Knowledge (XXG)

Electrowetting

Source 📝

740:. The liquid-infused film is achieved by locking a liquid lubricant in a porous membrane through the delicate control of wetting properties of the liquid and solid phases. Taking advantage of the negligible contact line pinning at the liquid-liquid interface, the droplet response in EWOLF can be electrically addressed with enhanced degree of switchability and reversibility compared to the conventional EWOD. Moreover, the infiltration of liquid lubricant phase in the porous membrane also efficiently enhances the viscous energy dissipation, suppressing the droplet oscillation and leading to fast response without sacrificing the desired electrowetting reversibility. Meanwhile, the damping effect associated with the EWOLF can be tailored by manipulating the viscosity and thickness of liquid lubricant. 148: 952: 111:(ITO) electrodes to digitally relocate nano droplets in linear, circular, and directed paths, pump or mix fluids, fill reservoirs, and control fluid flow electronically or optically. Later, in collaboration with J. Silver at the NIH, EWOD-based electrowetting was disclosed for single and immiscible fluids to move, separate, hold, and seal arrays of digital PCR sub-samples. 22: 936: 107:
fluids was first investigated by J. Brown in 1980 and later funded in 1984–1988 under NSF Grants 8760730 & 8822197, employing insulating dielectric and hydrophobic layer(s) (EWOD), immiscible fluids, DC or RF power; and mass arrays of miniature interleaved (saw tooth) electrodes with large or matching
134:
Microfluidic manipulation of liquids by electrowetting was demonstrated first with mercury droplets in water and later with water in air and water in oil. Manipulation of droplets on a two-dimensional path was demonstrated later. If the liquid is discretized and programmably manipulated, the approach
114:
Electrowetting using an insulating layer on top of a bare electrode was later studied by Bruno Berge in 1993. Electrowetting on this dielectric-coated surface is called electrowetting-on-dielectric (EWOD) to distinguish it from the conventional electrowetting on the bare electrode. Electrowetting can
106:
drops in 1936. The term electrowetting was first introduced in 1981 by G. Beni and S. Hackwood to describe an effect proposed for designing a new type of display device for which they received a patent. The use of a "fluid transistor" in microfluidic circuits for manipulating chemical and biological
784:
are widely used electrowetting coating materials, and it has been found that the behavior of these fluoropolymers can be enhanced by the appropriate surface patterning. These fluoropolymers coat the necessary conductive electrode, typically made of aluminum foil or indium tin oxide (ITO), to create
779:
For reasons that are still under investigation, only a limited set of surfaces exhibit the theoretically predicted electrowetting behavior. Because of this, alternative materials that can be used to coat and functionalize the surface are used to create the expected wetting behavior. For example,
716:
It has also been experimentally shown by Chevaloitt that contact angle saturation is invariant to all materials parameters, thus revealing that when good materials are utilized, most saturation theories are invalid. This same paper further suggests that electrohydrodynamic instability may be the
166:
between the solid and the electrolyte". The phenomenon of electrowetting can be understood in terms of the forces that result from the applied electric field. The fringing field at the corners of the electrolyte droplet tends to pull the droplet down onto the electrode, lowering the macroscopic
712:
It was recently shown by Klarman et al. that contact angle saturation can be explained as a universal effect- regardless of materials used – if electrowetting is observed as a global phenomenon affected by the detailed geometry of the system. Within this framework it is predicted that reversed
179:
The simplest derivation of electrowetting behavior is given by considering its thermodynamic model. While it is possible to obtain a detailed numerical model of electrowetting by considering the precise shape of the electrical fringing field and how it affects the local droplet curvature, such
171:
required to create a certain area of that surface, it contains both chemical and electrical components, and charge becomes a significant term in that equation. The chemical component is just the natural surface tension of the solid/electrolyte interface with no electric field. The electrical
704:
An additional complication is that liquids also exhibit a saturation phenomenon: after certain voltage, the saturation voltage, the further increase of voltage will not change the contact angle, and with extreme voltages the interface will only show instabilities.
699: 708:
However, surface charge is but one component of surface energy, and other components are certainly perturbed by induced charge. So, a complete explanation of electrowetting is unquantified, but it should not be surprising that these limits exist.
950:, Brown, et al., "Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly", issued November 7, 2000 1306: 1093:
S.-K. Fan, P.-P. de Guzman, and C.-J. Kim, "EWOD Driving of Droplet on NxM Grid Using Single-Layer Electrode Patterns, Tech. Dig., Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp.
824:
The previous hosts of the electrowetting meeting are: Mons (1999), Eindhoven (2000), Grenoble (2002), Blaubeuren (2004), Rochester (2006), Los Angeles (2008), Pohang (2010), Athens (2012), Cincinnati (2014), Taipei (2016).
1116:
C.-J. Kim, "Integrated Digital Microfluidic Circuits Operated by Electrowetting-on-Dielectrics (EWOD) Principle", granted in 2000 by Defense Advanced Research Projects Agency (DARPA), award number N66001-0130-3664
583: 471: 1783:
H.Burak Eral, D.Mampallil, M. H. G. Duits, F. Mugele "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting", Soft Matter, 2011, 7, 4954–4958
785:
the desired electrowetting properties. Three types of such polymers are commercially available: FluoroPel hydrophobic and superhydrophobic V-series polymers are sold by Cytonix, CYTOP is sold by
167:
contact angle and increasing the droplet contact area. Alternatively, electrowetting can be viewed from a thermodynamic perspective. Since the surface tension of an interface is defined as the
877:
A. Frumkin, Об явлениях смачивания и прилипания пузырьков, I (On the phenomena of wetting and adhesion of the bubbles, I). Zhurnal Fizicheskoi Khimii (J Phys Chem USSR), 12: 337-345 (1938).
1802:
H. Burak Eral, R. Ruiter, J. Ruiter, J. M. Oh, C. Semprebon, M. Brinkmann, F. Mugele, "Reversible morphological transitions of a drop on a fiber", Soft Matter, 2011, 7 (11), 5138 – 5143
594: 771:
region of the semiconductor, the contact angle of a liquid droplet can be altered in a continuous way. This effect can be explained by a modification of the Young-Lippmann equation.
1125:
C.-J. Kim, "Micropumping by Electrowetting", Proceedings of the ASME International Mechanical Engineering Congress and Exposition, November 2001, New York, NY, IMECE2001/HTD-24200.
1345: 793:. Other surface materials such as SiO2 and gold on glass have been used. These materials allow the surfaces themselves to act as the ground electrodes for the electric current. 250: 1144:
Cho, S. K.; Moon, H.; Kim, C.-J. (2003). "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits".
212: 821:
An international meeting for electrowetting is held every two years. The most recent meeting was held on June 18 to 20, 2018, at the University of Twente, the Netherlands.
310: 280: 508: 977:
J. Lee, "Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication, and Demonstration," PhD Thesis, University of California, Los Angeles, 2000
332: 1541:
Park, Sung-Yong; Teitell, Michael A.; Chiou, Eric P. Y. (2010). "Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns".
1857: 1051:
Pollack, Michael G.; Fair, Richard B.; Shenderov, Alexander D. (2000-09-11). "Electrowetting-based actuation of liquid droplets for microfluidic applications".
387: 354: 180:
solutions are mathematically and computationally complex. The thermodynamic derivation proceeds as follows. Defining the relevant surface tensions as:
43: 30: 1236:
Klarman, Dan; Andelman, David; Urbakh, Michael (2011-05-17). "A Model of Electrowetting, Reversed Electrowetting, and Contact Angle Saturation".
1431:"Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging" 1765: 1209: 1506:
Chiou, Pei Yu; Moon, Hyejin; Toshiyoshi, Hiroshi; Kim, Chang-Jin; Wu, Ming C. (2003). "Light actuation of liquid by optoelectrowetting".
516: 399: 1885:
Full system and devices development with specialization in electrowetting prototyping. Collaboration with the University of Cincinnati.
813:. Furthermore, filters with electrowetting functionality has been suggested for cleaning oil spills and separating oil-water mixtures. 123:
is applied to a conducting droplet (e.g. mercury) which has been placed directly onto a semiconductor surface (e.g. silicon) to form a
965:
B. Berge, "Électrocapillarité et mouillage de films isolants par l'eau", C. R. Acad. Sci. Paris, t. 317, Série II, p. 157-163, 1993.
834: 1862: 1134:
M. G. Pollack, Electrowetting-Based Microactuation Of Droplets For Digital Microfluidics, PhD Thesis, Duke University, 2001.
737: 805:), electronic outdoor displays, and switches for optical fibers. Electrowetting has recently been evoked for manipulating 1020:
S. Arscott and M. Gaudet "Electrowetting at a liquid metal–semiconductor junction" Appl. Phys. Lett. 103, 074104 (2013).
1899: 763:
and can be observed if the conductor in the liquid/insulator/conductor stack used for electrowetting is replaced by a
1661:
Yang, Chun-Guang; Xu, Zhang-Run; Wang, Jian-Hua (February 2010). "Manipulation of droplets in microfluidic systems".
1199: 801:
Electrowetting is now used in a wide range of applications, from modular to adjustable lenses, electronic displays (
1184: 694:{\displaystyle \cos \theta =\left({\frac {\gamma _{s}-\gamma _{ws}^{0}+{\frac {CV^{2}}{2}}}{\gamma _{w}}}\right)\,} 35: 1429:
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai (2014-10-30).
725: 868:
Gabriel Lippmann, "Relation entre les phénomènes électriques et capillaires." Ann. Chim. Phys, 5:494, 1875
219: 168: 136: 139:". Discretization by electrowetting-on-dielectric (EWOD) was first demonstrated by Cho, Moon, and Kim. 1732:
Lu, Yi; Sur, Aritra; Pascente, Carmen; Ravi Annapragada, S.; Ruchhoeft, Paul; Liu, Dong (March 2017).
1690:"Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces" 947: 1701: 1607: 1452: 1375: 1255: 1060: 903: 717:
source of saturation, a theory that is unproven but being suggested by several other groups as well.
480:
is given by the Young-Dupre equation, with the only complication being that the total surface energy
389:– The effective applied voltage, integral of the electric field from the electrolyte to the conductor 163: 1688:
Brabcova, Zuzana; McHale, Glen; Wells, Gary G.; Brown, Carl V.; Newton, Michael I. (20 March 2017).
1041:", Proc. IEEE Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 1998, pp. 538–543 186: 1801: 1782: 752: 287: 257: 1835: 1769: 483: 1597: 1442: 1337: 1287: 1245: 810: 748: 1003:
C. Palma and R. Deegan “Electrowetting on semiconductors” Appl. Phys. Lett. 106, 014106 (2015).
214:– The total, electrical and chemical, surface tension between the electrolyte and the conductor 1643: 1625: 1566: 1558: 1523: 1488: 1470: 1411: 1393: 1329: 1279: 1271: 1205: 1161: 1076: 919: 756: 99: 87: 1750: 1733: 317: 120: 1805: 1786: 1745: 1709: 1670: 1633: 1615: 1550: 1515: 1478: 1460: 1401: 1383: 1321: 1263: 1153: 1068: 1021: 1004: 987: 911: 755:
are both optically-induced electrowetting effects. Optoelectrowetting involves the use of a
124: 108: 95: 588:
Combining the two equations gives the dependence of θ on the effective applied voltage as:
786: 131:
electrical circuit configuration – this effect has been termed ‘Schottky electrowetting’.
1104: 1705: 1611: 1456: 1379: 1259: 1064: 1038: 907: 1638: 1585: 1483: 1430: 1406: 1363: 891: 372: 339: 128: 75: 1519: 1307:"Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation" 252:– The surface tension between the electrolyte and the conductor at zero electric field 1893: 839: 781: 764: 477: 159: 116: 1291: 393:
Relating the total surface tension to its chemical and electrical components gives:
147: 1872: 1341: 887: 768: 728:
can be used to harvest energy via a mechanical-to-electrical engineering scheme.
1105:
Two-Dimensional Digital Microfluidic System by Multi-Layer Printed Circuit Board
844: 806: 156: 71: 1674: 1879: 1157: 760: 1629: 1562: 1527: 1474: 1397: 1333: 1325: 1275: 1165: 1080: 986:
S. Arscott “Electrowetting and semiconductors” RSC Advances 4, 29223 (2014).
923: 173: 1647: 1570: 1492: 1415: 1283: 21: 1364:"Reverse electrowetting as a new approach to high-power energy harvesting" 334:– The macroscopic contact angle between the electrolyte and the dielectric 115:
be demonstrated by replacing the metal electrode in the EWOD system by a
1215: 713:
electrowetting is also possible (contact angle grows with the voltage).
1809: 1790: 1388: 1201:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
991: 849: 802: 67: 1714: 1689: 1620: 1465: 1267: 1152:(1). Institute of Electrical and Electronics Engineers (IEEE): 70–80. 1072: 1025: 1008: 312:– The surface tension between the electrolyte and the external ambient 1852: 1841: 1554: 790: 91: 1847: 915: 282:– The surface tension between the conductor and the external ambient 1766:"Varioptic - the Liquid Lens Company | Liquid Lens Technology" 578:{\displaystyle \gamma _{ws}=\gamma _{s}-\gamma _{w}\cos(\theta )\,} 466:{\displaystyle \gamma _{ws}=\gamma _{ws}^{0}-{\frac {CV^{2}}{2}}\,} 155:
The electrowetting effect has been defined as "the change in solid-
1868:
Nanoelectronics Laboratory at UC NanoLab, University of Cincinnati
1602: 1586:"Moving liquids with light: Photoelectrowetting on semiconductors" 1447: 1250: 103: 1820: 1305:
Chevalliot, Stéphanie; Kuiper, Stein; Heikenfeld, Jason (2012).
364:/t, for a uniform dielectric of thickness t and permittivity є 15: 1867: 1107:", Proc. IEEE Conf. MEMS, Orlando, FL, Jan. 2005, pp. 726–729 94:
on variably charged surfaces was probably first explained by
1884: 1880:
Liquidvista Low Frequency Electrowetting 6.2-inch Display
1181:
Electrokinetically Driven Microfluidics and Nanofluidics
767:. By optically modulating the number of carriers in the 1734:"Dynamics of droplet motion induced by Electrowetting" 1039:
Liquid Micromotor Driven by Continuous Electrowetting
597: 519: 486: 402: 375: 342: 320: 290: 260: 222: 189: 1441:(1). Springer Science and Business Media LLC: 6846. 1374:(1). Springer Science and Business Media LLC: 448. 693: 577: 502: 465: 381: 348: 326: 304: 274: 244: 206: 176:formed between the conductor and the electrolyte. 1853:Physics of Complex Fluids at University of Twente 1549:(13). Royal Society of Chemistry (RSC): 1655–61. 98:in 1875 and was certainly observed much earlier. 1873:NanoLab Research at the University of Cincinnati 1362:Krupenkin, Tom; Taylor, J. Ashley (2011-08-23). 1738:International Journal of Heat and Mass Transfer 356:– The capacitance per area of the interface, є 135:is called "Digital Microfluidic Circuits" or " 732:Electrowetting on liquid-infused film (EWOLF) 8: 1848:Digital Microfluidics Lab at Duke University 1821:International Electrowetting Conference 2018 973: 971: 70:properties of a surface (which is typically 102:used surface charge to change the shape of 1836:Fan-TASY Lab at National Taiwan University 1314:Journal of Adhesion Science and Technology 894:(1981-02-15). "Electro-wetting displays". 1749: 1713: 1637: 1619: 1601: 1482: 1464: 1446: 1405: 1387: 1249: 1146:Journal of Microelectromechanical Systems 690: 678: 661: 651: 642: 634: 621: 614: 596: 574: 553: 540: 524: 518: 491: 485: 462: 450: 440: 431: 423: 407: 401: 374: 341: 319: 301: 295: 289: 271: 265: 259: 241: 235: 227: 221: 203: 194: 188: 119:. Electrowetting is also observed when a 1751:10.1016/j.ijheatmasstransfer.2016.10.040 736:Another electrowetting configuration is 146: 46:of all important aspects of the article. 861: 172:component is the energy stored in the 42:Please consider expanding the lead to 1863:Progress with electrowetting displays 1727: 1725: 738:electrowetting on liquid-infused film 7: 1663:TrAC Trends in Analytical Chemistry 759:whereas photoelectrowetting use a 245:{\displaystyle \gamma _{ws}^{0}\,} 14: 1858:Diagram explaining electrowetting 1508:Sensors and Actuators A: Physical 1059:(11). AIP Publishing: 1725–1726. 1842:Wheeler Microfluidics Laboratory 20: 34:may be too short to adequately 1204:. Cambridge University Press. 1179:Chang, H. C.; Yeo, L. (2009). 902:(4). AIP Publishing: 207–209. 571: 565: 207:{\displaystyle \gamma _{ws}\,} 44:provide an accessible overview 1: 1520:10.1016/s0924-4247(03)00024-4 744:Opto- and photoelectrowetting 305:{\displaystyle \gamma _{w}\,} 275:{\displaystyle \gamma _{s}\,} 1844:at the University of Toronto 835:Metal–semiconductor junction 503:{\displaystyle \gamma _{ws}} 1514:(3). Elsevier BV: 222–228. 789:, and Teflon AF is sold by 151:Liquid, Isolator, Substrate 66:is the modification of the 1916: 1675:10.1016/j.trac.2009.11.002 1185:Cambridge University Press 809:particularly, suppressing 1158:10.1109/jmems.2002.807467 1326:10.1163/156856111x599580 1103:J. Gong and C.-J. Kim, " 1694:Applied Physics Letters 1584:Arscott, Steve (2011). 1053:Applied Physics Letters 1037:J. Lee and C.-J. Kim, " 896:Applied Physics Letters 327:{\displaystyle \theta } 1320:(12–17). Brill: 1–22. 726:Reverse electrowetting 721:Reverse electrowetting 695: 579: 504: 467: 383: 350: 328: 306: 276: 246: 208: 152: 86:The electrowetting of 1368:Nature Communications 1198:Kirby, B. J. (2010). 948:US patent 6143496 817:International meeting 696: 580: 505: 468: 384: 351: 329: 307: 277: 247: 209: 169:Helmholtz free energy 150: 143:Electrowetting theory 137:Digital Microfluidics 595: 517: 484: 400: 373: 340: 318: 288: 258: 220: 187: 164:potential difference 1706:2017ApPhL.110l1603B 1612:2011NatSR...1E.184A 1457:2014NatSR...4E6846H 1380:2011NatCo...2..448K 1260:2011arXiv1102.0791K 1065:2000ApPhL..77.1725P 908:1981ApPhL..38..207B 753:photoelectrowetting 647: 436: 240: 1900:Display technology 1810:10.1039/C0SM01403F 1791:10.1039/C1SM05183K 1590:Scientific Reports 1435:Scientific Reports 1389:10.1038/ncomms1454 992:10.1039/C4RA04187A 811:coffee ring effect 749:Optoelectrowetting 691: 630: 575: 500: 463: 419: 379: 346: 324: 302: 272: 242: 223: 204: 162:due to an applied 153: 74:) with an applied 1715:10.1063/1.4978859 1621:10.1038/srep00184 1466:10.1038/srep06846 1268:10.1021/la2004326 1244:(10): 6031–6041. 1211:978-0-521-11903-0 1073:10.1063/1.1308534 1026:10.1063/1.4818715 1009:10.1063/1.4905348 684: 671: 460: 382:{\displaystyle V} 349:{\displaystyle C} 61: 60: 1907: 1823: 1818: 1812: 1799: 1793: 1780: 1774: 1773: 1768:. Archived from 1762: 1756: 1755: 1753: 1729: 1720: 1719: 1717: 1685: 1679: 1678: 1658: 1652: 1651: 1641: 1623: 1605: 1581: 1575: 1574: 1555:10.1039/c001324b 1538: 1532: 1531: 1503: 1497: 1496: 1486: 1468: 1450: 1426: 1420: 1419: 1409: 1391: 1359: 1353: 1352: 1350: 1344:. Archived from 1311: 1302: 1296: 1295: 1253: 1233: 1227: 1226: 1224: 1223: 1214:. Archived from 1195: 1189: 1188: 1176: 1170: 1169: 1141: 1135: 1132: 1126: 1123: 1117: 1114: 1108: 1101: 1095: 1091: 1085: 1084: 1048: 1042: 1035: 1029: 1018: 1012: 1001: 995: 984: 978: 975: 966: 963: 957: 956: 955: 951: 944: 938: 934: 928: 927: 884: 878: 875: 869: 866: 761:photocapacitance 700: 698: 697: 692: 689: 685: 683: 682: 673: 672: 667: 666: 665: 652: 646: 641: 626: 625: 615: 584: 582: 581: 576: 558: 557: 545: 544: 532: 531: 509: 507: 506: 501: 499: 498: 472: 470: 469: 464: 461: 456: 455: 454: 441: 435: 430: 415: 414: 388: 386: 385: 380: 355: 353: 352: 347: 333: 331: 330: 325: 311: 309: 308: 303: 300: 299: 281: 279: 278: 273: 270: 269: 251: 249: 248: 243: 239: 234: 213: 211: 210: 205: 202: 201: 125:Schottky contact 109:indium tin oxide 96:Gabriel Lippmann 56: 53: 47: 24: 16: 1915: 1914: 1910: 1909: 1908: 1906: 1905: 1904: 1890: 1889: 1838:(archived 2020) 1832: 1827: 1826: 1819: 1815: 1800: 1796: 1781: 1777: 1764: 1763: 1759: 1731: 1730: 1723: 1687: 1686: 1682: 1660: 1659: 1655: 1583: 1582: 1578: 1540: 1539: 1535: 1505: 1504: 1500: 1428: 1427: 1423: 1361: 1360: 1356: 1348: 1309: 1304: 1303: 1299: 1235: 1234: 1230: 1221: 1219: 1212: 1197: 1196: 1192: 1178: 1177: 1173: 1143: 1142: 1138: 1133: 1129: 1124: 1120: 1115: 1111: 1102: 1098: 1092: 1088: 1050: 1049: 1045: 1036: 1032: 1019: 1015: 1002: 998: 985: 981: 976: 969: 964: 960: 953: 946: 945: 941: 935: 931: 916:10.1063/1.92322 886: 885: 881: 876: 872: 867: 863: 858: 831: 819: 799: 787:Asahi Glass Co. 777: 746: 734: 723: 674: 657: 653: 617: 616: 610: 593: 592: 549: 536: 520: 515: 514: 487: 482: 481: 446: 442: 403: 398: 397: 371: 370: 367: 363: 359: 338: 337: 316: 315: 291: 286: 285: 261: 256: 255: 218: 217: 190: 185: 184: 145: 84: 57: 51: 48: 41: 29:This article's 25: 12: 11: 5: 1913: 1911: 1903: 1902: 1892: 1891: 1888: 1887: 1882: 1877: 1876: 1875: 1865: 1860: 1855: 1850: 1845: 1839: 1831: 1830:External links 1828: 1825: 1824: 1813: 1794: 1775: 1772:on 2011-03-05. 1757: 1721: 1700:(12): 121603. 1680: 1669:(2): 141–157. 1653: 1576: 1533: 1498: 1421: 1354: 1351:on 2012-07-14. 1297: 1228: 1210: 1190: 1171: 1136: 1127: 1118: 1109: 1096: 1086: 1043: 1030: 1013: 996: 979: 967: 958: 939: 929: 879: 870: 860: 859: 857: 854: 853: 852: 847: 842: 837: 830: 827: 818: 815: 798: 795: 782:fluoropolymers 776: 773: 757:photoconductor 745: 742: 733: 730: 722: 719: 702: 701: 688: 681: 677: 670: 664: 660: 656: 650: 645: 640: 637: 633: 629: 624: 620: 613: 609: 606: 603: 600: 586: 585: 573: 570: 567: 564: 561: 556: 552: 548: 543: 539: 535: 530: 527: 523: 497: 494: 490: 474: 473: 459: 453: 449: 445: 439: 434: 429: 426: 422: 418: 413: 410: 406: 391: 390: 378: 368: 365: 361: 357: 345: 335: 323: 313: 298: 294: 283: 268: 264: 253: 238: 233: 230: 226: 215: 200: 197: 193: 144: 141: 129:Schottky diode 83: 80: 76:electric field 64:Electrowetting 59: 58: 38:the key points 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1912: 1901: 1898: 1897: 1895: 1886: 1883: 1881: 1878: 1874: 1871: 1870: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1843: 1840: 1837: 1834: 1833: 1829: 1822: 1817: 1814: 1811: 1807: 1803: 1798: 1795: 1792: 1788: 1784: 1779: 1776: 1771: 1767: 1761: 1758: 1752: 1747: 1743: 1739: 1735: 1728: 1726: 1722: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1684: 1681: 1676: 1672: 1668: 1664: 1657: 1654: 1649: 1645: 1640: 1635: 1631: 1627: 1622: 1617: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1543:Lab on a Chip 1537: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1499: 1494: 1490: 1485: 1480: 1476: 1472: 1467: 1462: 1458: 1454: 1449: 1444: 1440: 1436: 1432: 1425: 1422: 1417: 1413: 1408: 1403: 1399: 1395: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1355: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1301: 1298: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1252: 1247: 1243: 1239: 1232: 1229: 1218:on 2019-04-28 1217: 1213: 1207: 1203: 1202: 1194: 1191: 1186: 1182: 1175: 1172: 1167: 1163: 1159: 1155: 1151: 1147: 1140: 1137: 1131: 1128: 1122: 1119: 1113: 1110: 1106: 1100: 1097: 1090: 1087: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1047: 1044: 1040: 1034: 1031: 1027: 1023: 1017: 1014: 1010: 1006: 1000: 997: 993: 989: 983: 980: 974: 972: 968: 962: 959: 949: 943: 940: 937: 933: 930: 925: 921: 917: 913: 909: 905: 901: 897: 893: 889: 883: 880: 874: 871: 865: 862: 855: 851: 848: 846: 843: 841: 840:Microfluidics 838: 836: 833: 832: 828: 826: 822: 816: 814: 812: 808: 804: 796: 794: 792: 788: 783: 774: 772: 770: 766: 765:semiconductor 762: 758: 754: 750: 743: 741: 739: 731: 729: 727: 720: 718: 714: 710: 706: 686: 679: 675: 668: 662: 658: 654: 648: 643: 638: 635: 631: 627: 622: 618: 611: 607: 604: 601: 598: 591: 590: 589: 568: 562: 559: 554: 550: 546: 541: 537: 533: 528: 525: 521: 513: 512: 511: 495: 492: 488: 479: 478:contact angle 457: 451: 447: 443: 437: 432: 427: 424: 420: 416: 411: 408: 404: 396: 395: 394: 376: 369: 343: 336: 321: 314: 296: 292: 284: 266: 262: 254: 236: 231: 228: 224: 216: 198: 195: 191: 183: 182: 181: 177: 175: 170: 165: 161: 160:contact angle 158: 149: 142: 140: 138: 132: 130: 126: 122: 118: 117:semiconductor 112: 110: 105: 101: 100:A. N. Frumkin 97: 93: 89: 81: 79: 77: 73: 69: 65: 55: 45: 39: 37: 32: 27: 23: 18: 17: 1816: 1797: 1778: 1770:the original 1760: 1741: 1737: 1697: 1693: 1683: 1666: 1662: 1656: 1593: 1589: 1579: 1546: 1542: 1536: 1511: 1507: 1501: 1438: 1434: 1424: 1371: 1367: 1357: 1346:the original 1317: 1313: 1300: 1241: 1237: 1231: 1220:. Retrieved 1216:the original 1200: 1193: 1180: 1174: 1149: 1145: 1139: 1130: 1121: 1112: 1099: 1089: 1056: 1052: 1046: 1033: 1016: 999: 982: 961: 942: 932: 899: 895: 892:Hackwood, S. 882: 873: 864: 823: 820: 800: 797:Applications 778: 769:space-charge 747: 735: 724: 715: 711: 707: 703: 587: 475: 392: 178: 154: 133: 121:reverse bias 113: 85: 63: 62: 49: 33: 31:lead section 1744:: 920–931. 845:Soft matter 807:soft matter 157:electrolyte 72:hydrophobic 1596:(1): 184. 1222:2011-01-08 856:References 780:amorphous 90:and other 1630:2045-2322 1603:1108.4935 1563:1473-0197 1528:0924-4247 1475:2045-2322 1448:1409.6989 1398:2041-1723 1334:0169-4243 1276:0743-7463 1251:1102.0791 1166:1057-7157 1081:0003-6951 924:0003-6951 775:Materials 676:γ 632:γ 628:− 619:γ 605:θ 602:⁡ 569:θ 563:⁡ 551:γ 547:− 538:γ 522:γ 510:is used: 489:γ 438:− 421:γ 405:γ 322:θ 293:γ 263:γ 225:γ 192:γ 174:capacitor 52:June 2023 36:summarize 1894:Category 1648:22355699 1571:20448870 1493:25355005 1416:21863015 1292:18448044 1284:21510663 1238:Langmuir 888:Beni, G. 829:See also 1702:Bibcode 1639:3240946 1608:Bibcode 1484:4213809 1453:Bibcode 1407:3265368 1376:Bibcode 1342:1760297 1256:Bibcode 1094:134–137 1061:Bibcode 904:Bibcode 850:Wetting 803:e-paper 92:liquids 88:mercury 82:History 68:wetting 1646:  1636:  1628:  1569:  1561:  1526:  1491:  1481:  1473:  1414:  1404:  1396:  1340:  1332:  1290:  1282:  1274:  1208:  1164:  1079:  954:  922:  791:DuPont 751:, and 1598:arXiv 1443:arXiv 1349:(PDF) 1338:S2CID 1310:(PDF) 1288:S2CID 1246:arXiv 127:in a 104:water 1644:PMID 1626:ISSN 1567:PMID 1559:ISSN 1524:ISSN 1489:PMID 1471:ISSN 1412:PMID 1394:ISSN 1330:ISSN 1280:PMID 1272:ISSN 1206:ISBN 1162:ISSN 1077:ISSN 920:ISSN 476:The 1806:doi 1787:doi 1746:doi 1742:106 1710:doi 1698:110 1671:doi 1634:PMC 1616:doi 1551:doi 1516:doi 1512:104 1479:PMC 1461:doi 1402:PMC 1384:doi 1322:doi 1264:doi 1154:doi 1069:doi 1022:doi 1005:doi 988:doi 912:doi 599:cos 560:cos 1896:: 1804:, 1785:, 1740:. 1736:. 1724:^ 1708:. 1696:. 1692:. 1667:29 1665:. 1642:. 1632:. 1624:. 1614:. 1606:. 1592:. 1588:. 1565:. 1557:. 1547:10 1545:. 1522:. 1510:. 1487:. 1477:. 1469:. 1459:. 1451:. 1437:. 1433:. 1410:. 1400:. 1392:. 1382:. 1370:. 1366:. 1336:. 1328:. 1318:26 1316:. 1312:. 1286:. 1278:. 1270:. 1262:. 1254:. 1242:27 1240:. 1183:. 1160:. 1150:12 1148:. 1075:. 1067:. 1057:77 1055:. 970:^ 918:. 910:. 900:38 898:. 890:; 78:. 1808:: 1789:: 1754:. 1748:: 1718:. 1712:: 1704:: 1677:. 1673:: 1650:. 1618:: 1610:: 1600:: 1594:1 1573:. 1553:: 1530:. 1518:: 1495:. 1463:: 1455:: 1445:: 1439:4 1418:. 1386:: 1378:: 1372:2 1324:: 1294:. 1266:: 1258:: 1248:: 1225:. 1187:. 1168:. 1156:: 1083:. 1071:: 1063:: 1028:. 1024:: 1011:. 1007:: 994:. 990:: 926:. 914:: 906:: 687:) 680:w 669:2 663:2 659:V 655:C 649:+ 644:0 639:s 636:w 623:s 612:( 608:= 572:) 566:( 555:w 542:s 534:= 529:s 526:w 496:s 493:w 458:2 452:2 448:V 444:C 433:0 428:s 425:w 417:= 412:s 409:w 377:V 366:r 362:0 360:є 358:r 344:C 297:w 267:s 237:0 232:s 229:w 199:s 196:w 54:) 50:( 40:.

Index


lead section
summarize
provide an accessible overview
wetting
hydrophobic
electric field
mercury
liquids
Gabriel Lippmann
A. N. Frumkin
water
indium tin oxide
semiconductor
reverse bias
Schottky contact
Schottky diode
Digital Microfluidics

electrolyte
contact angle
potential difference
Helmholtz free energy
capacitor
contact angle
Reverse electrowetting
electrowetting on liquid-infused film
Optoelectrowetting
photoelectrowetting
photoconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.