019IJMPD..2830014R 1748:2003RvMP...75..403U 1573:1931PCPS...27...15E 1536:1919AnP...364..101W 1495:1917AnP...359..117W 1348:fine-tuned universe 745:Edward Arthur Milne 684: 555: 72:age of the universe 2480:1937 introductions 2460:Physical cosmology 2377:Annalen der Physik 1523:Annalen der Physik 1482:Annalen der Physik 1400:Compton wavelength 1372:Chandrasekhar mass 1260: 1226: 1202: 1169: 1142: 1108: 1082: 980:order of magnitude 940: 913: 809: 717: 670: 569: 541: 495: 384: 266: 134: 99: 36: 2320:(11): 3707–3720. 2264:Physical Review D 2232:(1615): 439–446. 1880:G. Blake (1978). 1853:G. Gamow (1962). 1708:978-0-521-38089-8 1685:H. Kragh (1990). 1671:978-0-691-02623-7 1650:H. Kragh (1996). 1605:D. Valev (2019). 1450:Hierarchy problem 1286:a gauge function 1229:{\displaystyle G} 1166: 1139: 1111:{\displaystyle e} 1064: 1060: 1050: 943:{\displaystyle c} 876: 873: 795: 792: 715: 686: 677: 666: 567: 564: 548: 519: 468: 454: 446: 409: 355: 341: 333: 296: 226: 223: 213: 199: 196: 186: 16:(Redirected from 2492: 2419: 2393: 2370: 2368: 2355: 2329: 2306: 2280: 2257: 2218: 2207:10.1038/139323a0 2179: 2162:(921): 199–208. 2140: 2139: 2137: 2135:quant-ph/0309183 2125: 2119: 2118: 2116: 2090: 2084: 2083: 2081: 2072: 2066: 2065: 2037: 2031: 2030: 2028: 1994: 1988: 1987: 1957: 1951: 1950: 1920: 1914: 1913: 1911: 1877: 1871: 1870: 1850: 1844: 1843: 1813: 1807: 1806: 1774: 1768: 1767: 1741: 1719: 1713: 1712: 1692: 1682: 1676: 1675: 1647: 1641: 1640: 1628: 1622: 1621: 1611: 1602: 1593: 1592: 1554: 1548: 1547: 1516:H. Weyl (1919). 1513: 1507: 1506: 1475:H. Weyl (1917). 1472: 1438: 1433: 1432: 1417: 1314:, for instance, 1291: 1290: 1269: 1267: 1266: 1261: 1256: 1235: 1233: 1232: 1227: 1211: 1209: 1208: 1203: 1201: 1200: 1178: 1176: 1175: 1170: 1168: 1167: 1164: 1151: 1149: 1148: 1143: 1141: 1140: 1137: 1117: 1115: 1114: 1109: 1091: 1089: 1088: 1083: 1078: 1077: 1065: 1063: 1062: 1061: 1058: 1052: 1051: 1048: 1039: 1038: 1022: 1021: 1012: 977: 967: 949: 947: 946: 941: 922: 920: 919: 914: 909: 908: 896: 895: 877: 875: 874: 871: 865: 856: 818: 816: 815: 810: 802: 798: 796: 794: 793: 790: 784: 783: 774: 737:Georges LemaĂŽtre 726: 724: 723: 718: 716: 711: 706: 705: 687: 685: 683: 678: 675: 664: 663: 662: 646: 645: 636: 619:Arthur Eddington 578: 576: 575: 570: 568: 566: 565: 562: 556: 554: 549: 546: 536: 531: 530: 521: 520: 517: 504: 502: 501: 496: 494: 488: 487: 469: 467: 466: 465: 456: 455: 452: 444: 443: 442: 426: 425: 416: 411: 410: 407: 393: 391: 390: 385: 383: 378: 377: 356: 354: 353: 352: 343: 342: 339: 331: 330: 329: 313: 312: 303: 298: 297: 294: 275: 273: 272: 267: 262: 261: 246: 245: 227: 225: 224: 221: 215: 214: 211: 205: 200: 198: 197: 194: 188: 187: 184: 178: 143: 141: 140: 135: 133: 132: 108: 106: 105: 100: 94: 21: 2500: 2499: 2495: 2494: 2493: 2491: 2490: 2489: 2450: 2449: 2426: 2373: 2358: 2309: 2260: 2221: 2182: 2151: 2148: 2146:Further reading 2143: 2127: 2126: 2122: 2092: 2091: 2087: 2079: 2074: 2073: 2069: 2039: 2038: 2034: 1996: 1995: 1991: 1959: 1958: 1954: 1922: 1921: 1917: 1879: 1878: 1874: 1852: 1851: 1847: 1819:Physical Review 1815: 1814: 1810: 1776: 1775: 1771: 1721: 1720: 1716: 1709: 1684: 1683: 1679: 1672: 1649: 1648: 1644: 1630: 1629: 1625: 1609: 1604: 1603: 1596: 1556: 1555: 1551: 1530:(10): 101–133. 1515: 1514: 1510: 1489:(18): 117–145. 1474: 1473: 1469: 1465: 1434: 1427: 1424: 1415: 1380: 1322:data. However, 1320:paleontological 1307: 1238: 1237: 1218: 1217: 1192: 1181: 1180: 1159: 1154: 1153: 1132: 1127: 1126: 1100: 1099: 1069: 1053: 1043: 1030: 1023: 1013: 1006: 1005: 975: 969: 962: 960: 932: 931: 900: 887: 866: 857: 850: 849: 843: 828: 785: 775: 771: 767: 756: 755: 697: 654: 647: 637: 630: 629: 613: 606: 599: 588: 557: 537: 522: 512: 507: 506: 479: 457: 447: 434: 427: 417: 402: 397: 396: 366: 344: 334: 321: 314: 304: 289: 284: 283: 250: 237: 216: 206: 189: 179: 172: 171: 166: 154: 124: 113: 112: 76: 75: 28: 23: 22: 15: 12: 11: 5: 2498: 2496: 2488: 2487: 2482: 2477: 2472: 2467: 2462: 2452: 2451: 2448: 2447: 2442: 2437: 2432: 2425: 2424:External links 2422: 2421: 2420: 2371: 2356: 2307: 2258: 2219: 2180: 2147: 2144: 2142: 2141: 2120: 2085: 2067: 2048:(10–12): 191. 2032: 2026:10.1086/183299 1989: 1984:10.1086/156378 1952: 1947:10.1086/182993 1915: 1894:(2): 399–408. 1872: 1845: 1826:(7): 801–802. 1808: 1769: 1739:hep-ph/0205340 1714: 1707: 1677: 1670: 1642: 1623: 1620:(+4): 361–368. 1594: 1549: 1508: 1466: 1464: 1461: 1460: 1459: 1453: 1447: 1440: 1439: 1436:Physics portal 1423: 1420: 1379: 1378:Modern studies 1376: 1306: 1303: 1302: 1301: 1298: 1259: 1255: 1251: 1248: 1245: 1225: 1199: 1195: 1191: 1188: 1162: 1135: 1107: 1093: 1092: 1081: 1076: 1072: 1068: 1056: 1046: 1042: 1037: 1033: 1029: 1026: 1020: 1016: 973: 958: 952:speed of light 939: 924: 923: 912: 907: 903: 899: 894: 890: 886: 883: 880: 869: 864: 860: 842: 839: 826: 820: 819: 808: 805: 801: 788: 782: 778: 770: 766: 763: 729: 728: 714: 709: 704: 700: 696: 693: 690: 682: 673: 669: 661: 657: 653: 650: 644: 640: 611: 604: 597: 586: 580: 579: 560: 553: 544: 540: 534: 529: 525: 515: 493: 486: 482: 478: 475: 472: 464: 460: 450: 441: 437: 433: 430: 424: 420: 414: 405: 394: 382: 376: 373: 369: 365: 362: 359: 351: 347: 337: 328: 324: 320: 317: 311: 307: 301: 292: 277: 276: 265: 260: 257: 253: 249: 244: 240: 236: 233: 230: 219: 209: 203: 192: 182: 164: 153: 150: 149: 148: 145: 131: 127: 123: 120: 109: 97: 93: 89: 86: 83: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2497: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2457: 2455: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2427: 2423: 2417: 2413: 2409: 2405: 2401: 2397: 2392: 2387: 2383: 2379: 2378: 2372: 2367: 2362: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2328: 2327:gr-qc/0508030 2323: 2319: 2315: 2314: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2279: 2278:gr-qc/0111034 2274: 2271:(8): 087303. 2270: 2266: 2265: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2226: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2193:(3512): 323. 2192: 2188: 2187: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2156: 2150: 2149: 2145: 2136: 2131: 2124: 2121: 2115: 2110: 2106: 2102: 2101: 2096: 2089: 2086: 2078: 2071: 2068: 2063: 2059: 2055: 2051: 2047: 2043: 2036: 2033: 2027: 2022: 2018: 2014: 2010: 2006: 2005: 2000: 1993: 1990: 1985: 1981: 1977: 1973: 1969: 1965: 1964: 1956: 1953: 1948: 1944: 1940: 1936: 1932: 1928: 1927: 1919: 1916: 1910: 1905: 1901: 1897: 1893: 1889: 1888: 1883: 1876: 1873: 1868: 1864: 1860: 1856: 1849: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1820: 1812: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1773: 1770: 1765: 1761: 1757: 1753: 1749: 1745: 1740: 1735: 1731: 1727: 1726: 1718: 1715: 1710: 1704: 1700: 1696: 1691: 1690: 1681: 1678: 1673: 1667: 1663: 1659: 1655: 1654: 1646: 1643: 1638: 1634: 1627: 1624: 1619: 1615: 1608: 1601: 1599: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1561: 1553: 1550: 1545: 1541: 1537: 1533: 1529: 1525: 1524: 1519: 1512: 1509: 1504: 1500: 1496: 1492: 1488: 1485:(in German). 1484: 1483: 1478: 1471: 1468: 1462: 1457: 1454: 1451: 1448: 1445: 1442: 1441: 1437: 1431: 1426: 1421: 1419: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1377: 1375: 1373: 1367: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1316:Edward Teller 1313: 1304: 1299: 1296: 1295: 1294: 1285: 1281: 1277: 1273: 1257: 1253: 1249: 1246: 1243: 1223: 1215: 1197: 1193: 1189: 1186: 1160: 1133: 1125: 1121: 1105: 1098: 1079: 1074: 1070: 1066: 1054: 1044: 1040: 1035: 1031: 1027: 1024: 1018: 1014: 1004: 1003: 1002: 1000: 996: 992: 989: 988:gravitational 985: 981: 972: 965: 957: 953: 937: 929: 910: 905: 901: 897: 892: 888: 884: 881: 878: 867: 862: 858: 848: 847: 846: 838: 836: 832: 825: 806: 803: 799: 786: 780: 776: 768: 764: 761: 754: 753: 752: 750: 746: 742: 738: 734: 712: 707: 702: 698: 694: 691: 688: 680: 671: 667: 659: 655: 651: 648: 642: 638: 628: 627: 626: 624: 620: 615: 610: 603: 596: 592: 585: 558: 551: 542: 538: 532: 527: 523: 513: 484: 480: 476: 473: 470: 462: 458: 448: 439: 435: 431: 428: 422: 418: 412: 403: 395: 374: 371: 367: 363: 360: 357: 349: 345: 335: 326: 322: 318: 315: 309: 305: 299: 290: 282: 281: 280: 263: 258: 255: 251: 247: 242: 238: 234: 231: 228: 217: 207: 201: 190: 180: 170: 169: 168: 163: 159: 151: 146: 129: 125: 121: 118: 110: 95: 91: 87: 84: 81: 73: 69: 65: 64: 63: 61: 57: 53: 49: 45: 41: 32: 19: 2384:(1): 57–70. 2381: 2375: 2317: 2311: 2268: 2262: 2229: 2223: 2190: 2184: 2159: 2153: 2123: 2107:(6): 19–20. 2104: 2098: 2088: 2075:L. Nottale. 2070: 2045: 2041: 2035: 2008: 2002: 1992: 1967: 1961: 1955: 1930: 1924: 1918: 1891: 1885: 1875: 1854: 1848: 1823: 1817: 1811: 1786: 1782: 1772: 1729: 1723: 1717: 1688: 1680: 1652: 1645: 1632: 1626: 1617: 1613: 1567:(1): 15–19. 1564: 1558: 1552: 1527: 1521: 1511: 1486: 1480: 1470: 1412:Planck units 1381: 1368: 1340:Robert Dicke 1335: 1324:George Gamow 1308: 1279: 1275: 1272:George Gamow 1094: 970: 963: 955: 927: 925: 844: 834: 830: 823: 821: 740: 730: 622: 616: 608: 601: 594: 583: 581: 278: 161: 158:Hermann Weyl 155: 43: 39: 37: 2485:Coincidence 1660:. pp.  1408:information 1328:cosmologies 1270:. Although 2470:Paul Dirac 2454:Categories 1732:(2): 403. 1697:. p.  1463:References 1312:geophysics 993:between a 984:electrical 152:Background 48:Paul Dirac 34:Paul Dirac 2391:0708.3518 2366:0705.1836 2352:119339090 2303:119452710 2254:122802355 1859:Doubleday 1764:118684485 1589:122865789 1247:≈ 1194:ϵ 1190:π 1067:≈ 1032:ϵ 1028:π 898:≈ 885:⋅ 879:≈ 708:≈ 695:⋅ 692:4.1666763 689:≈ 656:ϵ 652:π 477:⋅ 474:1.5671987 471:≈ 436:ϵ 432:π 372:− 364:⋅ 361:3.7612682 358:≈ 323:ϵ 319:π 259:… 248:≈ 235:⋅ 232:4.1666763 229:≈ 202:≈ 122:∝ 85:∝ 60:cosmology 2416:11248780 1867:62008840 1422:See also 1356:hydrogen 1120:electron 999:electron 52:Universe 2396:Bibcode 2332:Bibcode 2283:Bibcode 2234:Bibcode 2215:4106534 2195:Bibcode 2164:Bibcode 2050:Bibcode 2013:Bibcode 2011:: L91. 1972:Bibcode 1970:: 302. 1935:Bibcode 1896:Bibcode 1855:Gravity 1828:Bibcode 1791:Bibcode 1744:Bibcode 1569:Bibcode 1532:Bibcode 1491:Bibcode 1416:32.8¡10 1118:of the 997:and an 986:to the 950:is the 589:is the 279:where, 2414:  2350:  2301:  2252:  2213:  2186:Nature 1933:: L1. 1865:  1762:  1705:  1668:  1587:  1352:fusion 1124:masses 1122:, the 1097:charge 995:proton 991:forces 926:where 822:where 665:  445:  332:  2412:S2CID 2386:arXiv 2361:arXiv 2348:S2CID 2322:arXiv 2299:S2CID 2273:arXiv 2250:S2CID 2211:S2CID 2130:arXiv 2080:(PDF) 1760:S2CID 1734:arXiv 1662:61–62 1610:(PDF) 1585:S2CID 1360:stars 505:with 256:42.62 1863:LCCN 1703:ISBN 1666:ISBN 1404:bits 1364:life 1152:and 968:and 954:and 882:3.47 582:and 38:The 2404:doi 2340:doi 2291:doi 2242:doi 2230:338 2203:doi 2191:139 2172:doi 2160:165 2109:doi 2058:doi 2046:275 2021:doi 2009:239 1980:doi 1968:224 1943:doi 1931:231 1904:doi 1892:185 1836:doi 1799:doi 1752:doi 1699:177 1577:doi 1540:doi 1528:364 1499:doi 1487:359 1406:of 1358:in 1354:of 1346:or 1001:: 976:= 1 966:= 1 735:of 44:LNH 2456:: 2410:. 2402:. 2394:. 2382:18 2380:. 2346:. 2338:. 2330:. 2318:23 2316:. 2297:. 2289:. 2281:. 2269:65 2267:. 2248:. 2240:. 2228:. 2209:. 2201:. 2189:. 2170:. 2158:. 2105:39 2103:. 2097:. 2056:. 2044:. 2019:. 2007:. 2001:. 1978:. 1966:. 1941:. 1929:. 1902:. 1890:. 1884:. 1857:. 1834:. 1824:73 1822:. 1797:. 1787:28 1785:. 1781:. 1758:. 1750:. 1742:. 1730:75 1728:. 1701:. 1693:. 1664:. 1656:. 1635:. 1618:20 1616:. 1612:. 1597:^ 1583:. 1575:. 1565:27 1563:. 1538:. 1526:. 1520:. 1497:. 1479:. 1394:. 1336:is 1075:40 1071:10 906:42 902:10 893:41 889:10 703:42 699:10 593:, 485:27 481:10 375:16 368:10 252:10 243:42 239:10 74:: 2418:. 2406:: 2398:: 2388:: 2369:. 2363:: 2354:. 2342:: 2334:: 2324:: 2305:. 2293:: 2285:: 2275:: 2256:. 2244:: 2236:: 2217:. 2205:: 2197:: 2178:. 2174:: 2166:: 2138:. 2132:: 2117:. 2111:: 2082:. 2064:. 2060:: 2052:: 2029:. 2023:: 2015:: 1986:. 1982:: 1974:: 1949:. 1945:: 1937:: 1912:. 1906:: 1898:: 1869:. 1842:. 1838:: 1830:: 1801:: 1793:: 1766:. 1754:: 1746:: 1736:: 1711:. 1674:. 1639:. 1591:. 1579:: 1571:: 1546:. 1542:: 1534:: 1505:. 1501:: 1493:: 1289:β 1280:G 1276:G 1258:t 1254:/ 1250:1 1244:G 1224:G 1198:0 1187:4 1165:e 1161:m 1138:p 1134:m 1106:e 1080:. 1059:e 1055:m 1049:p 1045:m 1041:G 1036:0 1025:4 1019:2 1015:e 974:e 971:r 964:c 959:e 956:r 938:c 928:t 911:, 872:e 868:r 863:t 859:c 835:G 831:t 827:U 824:M 807:, 804:t 800:) 791:U 787:M 781:3 777:c 769:( 765:= 762:G 741:G 727:. 713:N 681:2 676:e 672:m 668:G 660:0 649:4 643:2 639:e 623:N 612:H 609:r 605:H 602:m 598:e 595:m 587:e 584:r 563:e 559:r 552:2 547:e 543:m 539:G 533:= 528:2 524:c 518:H 514:m 492:m 463:2 459:c 453:H 449:m 440:0 429:4 423:2 419:e 413:= 408:H 404:r 381:m 350:2 346:c 340:e 336:m 327:0 316:4 310:2 306:e 300:= 295:e 291:r 264:, 222:e 218:r 212:H 208:r 195:e 191:r 185:U 181:R 165:U 162:R 144:. 130:2 126:t 119:M 96:t 92:/ 88:1 82:G 42:( 20:)

Index

Eddington–Dirac number

Paul Dirac
Universe
40 orders of magnitude
cosmology
gravitational constant
age of the universe
Hermann Weyl
classical electron radius
Arthur Eddington
primeval-atom hypothesis
Georges LemaĂŽtre
Edward Arthur Milne
general theory of relativity
speed of light
order of magnitude
electrical
gravitational
forces
proton
electron
charge
electron
masses
gravitational constant
George Gamow
Einstein field equations
geophysics
Edward Teller

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑