Knowledge (XXG)

Electron transfer

Source đź“ť

31: 135:
In outer-sphere ET reactions, the participating redox centers are not linked via any bridge during the ET event. Instead, the electron "hops" through space from the reducing center to the acceptor. Outer sphere electron transfer can occur between different chemical species or between identical
116:
In inner-sphere ET, the two redox centers are covalently linked during the ET. This bridge can be permanent, in which case the electron transfer event is termed intramolecular electron transfer. More commonly, however, the covalent linkage is transitory, forming just prior to the ET and then
117:
disconnecting following the ET event. In such cases, the electron transfer is termed intermolecular electron transfer. A famous example of an inner sphere ET process that proceeds via a transitory bridged intermediate is the reduction of by . In this case, the chloride
166:
is that the rates of such self-exchange reactions are mathematically related to the rates of "cross reactions". Cross reactions entail partners that differ by more than their oxidation states. One example (of many thousands) is the reduction of permanganate by
446:
Susan B. Piepho, Elmars R. Krausz, P. N. Schatz; J. Am. Chem. Soc., 1978, 100 (10), pp 2996–3005; Vibronic coupling model for calculation of mixed-valence absorption profiles;
233:
Especially in proteins, electron transfer often involves hopping of an electron from one redox-active center to another. The hopping pathway, which is viewed as a
502: 301:. In proteins, ET rates are governed by the bond structures: the electrons, in effect, tunnel through the bonds comprising the chain structure of the proteins. 273:, has guided most discussions of electron transfer ever since. Both theories are, however, semiclassical in nature, although they have been extended to fully 136:
chemical species that differ only in their oxidation state. The latter process is termed self-exchange. As an example, self-exchange describes the
714: 591: 548: 348: 315: 855: 495: 467:
31 May 1991: Vol. 252 no. 5010 pp. 1285–1288; Protein electron transfer rates set by the bridging secondary and tertiary structure;
434: 413: 362:
Piechota, Eric J.; Meyer, Gerald J. (2019). "Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples".
184:
Reactants diffuse together, forming an "encounter complex", out of their solvent shells => precursor complex (requires work =w
156:
In general, if electron transfer is faster than ligand substitution, the reaction will follow the outer-sphere electron transfer.
763: 758: 568: 262: 254: 130: 111: 923: 928: 241:, e.g. the 4Fe-4S ferredoxins. These site are often separated by 7-10 Ă…, a distance compatible with fast outer-sphere ET. 954: 488: 949: 298: 893: 583: 234: 620: 520: 850: 290: 86: 898: 699: 282: 258: 137: 653: 286: 883: 815: 673: 663: 878: 606: 371: 94: 82: 888: 820: 805: 748: 310: 238: 213:
In heterogeneous electron transfer, an electron moves between a chemical species and a solid-state
913: 683: 512: 387: 274: 908: 903: 865: 810: 709: 645: 430: 409: 320: 294: 250: 90: 840: 789: 743: 468: 447: 379: 218: 74: 340: 159:
Often occurs when one/both reactants are inert or if there is no suitable bridging ligand.
918: 830: 779: 375: 625: 614: 278: 78: 943: 873: 845: 753: 704: 678: 391: 270: 163: 67:
to another such chemical entity. ET is a mechanistic description of certain kinds of
825: 631: 538: 528: 293:. Furthermore, theories have been put forward to take into account the effects of 237:, guides and facilitates ET within an insulating matrix. Typical redox centers are 141: 17: 784: 719: 383: 93:
ET is a step in some commercial polymerization reactions. It is foundational to
261:
approach. The Marcus theory of electron transfer was then extended to include
222: 835: 480: 472: 266: 217:. Theories addressing heterogeneous electron transfer have applications in 214: 145: 30: 64: 56: 451: 197:
Relaxation of bond lengths, solvent molecules => successor complex
172: 168: 118: 121:
is the bridging ligand that covalently connects the redox partners.
738: 68: 35: 29: 191:
Changing bond lengths, reorganize solvent => activated complex
60: 484: 558: 27:
Relocation of an electron from an atom or molecule to another
249:
The first generally accepted theory of ET was developed by
864: 798: 772: 728: 692: 644: 605: 582: 519: 77:are ET reactions. ET reactions are relevant to 38:reaction between sodium and chlorine, with the 496: 8: 71:reactions involving transfer of electrons. 503: 489: 481: 408:(2nd ed.). Oxford: Butterworth-Heinemann. 297:on electron transfer; in particular, the 269:and Marcus. The resultant theory called 404:Greenwood, N. N.; Earnshaw, A. (1997). 332: 529:Unimolecular nucleophilic substitution 200:Diffusion of products (requires work=w 179:Five steps of an outer sphere reaction 144:and its one-electron reduced relative 539:Bimolecular nucleophilic substitution 7: 425:Holleman, A. F.; Wiberg, E. (2001). 592:Electrophilic aromatic substitution 559:Nucleophilic internal substitution 549:Nucleophilic aromatic substitution 463:Beratan DN, Betts JN, Onuchic JN, 316:Electrochemical reaction mechanism 25: 351:from the original on 2022-11-03. 715:Lindemann–Hinshelwood mechanism 299:PKS theory of electron transfer 209:Heterogeneous electron transfer 764:Outer sphere electron transfer 759:Inner sphere electron transfer 569:Nucleophilic acyl substitution 289:and following earlier work in 263:inner-sphere electron transfer 255:outer-sphere electron transfer 131:Outer-sphere electron transfer 125:Outer-sphere electron transfer 112:Inner-sphere electron transfer 106:Inner-sphere electron transfer 1: 929:Diffusion-controlled reaction 429:. San Diego: Academic Press. 364:Journal of Chemical Education 285:, and others proceeding from 454:; Publication Date: May 1978 101:Classes of electron transfer 584:Electrophilic substitutions 384:10.1021/acs.jchemed.9b00489 971: 894:Energy profile (chemistry) 856:More O'Ferrall–Jencks plot 521:Nucleophilic substitutions 229:Vectoral electron transfer 128: 109: 87:transition metal complexes 924:Michaelis–Menten kinetics 406:Chemistry of the Elements 291:non-radiative transitions 75:Electrochemical processes 851:Potential energy surface 730:Electron/Proton transfer 615:Unimolecular elimination 899:Transition state theory 700:Intramolecular reaction 626:Bimolecular elimination 473:10.1126/science.1656523 259:transition-state theory 175:and, again, manganate. 693:Unimolecular reactions 654:Electrophilic addition 283:Alexander M. Kuznetsov 45: 884:Rate-determining step 816:Reactive intermediate 674:Free-radical addition 664:Nucleophilic addition 607:Elimination reactions 85:and commonly involve 33: 879:Equilibrium constant 239:iron-sulfur clusters 95:photoredox catalysis 955:Reaction mechanisms 889:Reaction coordinate 821:Radical (chemistry) 806:Elementary reaction 749:Grotthuss mechanism 513:reaction mechanisms 452:10.1021/ja00478a011 427:Inorganic Chemistry 376:2019JChEd..96.2450P 311:Electron equivalent 287:Fermi's golden rule 257:and was based on a 36:reduction–oxidation 950:Physical chemistry 914:Arrhenius equation 684:Oxidative addition 646:Addition reactions 275:quantum mechanical 271:Marcus-Hush theory 221:and the design of 59:relocates from an 46: 937: 936: 909:Activated complex 904:Activation energy 866:Chemical kinetics 811:Reaction dynamics 710:Photodissociation 370:(11): 2450–2466. 321:Solvated electron 295:vibronic coupling 251:Rudolph A. Marcus 194:Electron transfer 162:A key concept of 140:reaction between 91:organic chemistry 55:) occurs when an 49:Electron transfer 18:Electron-transfer 16:(Redirected from 962: 841:Collision theory 790:Matrix isolation 744:Harpoon reaction 621:E1cB-elimination 505: 498: 491: 482: 475: 461: 455: 444: 438: 423: 417: 402: 396: 395: 359: 353: 352: 337: 219:electrochemistry 43: 21: 970: 969: 965: 964: 963: 961: 960: 959: 940: 939: 938: 933: 919:Eyring equation 860: 831:Stereochemistry 794: 780:Solvent effects 768: 724: 688: 669: 659: 640: 635: 601: 597: 578: 574: 564: 554: 544: 534: 515: 509: 479: 478: 462: 458: 445: 441: 424: 420: 403: 399: 361: 360: 356: 339: 338: 334: 329: 307: 247: 231: 211: 203: 187: 181: 133: 127: 114: 108: 103: 39: 28: 23: 22: 15: 12: 11: 5: 968: 966: 958: 957: 952: 942: 941: 935: 934: 932: 931: 926: 921: 916: 911: 906: 901: 896: 891: 886: 881: 876: 870: 868: 862: 861: 859: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 802: 800: 799:Related topics 796: 795: 793: 792: 787: 782: 776: 774: 773:Medium effects 770: 769: 767: 766: 761: 756: 751: 746: 741: 735: 733: 726: 725: 723: 722: 717: 712: 707: 702: 696: 694: 690: 689: 687: 686: 681: 676: 671: 667: 661: 657: 650: 648: 642: 641: 639: 638: 633: 629: 623: 618: 611: 609: 603: 602: 600: 599: 595: 588: 586: 580: 579: 577: 576: 572: 566: 562: 556: 552: 546: 542: 536: 532: 525: 523: 517: 516: 510: 508: 507: 500: 493: 485: 477: 476: 456: 439: 418: 397: 354: 331: 330: 328: 325: 324: 323: 318: 313: 306: 303: 279:Joshua Jortner 277:treatments by 246: 243: 230: 227: 210: 207: 206: 205: 201: 198: 195: 192: 189: 185: 180: 177: 154: 153: 129:Main article: 126: 123: 110:Main article: 107: 104: 102: 99: 79:photosynthesis 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 967: 956: 953: 951: 948: 947: 945: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 874:Rate equation 872: 871: 869: 867: 863: 857: 854: 852: 849: 847: 846:Arrow pushing 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 803: 801: 797: 791: 788: 786: 783: 781: 778: 777: 775: 771: 765: 762: 760: 757: 755: 754:Marcus theory 752: 750: 747: 745: 742: 740: 737: 736: 734: 731: 727: 721: 718: 716: 713: 711: 708: 706: 705:Isomerization 703: 701: 698: 697: 695: 691: 685: 682: 680: 679:Cycloaddition 677: 675: 672: 665: 662: 655: 652: 651: 649: 647: 643: 637: 630: 627: 624: 622: 619: 616: 613: 612: 610: 608: 604: 593: 590: 589: 587: 585: 581: 570: 567: 560: 557: 550: 547: 540: 537: 530: 527: 526: 524: 522: 518: 514: 506: 501: 499: 494: 492: 487: 486: 483: 474: 470: 466: 460: 457: 453: 449: 443: 440: 436: 435:0-12-352651-5 432: 428: 422: 419: 415: 414:0-7506-3365-4 411: 407: 401: 398: 393: 389: 385: 381: 377: 373: 369: 365: 358: 355: 350: 346: 342: 336: 333: 326: 322: 319: 317: 314: 312: 309: 308: 304: 302: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 244: 242: 240: 236: 228: 226: 224: 220: 216: 208: 199: 196: 193: 190: 183: 182: 178: 176: 174: 170: 165: 164:Marcus theory 160: 157: 151: 150: 149: 147: 143: 139: 132: 124: 122: 120: 113: 105: 100: 98: 96: 92: 88: 84: 80: 76: 72: 70: 66: 62: 58: 54: 50: 42: 37: 34:Example of a 32: 19: 826:Molecularity 729: 464: 459: 442: 426: 421: 405: 400: 367: 363: 357: 344: 335: 248: 232: 212: 161: 158: 155: 142:permanganate 134: 115: 73: 52: 48: 47: 40: 785:Cage effect 720:RRKM theory 636:elimination 253:to address 223:solar cells 83:respiration 944:Categories 327:References 138:degenerate 836:Catalysis 732:reactions 392:208754569 267:Noel Hush 215:electrode 146:manganate 349:Archived 345:Bitesize 341:"Metals" 305:See also 171:to form 152:+ → + 65:molecule 57:electron 44:mnemonic 465:Science 372:Bibcode 347:. BBC. 41:OIL RIG 511:Basic 433:  412:  390:  245:Theory 235:vector 173:iodine 169:iodide 119:ligand 739:Redox 575:Acyl) 388:S2CID 89:. In 69:redox 628:(E2) 617:(E1) 431:ISBN 410:ISBN 81:and 61:atom 598:Ar) 555:Ar) 469:doi 448:doi 380:doi 265:by 63:or 946:: 666:(A 656:(A 594:(S 571:(S 565:i) 561:(S 551:(S 545:2) 541:(S 535:1) 531:(S 386:. 378:. 368:96 366:. 343:. 281:, 225:. 148:: 97:. 53:ET 670:) 668:N 660:) 658:E 634:i 632:E 596:E 573:N 563:N 553:N 543:N 533:N 504:e 497:t 490:v 471:: 450:: 437:. 416:. 394:. 382:: 374:: 204:) 202:p 188:) 186:r 51:( 20:)

Index

Electron-transfer

reduction–oxidation
electron
atom
molecule
redox
Electrochemical processes
photosynthesis
respiration
transition metal complexes
organic chemistry
photoredox catalysis
Inner-sphere electron transfer
ligand
Outer-sphere electron transfer
degenerate
permanganate
manganate
Marcus theory
iodide
iodine
electrode
electrochemistry
solar cells
vector
iron-sulfur clusters
Rudolph A. Marcus
outer-sphere electron transfer
transition-state theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑