Knowledge

Effective atomic number (compounds and mixtures)

Source 📝

63:). This is of most interest in terms of radiation interaction with composite materials. For bulk interaction properties, it can be useful to define an effective atomic number for a composite medium and, depending on the context, this may be done in different ways. Such methods include (i) a simple mass-weighted average, (ii) a 67:
type method with some (very approximate) relationship to radiation interaction properties or (iii) methods involving calculation based on interaction cross sections. The latter is the most accurate approach (Taylor 2012), and the other more simplified approaches are often inaccurate even when used in
412:
interact with a substance, as certain types of photon interactions depend on the atomic number. The exact formula, as well as the exponent 2.94, can depend on the energy range being used. As such, readers are reminded that this approach is of very limited applicability and may be quite misleading.
416:
This 'power law' method, while commonly employed, is of questionable appropriateness in contemporary scientific applications within the context of radiation interactions in heterogeneous media. This approach dates back to the late 1930s when photon sources were restricted to low-energy
239: 433:
between Z has been shown for a limited number of compounds for low-energy x-rays, but within the same publication it is shown that many compounds do not lie on the same trendline. As such, for polyenergetic photon sources (in particular, for applications such as
404: 312:
O), made up of two hydrogen atoms (Z=1) and one oxygen atom (Z=8), the total number of electrons is 1+1+8 = 10, so the fraction of electrons for the two hydrogens is (2/10) and for the one oxygen is (8/10). So the
83: 447:
by weighting against the spectrum of the source. The effective atomic number for electron interactions may be calculated with a similar approach. The cross-section based approach for determining
71:
In many textbooks and scientific publications, the following - simplistic and often dubious - sort of method is employed. One such proposed formula for the effective atomic number,
454:
is obviously much more complicated than the simple power-law approach described above, and this is why freely-available software has been developed for such calculations.
327: 302: 269: 672:
Taylor, M. L. (2011). "Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters".
27:
within that medium. There are numerous mathematical descriptions of different interaction processes that are dependent on the atomic number,
707:
Taylor, M. L.; Smith, R. L.; Dossing, F.; Franich, R. D. (2012). "Robust calculation of effective atomic numbers: The Auto-Zeffsoftware".
234:{\displaystyle Z_{\text{eff}}={\sqrt{f_{1}\times (Z_{1})^{2.94}+f_{2}\times (Z_{2})^{2.94}+f_{3}\times (Z_{3})^{2.94}+\cdots }}} 616:"Electron Interaction with Gel Dosimeters: Effective Atomic Numbers for Collisional, Radiative and Total Interaction Processes" 438:), the effective atomic number varies significantly with energy. It is possible to obtain a much more accurate single-valued 429:
which incorporates a ‘constant’ of 2.64 × 10, which is in fact not a constant but rather a function of the photon energy. A
571:
Taylor, M. L.; Franich, R. D.; Trapp, J. V.; Johnston, P. N. (2008). "The effective atomic number of dosimetric gels".
761: 674:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
716: 681: 630: 480: 426: 430: 654: 596: 496: 32: 24: 615: 732: 646: 588: 550: 422: 48: 724: 689: 638: 580: 542: 488: 56: 36: 280: 247: 748:
Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles.
720: 685: 634: 484: 755: 20: 658: 600: 500: 435: 399:{\displaystyle Z_{\text{eff}}={\sqrt{0.2\times 1^{2.94}+0.8\times 8^{2.94}}}=7.42} 546: 23:
of a material exhibits a strong and fundamental relationship with the nature of
693: 533:
Spiers, W. (1946). "Effective atomic number and energy absorption in tissues".
471:
Murty, R. C. (1965). "Effective Atomic Numbers of Heterogeneous Materials".
64: 736: 650: 592: 554: 272: 52: 584: 728: 642: 614:
Taylor, M. L.; Franich, R. D.; Trapp, J. V.; Johnston, P. N. (2009).
492: 409: 16:
Approximate atomic number calculated for materials with many elements
47:
in this context is equivalent to the atomic number but is used for
418: 60: 573:
Australasian Physical & Engineering Sciences in Medicine
408:
The effective atomic number is important for predicting how
514:
Mayneord, W. (1937). "The significance of the Röntgen".
39:), one therefore encounters the difficulty of defining 330: 283: 250: 86: 398: 296: 263: 233: 35:(i.e. a bulk material composed of more than one 8: 566: 564: 68:a relative fashion for comparing materials. 421:units. The exponent of 2.94 relates to an 383: 376: 357: 344: 335: 329: 288: 282: 255: 249: 224: 211: 201: 185: 172: 162: 146: 133: 123: 107: 100: 91: 85: 463: 271:is the fraction of the total number of 304:is the atomic number of each element. 7: 516:Unio Internationalis Contra Cancrum 14: 275:associated with each element, and 55:of different materials (such as 308:An example is that of water (H 208: 194: 169: 155: 130: 116: 1: 535:British Journal of Radiology 547:10.1259/0007-1285-19-218-52 778: 694:10.1016/j.nimb.2011.02.010 45:effective atomic number 400: 298: 265: 235: 25:radiation interactions 427:photoelectric process 401: 299: 297:{\displaystyle Z_{n}} 266: 264:{\displaystyle f_{n}} 236: 328: 281: 248: 84: 31:. When dealing with 721:2012MedPh..39.1769T 686:2011NIMPB.269..770T 635:2009RadR..171..123T 485:1965Natur.207..398M 431:linear relationship 623:Radiation Research 585:10.1007/BF03178587 396: 294: 261: 231: 729:10.1118/1.3689810 479:(4995): 398–399. 423:empirical formula 388: 338: 229: 94: 80:, is as follows: 51:(e.g. water) and 769: 741: 740: 715:(4): 1769–1778. 704: 698: 697: 669: 663: 662: 643:10.1667/RR1438.1 620: 611: 605: 604: 568: 559: 558: 541:(52–63): 52–63. 530: 524: 523: 511: 505: 504: 493:10.1038/207398a0 468: 446: 405: 403: 402: 397: 389: 387: 382: 381: 380: 362: 361: 345: 340: 339: 336: 321: 303: 301: 300: 295: 293: 292: 270: 268: 267: 262: 260: 259: 240: 238: 237: 232: 230: 228: 223: 216: 215: 206: 205: 190: 189: 177: 176: 167: 166: 151: 150: 138: 137: 128: 127: 112: 111: 101: 96: 95: 92: 79: 42: 30: 777: 776: 772: 771: 770: 768: 767: 766: 752: 751: 745: 744: 709:Medical Physics 706: 705: 701: 671: 670: 666: 618: 613: 612: 608: 570: 569: 562: 532: 531: 527: 513: 512: 508: 470: 469: 465: 460: 453: 445: 439: 372: 353: 346: 331: 326: 325: 320: 314: 311: 284: 279: 278: 251: 246: 245: 207: 197: 181: 168: 158: 142: 129: 119: 103: 102: 87: 82: 81: 78: 72: 40: 33:composite media 28: 17: 12: 11: 5: 775: 773: 765: 764: 762:Atomic physics 754: 753: 750: 749: 743: 742: 699: 680:(8): 770–773. 664: 629:(1): 123–126. 606: 579:(2): 131–138. 560: 525: 506: 462: 461: 459: 456: 451: 443: 395: 392: 386: 379: 375: 371: 368: 365: 360: 356: 352: 349: 343: 334: 322:for water is: 318: 309: 306: 305: 291: 287: 276: 258: 254: 227: 222: 219: 214: 210: 204: 200: 196: 193: 188: 184: 180: 175: 171: 165: 161: 157: 154: 149: 145: 141: 136: 132: 126: 122: 118: 115: 110: 106: 99: 90: 76: 15: 13: 10: 9: 6: 4: 3: 2: 774: 763: 760: 759: 757: 747: 746: 738: 734: 730: 726: 722: 718: 714: 710: 703: 700: 695: 691: 687: 683: 679: 675: 668: 665: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 617: 610: 607: 602: 598: 594: 590: 586: 582: 578: 574: 567: 565: 561: 556: 552: 548: 544: 540: 536: 529: 526: 521: 517: 510: 507: 502: 498: 494: 490: 486: 482: 478: 474: 467: 464: 457: 455: 450: 442: 437: 432: 428: 424: 420: 414: 411: 406: 393: 390: 384: 377: 373: 369: 366: 363: 358: 354: 350: 347: 341: 332: 323: 317: 289: 285: 277: 274: 256: 252: 244: 243: 242: 225: 220: 217: 212: 202: 198: 191: 186: 182: 178: 173: 163: 159: 152: 147: 143: 139: 134: 124: 120: 113: 108: 104: 97: 88: 75: 69: 66: 62: 58: 54: 50: 46: 38: 34: 26: 22: 21:atomic number 712: 708: 702: 677: 673: 667: 626: 622: 609: 576: 572: 538: 534: 528: 519: 515: 509: 476: 472: 466: 448: 440: 436:radiotherapy 415: 407: 324: 315: 307: 73: 70: 44: 18: 522:: 271–282. 458:References 370:× 351:× 273:electrons 221:⋯ 192:× 153:× 114:× 65:power-law 49:compounds 756:Category 737:22482600 659:27139580 651:19138053 601:23619503 593:18697704 555:21015391 425:for the 53:mixtures 717:Bibcode 682:Bibcode 631:Bibcode 501:2175323 481:Bibcode 410:photons 37:element 735:  657:  649:  599:  591:  553:  499:  473:Nature 241:where 57:tissue 655:S2CID 619:(PDF) 597:S2CID 497:S2CID 419:x-ray 43:. An 733:PMID 647:PMID 589:PMID 551:PMID 394:7.42 385:2.94 378:2.94 359:2.94 226:2.94 213:2.94 174:2.94 135:2.94 61:bone 59:and 19:The 725:doi 690:doi 678:269 639:doi 627:171 581:doi 543:doi 489:doi 477:207 452:eff 444:eff 367:0.8 348:0.2 337:eff 319:eff 93:eff 77:eff 758:: 731:. 723:. 713:39 711:. 688:. 676:. 653:. 645:. 637:. 625:. 621:. 595:. 587:. 577:31 575:. 563:^ 549:. 539:19 537:. 518:. 495:. 487:. 475:. 739:. 727:: 719:: 696:. 692:: 684:: 661:. 641:: 633:: 603:. 583:: 557:. 545:: 520:2 503:. 491:: 483:: 449:Z 441:Z 391:= 374:8 364:+ 355:1 342:= 333:Z 316:Z 310:2 290:n 286:Z 257:n 253:f 218:+ 209:) 203:3 199:Z 195:( 187:3 183:f 179:+ 170:) 164:2 160:Z 156:( 148:2 144:f 140:+ 131:) 125:1 121:Z 117:( 109:1 105:f 98:= 89:Z 74:Z 41:Z 29:Z

Index

atomic number
radiation interactions
composite media
element
compounds
mixtures
tissue
bone
power-law
electrons
photons
x-ray
empirical formula
photoelectric process
linear relationship
radiotherapy
Bibcode
1965Natur.207..398M
doi
10.1038/207398a0
S2CID
2175323
doi
10.1259/0007-1285-19-218-52
PMID
21015391


doi
10.1007/BF03178587

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.