Knowledge (XXG)

Electron beam-induced deposition

Source đź“ť

32: 93:
meaning that secondary, backscattered and forward scattered (if the beam dwells on already deposited material) electrons contribute to the deposition. As these electrons can leave the substrate up to several microns away from the point of impact of the electron beam (depending on its energy), material deposition is not necessarily confined to the irradiated spot. To overcome this problem, compensation algorithms can be applied, which is typical for electron beam lithography.
267: 279: 1559: 295: 311: 221:(FIB) setup, which strongly limits characterization of the deposit during or right after the deposition. Only SEM-like imaging using secondary electrons is possible, and even that imaging is restricted to short observations due to sample damaging by the Ga beam. The use of a dual beam instrument, that combines a FIB and an SEM in one, circumvents this limitation. 1571: 40: 83:
Primary electron energies in SEMs or STEMs are usually between 10 and 300 keV, where reactions induced by electron impact, i.e. precursor dissociation, have a relatively low cross section. The majority of decomposition occurs via low energy electron impact: either by low energy secondary electrons,
74:
In the presence of the precursor gas, the electron beam is scanned over the substrate, resulting in deposition of material. The scanning is usually computer-controlled. The deposition rate depends on a variety of processing parameters, such as the partial precursor pressure, substrate temperature,
92:
Primary S(T)EM electrons can be focused into spots as small as ~0.045 nm. While the smallest structures deposited so far by EBID are point deposits of ~0.7 nm diameter, deposits usually have a larger lateral size than the beam spot size. The reason are the so-called proximity effects,
70:
When deposition occurs at a high temperature or involves corrosive gases, a specially designed deposition chamber is used; it is isolated from the microscope, and the beam is introduced into it through a micrometre-sized orifice. The small orifice size maintains differential pressure in the
241:
Nanostructures of virtually any 3-dimensional shape can be deposited using computer-controlled scanning of electron beam. Only the starting point has to be attached to the substrate, the rest of the structure can be free standing. The achieved shapes and devices are remarkable:
839:
Luxmoore, I; Ross, I; Cullis, A; Fry, P; Orr, J; Buckle, P; Jefferson, J (2007). "Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition".
207:, usually 30 keV Ga, is used instead of the electron beam. In both techniques, it is not the primary beam, but secondary electrons which cause the deposition. IBID has the following disadvantages as compared to EBID: 67:, and introduced, at accurately controlled rate, into the high-vacuum chamber of the electron microscope. Alternatively, solid precursors can be sublimated by the electron beam itself. 19:
is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a
139:, etc.) result in cleaner deposition, but are more difficult to handle as they are toxic and corrosive. Compound materials are deposited from specially crafted, exotic gases, e.g. D 1203: 101:
As of 2008 the range of materials deposited by EBID included Al, Au, amorphous carbon, diamond, Co, Cr, Cu, Fe, GaAs, GaN, Ge, Mo, Nb, Ni, Os, Pd, Pt, Rh, Ru, Re, Si, Si
1186: 1181: 132:. They are easily available, however, due to incorporation of carbon atoms from the CO ligands, deposits often exhibit a low metal content. Metal-halogen complexes ( 1330: 1033: 1320: 923: 1223: 1196: 156:
Very flexible regarding deposit shape and composition; the electron beam is lithographically controlled and a multitude of potential precursors is available
1131: 23:, which results in high spatial accuracy (potentially below one nanometer) and the possibility to produce free-standing, three-dimensional structures. 1191: 499:
Kiyohara, Shuji; Takamatsu, Hideaki; Mori, Katsumi (2002). "Microfabrication of diamond films by localized electron beam chemical vapour deposition".
358: 52: 1335: 117:, W, and was being expanded. The limiting factor is the availability of appropriate precursors, gaseous or having a low sublimation temperature. 191:
Controlling the elemental or chemical deposit composition is still a major challenge, as the precursor decomposition pathways are mostly unknown
1151: 266: 84:
which cross the substrate-vacuum interface and contribute to the total current density, or inelastically scattered (backscattered) electrons.
1275: 1141: 1088: 891: 896: 1530: 1258: 1243: 1169: 214:
Ga ions introduce additional contamination and radiation damage to the deposited structure, which is important for electronic applications.
171: 63:
is applied instead. Precursor materials are typically liquid or solid and gasified prior to deposition, usually through vaporization or
897:
K. Molhave: "Tools for in-situ manipulations and characterization of nanostructures", PhD thesis, Technical University of Denmark, 2004
1280: 1113: 966: 916: 883: 1268: 1263: 1161: 1136: 1103: 534:
Nayak, A.; Banerjee, H. D. (1995). "Electron beam activated plasma chemical vapour deposition of polycrystalline diamond films".
363: 278: 163: 1340: 1325: 1305: 1043: 294: 1108: 951: 878:"Nanofabrication: Fundamentals and Applications" Ed.: Ampere A. Tseng, World Scientific Publishing Company (March 4, 2008), 1575: 1285: 1248: 1093: 1602: 1563: 1123: 909: 353: 48: 20: 791:
Van Dorp, Willem F. (2005). "Approaching the Resolution Limit of Nanometer-Scale Electron Beam-Induced Deposition".
31: 1310: 1228: 56: 689:"Fabrication and characterization of nanostructures on insulator substrates by electron-beam-induced deposition" 71:
microscope (vacuum) and deposition chamber (no vacuum). Such deposition mode has been used for EBID of diamond.
1535: 1489: 1315: 580:
Randolph, S.; Fowlkes, J.; Rack, P. (2006). "Focused, Nanoscale Electron-Beam-Induced Deposition and Etching".
348: 1525: 1607: 1238: 1174: 1048: 1007: 64: 1597: 1428: 1433: 1253: 390:
Carden, Will G.; Lu, Hang; Spencer, Julie A.; Fairbrother, D. Howard; McElwee-White, Lisa (2018-06-01).
301: 188:
Serial material deposition and low deposition rates in general limit throughput and thus mass production
133: 1438: 997: 849: 800: 757: 700: 643: 589: 543: 508: 442: 431:"Advances in Focused Ion Beam Tomography for Three-Dimensional Characterization in Materials Science" 178:) during or right after deposition. In situ electrical and optical characterization is also possible. 175: 75:
electron beam parameters, applied current density, etc. It usually is in the order of 10 nm/s.
1403: 1388: 1295: 1290: 1233: 1098: 1080: 1012: 1002: 946: 932: 328: 310: 211:
Angular spread of secondary electrons is larger in IBID thus resulting in lower spatial resolution.
429:
Mura, Francesco; Cognigni, Flavio; Ferroni, Matteo; Morandi, Vittorio; Rossi, Marco (2023-08-24).
1474: 1053: 1017: 605: 369: 1418: 1413: 887: 879: 816: 773: 726: 669: 478: 460: 411: 1368: 1300: 857: 808: 765: 716: 708: 659: 651: 597: 551: 516: 468: 450: 403: 333: 218: 204: 60: 1423: 203:
Ion-beam-induced deposition (IBID) is very similar to EBID with the major difference that
853: 804: 761: 704: 647: 593: 547: 512: 473: 446: 430: 1378: 992: 721: 712: 688: 664: 655: 631: 338: 121: 520: 162:
The deposited material can be characterized using the electron microscopy techniques (
1591: 1454: 1398: 1058: 285: 1505: 609: 159:
Lateral size of the produced structures and accuracy of deposition are unprecedented
1515: 1479: 1373: 1363: 1038: 987: 769: 392:"Mechanism-based design of precursors for focused electron beam-induced deposition" 129: 1459: 1393: 1383: 632:"Nanofabrication by advanced electron microscopy using intense and focused beam" 343: 1540: 961: 956: 861: 601: 464: 415: 1408: 1063: 555: 820: 777: 730: 673: 482: 1510: 976: 407: 1520: 1464: 1146: 455: 901: 812: 391: 39: 1484: 745: 120:
The most popular precursors for deposition of elemental solids are
253: 38: 30: 1469: 167: 905: 194:
Proximity effects can lead to unintended structure broadening
746:"Atomic-Resolution Imaging with a Sub-50-pm Electron Probe" 744:
Erni, Rolf; Rossell, MD; Kisielowski, C; Dahmen, U (2009).
582:
Critical Reviews of Solid State and Materials Sciences
272:
Snapshots of growing a doll-like nanostructure by IBID
1498: 1447: 1356: 1349: 1216: 1160: 1122: 1079: 1072: 1026: 975: 939: 1331:Serial block-face scanning electron microscopy 1034:Detectors for transmission electron microscopy 917: 8: 55:(STEM) is commonly used. Another method is 1353: 1076: 924: 910: 902: 720: 663: 472: 454: 359:Scanning transmission electron microscopy 53:scanning transmission electron microscope 834: 832: 830: 382: 262: 17:Electron-beam-induced deposition (EBID) 494: 492: 625: 623: 621: 619: 7: 1570: 575: 573: 571: 569: 567: 565: 501:Semiconductor Science and Technology 14: 967:Timeline of microscope technology 1569: 1558: 1557: 364:Transmission electron microscopy 309: 293: 277: 265: 1326:Precession electron diffraction 47:The focused electron beam of a 770:10.1103/PhysRevLett.102.096101 687:M. Song and K. Furuya (2008). 1: 713:10.1088/1468-6996/9/2/023002 656:10.1088/1468-6996/9/1/014110 354:Scanning electron microscope 225:The advantages of IBID are: 49:scanning electron microscope 21:scanning electron microscope 521:10.1088/0268-1242/17/10/311 229:Much higher deposition rate 199:Ion-beam-induced deposition 57:ion-beam-induced deposition 1624: 1311:Immune electron microscopy 1229:Annular dark-field imaging 1044:Everhart–Thornley detector 35:Scheme of the EBID process 1553: 1465:Hitachi High-Technologies 862:10.1016/j.tsf.2007.02.029 602:10.1080/10408430600930438 259:Superconducting nanowires 252:Nanoloops (potential nano 1490:Thermo Fisher Scientific 1316:Geometric phase analysis 1204:Aberration-Corrected TEM 693:Sci. Technol. Adv. Mater 636:Sci. Technol. Adv. Mater 349:Organometallic chemistry 97:Materials and precursors 1239:Charge contrast imaging 1049:Field electron emission 750:Physical Review Letters 556:10.1002/pssa.2211510112 536:Physica Status Solidi A 217:Deposition occurs in a 1429:Thomas Eugene Everhart 316:Letter Φ grown by EBID 44: 36: 1434:Vernon Ellis Cosslett 1254:Dark-field microscopy 302:Leaning Tower of Pisa 246:World smallest magnet 42: 34: 1439:Vladimir K. Zworykin 1089:Correlative light EM 998:Electron diffraction 176:electron diffraction 79:Deposition mechanism 1603:Electron microscopy 1404:Manfred von Ardenne 1389:Gerasimos Danilatos 1296:Electron tomography 1291:Electron holography 1234:Cathodoluminescence 1013:Secondary electrons 1003:Electron scattering 947:Electron microscopy 933:Electron microscopy 854:2007TSF...515.6791L 805:2005NanoL...5.1303V 762:2009PhRvL.102i6101E 705:2008STAdM...9b3002S 648:2008STAdM...9a4110F 594:2006CRSSM..31...55R 548:1995PSSAR.151..107N 513:2002SeScT..17.1096K 447:2023Mate...16.5808M 408:10.1557/mrc.2018.77 329:Electron microscopy 1526:Digital Micrograph 1132:Environmental SEM 1054:Field emission gun 1018:X-ray fluorescence 630:K. Furuya (2008). 456:10.3390/ma16175808 396:MRS Communications 370:Lisa McElwee-White 368:Researcher : 88:Spatial resolution 45: 37: 1585: 1584: 1549: 1548: 1419:Nestor J. Zaluzec 1414:Maximilian Haider 1212: 1211: 892:978-981-270-076-6 813:10.1021/nl050522i 249:Fractal nanotrees 1615: 1573: 1572: 1561: 1560: 1369:Bodo von Borries 1354: 1114:Photoemission EM 1077: 926: 919: 912: 903: 866: 865: 842:Thin Solid Films 836: 825: 824: 788: 782: 781: 741: 735: 734: 724: 684: 678: 677: 667: 627: 614: 613: 577: 560: 559: 531: 525: 524: 496: 487: 486: 476: 458: 426: 420: 419: 387: 334:Focused ion beam 313: 297: 281: 269: 219:focused ion beam 205:focused ion beam 61:focused ion beam 59:(IBID), where a 1623: 1622: 1618: 1617: 1616: 1614: 1613: 1612: 1588: 1587: 1586: 1581: 1545: 1494: 1443: 1424:Ondrej Krivanek 1345: 1208: 1156: 1118: 1104:Liquid-Phase EM 1068: 1027:Instrumentation 1022: 980: 971: 935: 930: 875: 870: 869: 838: 837: 828: 790: 789: 785: 743: 742: 738: 686: 685: 681: 629: 628: 617: 579: 578: 563: 533: 532: 528: 498: 497: 490: 428: 427: 423: 389: 388: 384: 379: 374: 324: 317: 314: 305: 298: 289: 282: 273: 270: 239: 201: 185: 153: 146: 142: 137: 127: 122:metal carbonyls 116: 112: 108: 104: 99: 90: 81: 29: 12: 11: 5: 1621: 1619: 1611: 1610: 1608:Nanotechnology 1605: 1600: 1590: 1589: 1583: 1582: 1580: 1579: 1567: 1554: 1551: 1550: 1547: 1546: 1544: 1543: 1538: 1533: 1531:Direct methods 1528: 1523: 1518: 1513: 1508: 1502: 1500: 1496: 1495: 1493: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1451: 1449: 1445: 1444: 1442: 1441: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1379:Ernst G. Bauer 1376: 1371: 1366: 1360: 1358: 1351: 1347: 1346: 1344: 1343: 1338: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1272: 1271: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1220: 1218: 1214: 1213: 1210: 1209: 1207: 1206: 1201: 1200: 1199: 1189: 1184: 1179: 1178: 1177: 1166: 1164: 1158: 1157: 1155: 1154: 1149: 1144: 1139: 1134: 1128: 1126: 1120: 1119: 1117: 1116: 1111: 1106: 1101: 1096: 1091: 1085: 1083: 1074: 1070: 1069: 1067: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1030: 1028: 1024: 1023: 1021: 1020: 1015: 1010: 1005: 1000: 995: 993:Bremsstrahlung 990: 984: 982: 973: 972: 970: 969: 964: 959: 954: 949: 943: 941: 937: 936: 931: 929: 928: 921: 914: 906: 900: 899: 894: 874: 873:External links 871: 868: 867: 826: 783: 736: 679: 615: 561: 542:(1): 107–112. 526: 488: 421: 402:(2): 343–357. 381: 380: 378: 375: 373: 372: 366: 361: 356: 351: 346: 341: 339:Metal carbonyl 336: 331: 325: 323: 320: 319: 318: 315: 308: 306: 299: 292: 290: 283: 276: 274: 271: 264: 261: 260: 257: 250: 247: 238: 235: 234: 233: 230: 223: 222: 215: 212: 200: 197: 196: 195: 192: 189: 184: 181: 180: 179: 160: 157: 152: 149: 144: 140: 135: 125: 114: 110: 106: 102: 98: 95: 89: 86: 80: 77: 28: 25: 13: 10: 9: 6: 4: 3: 2: 1620: 1609: 1606: 1604: 1601: 1599: 1598:Electron beam 1596: 1595: 1593: 1578: 1577: 1568: 1566: 1565: 1556: 1555: 1552: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1503: 1501: 1497: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1455:Carl Zeiss AG 1453: 1452: 1450: 1448:Manufacturers 1446: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1399:James Hillier 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1361: 1359: 1355: 1352: 1348: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1270: 1267: 1266: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1221: 1219: 1215: 1205: 1202: 1198: 1195: 1194: 1193: 1190: 1188: 1185: 1183: 1180: 1176: 1173: 1172: 1171: 1168: 1167: 1165: 1163: 1159: 1153: 1152:Ultrafast SEM 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1129: 1127: 1125: 1121: 1115: 1112: 1110: 1109:Low-energy EM 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1086: 1084: 1082: 1078: 1075: 1071: 1065: 1062: 1060: 1059:Magnetic lens 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1031: 1029: 1025: 1019: 1016: 1014: 1011: 1009: 1008:Kikuchi lines 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 983: 978: 974: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 944: 942: 938: 934: 927: 922: 920: 915: 913: 908: 907: 904: 898: 895: 893: 889: 885: 884:981-270-076-5 881: 877: 876: 872: 863: 859: 855: 851: 847: 843: 835: 833: 831: 827: 822: 818: 814: 810: 806: 802: 799:(7): 1303–7. 798: 794: 787: 784: 779: 775: 771: 767: 763: 759: 756:(9): 096101. 755: 751: 747: 740: 737: 732: 728: 723: 718: 714: 710: 706: 702: 699:(2): 023002. 698: 694: 690: 683: 680: 675: 671: 666: 661: 657: 653: 649: 645: 642:(1): 014110. 641: 637: 633: 626: 624: 622: 620: 616: 611: 607: 603: 599: 595: 591: 587: 583: 576: 574: 572: 570: 568: 566: 562: 557: 553: 549: 545: 541: 537: 530: 527: 522: 518: 514: 510: 506: 502: 495: 493: 489: 484: 480: 475: 470: 466: 462: 457: 452: 448: 444: 440: 436: 432: 425: 422: 417: 413: 409: 405: 401: 397: 393: 386: 383: 376: 371: 367: 365: 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 326: 321: 312: 307: 304:grown by IBID 303: 296: 291: 288:grown by IBID 287: 286:bacteriophage 280: 275: 268: 263: 258: 255: 251: 248: 245: 244: 243: 236: 232:Higher purity 231: 228: 227: 226: 220: 216: 213: 210: 209: 208: 206: 198: 193: 190: 187: 186: 183:Disadvantages 182: 177: 173: 169: 165: 161: 158: 155: 154: 150: 148: 138: 131: 128:structure or 123: 118: 96: 94: 87: 85: 78: 76: 72: 68: 66: 62: 58: 54: 50: 41: 33: 26: 24: 22: 18: 1574: 1562: 1516:EM Data Bank 1480:Nion Company 1374:Dennis Gabor 1364:Albert Crewe 1142:Confocal SEM 1039:Electron gun 988:Auger effect 848:(17): 6791. 845: 841: 796: 793:Nano Letters 792: 786: 753: 749: 739: 696: 692: 682: 639: 635: 585: 581: 539: 535: 529: 507:(10): 1096. 504: 500: 441:(17): 5808. 438: 434: 424: 399: 395: 385: 240: 224: 202: 130:metallocenes 119: 100: 91: 82: 73: 69: 46: 16: 15: 1460:FEI Company 1394:Harald Rose 1384:Ernst Ruska 1073:Microscopes 981:with matter 979:interaction 344:Metallocene 300:A model of 284:A model of 65:sublimation 1592:Categories 1541:Multislice 1357:Developers 1217:Techniques 962:Microscope 957:Micrograph 377:References 151:Advantages 43:EBID setup 1409:Max Knoll 1064:Stigmator 588:(3): 55. 465:1996-1944 435:Materials 416:2159-6867 147:for GaN. 124:of Me(CO) 51:(SEM) or 1564:Category 1511:CrysTBox 1499:Software 1170:Cryo-TEM 977:Electron 821:16178228 778:19392535 731:27877950 674:27877936 610:93769658 483:37687502 474:10488958 322:See also 1576:Commons 1224:4D STEM 1197:4D STEM 1175:Cryo-ET 1147:SEM-XRF 1137:CryoSEM 1094:Cryo-EM 952:History 850:Bibcode 801:Bibcode 758:Bibcode 722:5099707 701:Bibcode 665:5099805 644:Bibcode 590:Bibcode 544:Bibcode 509:Bibcode 443:Bibcode 256:device) 27:Process 1521:EMsoft 1506:CASINO 1485:TESCAN 1350:Others 1249:cryoEM 940:Basics 890:  882:  819:  776:  729:  719:  672:  662:  608:  481:  471:  463:  414:  237:Shapes 1475:Leica 1321:PINEM 1187:HRTEM 1182:EFTEM 606:S2CID 254:SQUID 113:, TiO 109:, SiO 1536:IUCr 1470:JEOL 1341:WBDF 1336:WDXS 1286:EBIC 1281:EELS 1276:ECCI 1264:EBSD 1244:CBED 1192:STEM 888:ISBN 880:ISBN 817:PMID 774:PMID 727:PMID 670:PMID 479:PMID 461:ISSN 412:ISSN 168:EELS 1306:FEM 1301:FIB 1269:TKD 1259:EDS 1162:TEM 1124:SEM 1099:EMP 858:doi 846:515 809:doi 766:doi 754:102 717:PMC 709:doi 660:PMC 652:doi 598:doi 552:doi 540:151 517:doi 469:PMC 451:doi 404:doi 172:EDS 164:TEM 143:GaN 1594:: 1081:EM 886:, 856:. 844:. 829:^ 815:. 807:. 795:. 772:. 764:. 752:. 748:. 725:. 715:. 707:. 695:. 691:. 668:. 658:. 650:. 638:. 634:. 618:^ 604:. 596:. 586:31 584:. 564:^ 550:. 538:. 515:. 505:17 503:. 491:^ 477:. 467:. 459:. 449:. 439:16 437:. 433:. 410:. 398:. 394:. 174:, 170:, 166:, 134:WF 925:e 918:t 911:v 864:. 860:: 852:: 823:. 811:: 803:: 797:5 780:. 768:: 760:: 733:. 711:: 703:: 697:9 676:. 654:: 646:: 640:9 612:. 600:: 592:: 558:. 554:: 546:: 523:. 519:: 511:: 485:. 453:: 445:: 418:. 406:: 400:8 145:3 141:2 136:6 126:x 115:x 111:x 107:4 105:N 103:3

Index

scanning electron microscope


scanning electron microscope
scanning transmission electron microscope
ion-beam-induced deposition
focused ion beam
sublimation
metal carbonyls
metallocenes
WF6
TEM
EELS
EDS
electron diffraction
focused ion beam
focused ion beam
SQUID
Snapshots of growing a doll-like nanostructure by IBID
A model of bacteriophage grown by IBID
bacteriophage
A model of Leaning Tower of Pisa grown by IBID
Leaning Tower of Pisa
Letter Φ grown by EBID
Electron microscopy
Focused ion beam
Metal carbonyl
Metallocene
Organometallic chemistry
Scanning electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑