Knowledge (XXG)

Electron beam-induced deposition

Source đź“ť

43: 104:
meaning that secondary, backscattered and forward scattered (if the beam dwells on already deposited material) electrons contribute to the deposition. As these electrons can leave the substrate up to several microns away from the point of impact of the electron beam (depending on its energy), material deposition is not necessarily confined to the irradiated spot. To overcome this problem, compensation algorithms can be applied, which is typical for electron beam lithography.
278: 290: 1570: 306: 322: 232:(FIB) setup, which strongly limits characterization of the deposit during or right after the deposition. Only SEM-like imaging using secondary electrons is possible, and even that imaging is restricted to short observations due to sample damaging by the Ga beam. The use of a dual beam instrument, that combines a FIB and an SEM in one, circumvents this limitation. 1582: 51: 94:
Primary electron energies in SEMs or STEMs are usually between 10 and 300 keV, where reactions induced by electron impact, i.e. precursor dissociation, have a relatively low cross section. The majority of decomposition occurs via low energy electron impact: either by low energy secondary electrons,
85:
In the presence of the precursor gas, the electron beam is scanned over the substrate, resulting in deposition of material. The scanning is usually computer-controlled. The deposition rate depends on a variety of processing parameters, such as the partial precursor pressure, substrate temperature,
103:
Primary S(T)EM electrons can be focused into spots as small as ~0.045 nm. While the smallest structures deposited so far by EBID are point deposits of ~0.7 nm diameter, deposits usually have a larger lateral size than the beam spot size. The reason are the so-called proximity effects,
81:
When deposition occurs at a high temperature or involves corrosive gases, a specially designed deposition chamber is used; it is isolated from the microscope, and the beam is introduced into it through a micrometre-sized orifice. The small orifice size maintains differential pressure in the
252:
Nanostructures of virtually any 3-dimensional shape can be deposited using computer-controlled scanning of electron beam. Only the starting point has to be attached to the substrate, the rest of the structure can be free standing. The achieved shapes and devices are remarkable:
850:
Luxmoore, I; Ross, I; Cullis, A; Fry, P; Orr, J; Buckle, P; Jefferson, J (2007). "Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition".
218:, usually 30 keV Ga, is used instead of the electron beam. In both techniques, it is not the primary beam, but secondary electrons which cause the deposition. IBID has the following disadvantages as compared to EBID: 78:, and introduced, at accurately controlled rate, into the high-vacuum chamber of the electron microscope. Alternatively, solid precursors can be sublimated by the electron beam itself. 30:
is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a
150:, etc.) result in cleaner deposition, but are more difficult to handle as they are toxic and corrosive. Compound materials are deposited from specially crafted, exotic gases, e.g. D 1214: 112:
As of 2008 the range of materials deposited by EBID included Al, Au, amorphous carbon, diamond, Co, Cr, Cu, Fe, GaAs, GaN, Ge, Mo, Nb, Ni, Os, Pd, Pt, Rh, Ru, Re, Si, Si
1197: 1192: 143:. They are easily available, however, due to incorporation of carbon atoms from the CO ligands, deposits often exhibit a low metal content. Metal-halogen complexes ( 1341: 1044: 1331: 934: 1234: 1207: 167:
Very flexible regarding deposit shape and composition; the electron beam is lithographically controlled and a multitude of potential precursors is available
1142: 34:, which results in high spatial accuracy (potentially below one nanometer) and the possibility to produce free-standing, three-dimensional structures. 1202: 510:
Kiyohara, Shuji; Takamatsu, Hideaki; Mori, Katsumi (2002). "Microfabrication of diamond films by localized electron beam chemical vapour deposition".
369: 63: 1346: 128:, W, and was being expanded. The limiting factor is the availability of appropriate precursors, gaseous or having a low sublimation temperature. 202:
Controlling the elemental or chemical deposit composition is still a major challenge, as the precursor decomposition pathways are mostly unknown
1162: 277: 95:
which cross the substrate-vacuum interface and contribute to the total current density, or inelastically scattered (backscattered) electrons.
1286: 1152: 1099: 902: 907: 1541: 1269: 1254: 1180: 225:
Ga ions introduce additional contamination and radiation damage to the deposited structure, which is important for electronic applications.
182: 74:
is applied instead. Precursor materials are typically liquid or solid and gasified prior to deposition, usually through vaporization or
908:
K. Molhave: "Tools for in-situ manipulations and characterization of nanostructures", PhD thesis, Technical University of Denmark, 2004
1291: 1124: 977: 927: 894: 1279: 1274: 1172: 1147: 1114: 545:
Nayak, A.; Banerjee, H. D. (1995). "Electron beam activated plasma chemical vapour deposition of polycrystalline diamond films".
374: 289: 174: 1351: 1336: 1316: 1054: 305: 1119: 962: 889:"Nanofabrication: Fundamentals and Applications" Ed.: Ampere A. Tseng, World Scientific Publishing Company (March 4, 2008), 1586: 1296: 1259: 1104: 1613: 1574: 1134: 920: 364: 59: 31: 802:
Van Dorp, Willem F. (2005). "Approaching the Resolution Limit of Nanometer-Scale Electron Beam-Induced Deposition".
42: 1321: 1239: 67: 700:"Fabrication and characterization of nanostructures on insulator substrates by electron-beam-induced deposition" 82:
microscope (vacuum) and deposition chamber (no vacuum). Such deposition mode has been used for EBID of diamond.
1546: 1500: 1326: 591:
Randolph, S.; Fowlkes, J.; Rack, P. (2006). "Focused, Nanoscale Electron-Beam-Induced Deposition and Etching".
359: 1536: 1618: 1249: 1185: 1059: 1018: 75: 1608: 1439: 1444: 1264: 401:
Carden, Will G.; Lu, Hang; Spencer, Julie A.; Fairbrother, D. Howard; McElwee-White, Lisa (2018-06-01).
312: 199:
Serial material deposition and low deposition rates in general limit throughput and thus mass production
144: 1449: 1008: 860: 811: 768: 711: 654: 600: 554: 519: 453: 442:"Advances in Focused Ion Beam Tomography for Three-Dimensional Characterization in Materials Science" 189:) during or right after deposition. In situ electrical and optical characterization is also possible. 186: 86:
electron beam parameters, applied current density, etc. It usually is in the order of 10 nm/s.
1414: 1399: 1306: 1301: 1244: 1109: 1091: 1023: 1013: 957: 943: 339: 321: 222:
Angular spread of secondary electrons is larger in IBID thus resulting in lower spatial resolution.
440:
Mura, Francesco; Cognigni, Flavio; Ferroni, Matteo; Morandi, Vittorio; Rossi, Marco (2023-08-24).
1485: 1064: 1028: 616: 380: 17: 1429: 1424: 898: 890: 827: 784: 737: 680: 489: 471: 422: 1379: 1311: 868: 819: 776: 727: 719: 670: 662: 608: 562: 527: 479: 461: 414: 344: 229: 215: 71: 1434: 214:
Ion-beam-induced deposition (IBID) is very similar to EBID with the major difference that
864: 815: 772: 715: 658: 604: 558: 523: 484: 457: 441: 1389: 1003: 732: 723: 699: 675: 666: 642: 349: 132: 531: 173:
The deposited material can be characterized using the electron microscopy techniques (
1602: 1465: 1409: 1069: 296: 1516: 620: 170:
Lateral size of the produced structures and accuracy of deposition are unprecedented
1526: 1490: 1384: 1374: 1049: 998: 780: 403:"Mechanism-based design of precursors for focused electron beam-induced deposition" 140: 1470: 1404: 1394: 643:"Nanofabrication by advanced electron microscopy using intense and focused beam" 354: 1551: 972: 967: 872: 612: 475: 426: 1419: 1074: 566: 831: 788: 741: 684: 493: 1521: 987: 418: 1531: 1475: 1157: 466: 912: 823: 402: 50: 1495: 756: 131:
The most popular precursors for deposition of elemental solids are
264: 49: 41: 1480: 178: 916: 205:
Proximity effects can lead to unintended structure broadening
757:"Atomic-Resolution Imaging with a Sub-50-pm Electron Probe" 755:
Erni, Rolf; Rossell, MD; Kisielowski, C; Dahmen, U (2009).
593:
Critical Reviews of Solid State and Materials Sciences
283:
Snapshots of growing a doll-like nanostructure by IBID
1509: 1458: 1367: 1360: 1227: 1171: 1133: 1090: 1083: 1037: 986: 950: 1342:Serial block-face scanning electron microscopy 1045:Detectors for transmission electron microscopy 928: 8: 66:(STEM) is commonly used. Another method is 1364: 1087: 935: 921: 913: 731: 674: 483: 465: 370:Scanning transmission electron microscopy 64:scanning transmission electron microscope 845: 843: 841: 393: 273: 28:Electron-beam-induced deposition (EBID) 505: 503: 636: 634: 632: 630: 7: 1581: 586: 584: 582: 580: 578: 576: 512:Semiconductor Science and Technology 25: 978:Timeline of microscope technology 1580: 1569: 1568: 375:Transmission electron microscopy 320: 304: 288: 276: 18:Electron beam induced deposition 1337:Precession electron diffraction 58:The focused electron beam of a 781:10.1103/PhysRevLett.102.096101 698:M. Song and K. Furuya (2008). 1: 724:10.1088/1468-6996/9/2/023002 667:10.1088/1468-6996/9/1/014110 365:Scanning electron microscope 236:The advantages of IBID are: 60:scanning electron microscope 32:scanning electron microscope 532:10.1088/0268-1242/17/10/311 240:Much higher deposition rate 210:Ion-beam-induced deposition 68:ion-beam-induced deposition 1635: 1322:Immune electron microscopy 1240:Annular dark-field imaging 1055:Everhart–Thornley detector 46:Scheme of the EBID process 1564: 1476:Hitachi High-Technologies 873:10.1016/j.tsf.2007.02.029 613:10.1080/10408430600930438 270:Superconducting nanowires 263:Nanoloops (potential nano 1501:Thermo Fisher Scientific 1327:Geometric phase analysis 1215:Aberration-Corrected TEM 704:Sci. Technol. Adv. Mater 647:Sci. Technol. Adv. Mater 360:Organometallic chemistry 108:Materials and precursors 1250:Charge contrast imaging 1060:Field electron emission 761:Physical Review Letters 567:10.1002/pssa.2211510112 547:Physica Status Solidi A 228:Deposition occurs in a 1440:Thomas Eugene Everhart 327:Letter Φ grown by EBID 55: 47: 1445:Vernon Ellis Cosslett 1265:Dark-field microscopy 313:Leaning Tower of Pisa 257:World smallest magnet 53: 45: 1450:Vladimir K. Zworykin 1100:Correlative light EM 1009:Electron diffraction 187:electron diffraction 90:Deposition mechanism 1614:Electron microscopy 1415:Manfred von Ardenne 1400:Gerasimos Danilatos 1307:Electron tomography 1302:Electron holography 1245:Cathodoluminescence 1024:Secondary electrons 1014:Electron scattering 958:Electron microscopy 944:Electron microscopy 865:2007TSF...515.6791L 816:2005NanoL...5.1303V 773:2009PhRvL.102i6101E 716:2008STAdM...9b3002S 659:2008STAdM...9a4110F 605:2006CRSSM..31...55R 559:1995PSSAR.151..107N 524:2002SeScT..17.1096K 458:2023Mate...16.5808M 419:10.1557/mrc.2018.77 340:Electron microscopy 1537:Digital Micrograph 1143:Environmental SEM 1065:Field emission gun 1029:X-ray fluorescence 641:K. Furuya (2008). 467:10.3390/ma16175808 407:MRS Communications 381:Lisa McElwee-White 379:Researcher : 99:Spatial resolution 56: 48: 1596: 1595: 1560: 1559: 1430:Nestor J. Zaluzec 1425:Maximilian Haider 1223: 1222: 903:978-981-270-076-6 824:10.1021/nl050522i 260:Fractal nanotrees 16:(Redirected from 1626: 1584: 1583: 1572: 1571: 1380:Bodo von Borries 1365: 1125:Photoemission EM 1088: 937: 930: 923: 914: 877: 876: 853:Thin Solid Films 847: 836: 835: 799: 793: 792: 752: 746: 745: 735: 695: 689: 688: 678: 638: 625: 624: 588: 571: 570: 542: 536: 535: 507: 498: 497: 487: 469: 437: 431: 430: 398: 345:Focused ion beam 324: 308: 292: 280: 230:focused ion beam 216:focused ion beam 72:focused ion beam 70:(IBID), where a 21: 1634: 1633: 1629: 1628: 1627: 1625: 1624: 1623: 1599: 1598: 1597: 1592: 1556: 1505: 1454: 1435:Ondrej Krivanek 1356: 1219: 1167: 1129: 1115:Liquid-Phase EM 1079: 1038:Instrumentation 1033: 991: 982: 946: 941: 886: 881: 880: 849: 848: 839: 801: 800: 796: 754: 753: 749: 697: 696: 692: 640: 639: 628: 590: 589: 574: 544: 543: 539: 509: 508: 501: 439: 438: 434: 400: 399: 395: 390: 385: 335: 328: 325: 316: 309: 300: 293: 284: 281: 250: 212: 196: 164: 157: 153: 148: 138: 133:metal carbonyls 127: 123: 119: 115: 110: 101: 92: 40: 23: 22: 15: 12: 11: 5: 1632: 1630: 1622: 1621: 1619:Nanotechnology 1616: 1611: 1601: 1600: 1594: 1593: 1591: 1590: 1578: 1565: 1562: 1561: 1558: 1557: 1555: 1554: 1549: 1544: 1542:Direct methods 1539: 1534: 1529: 1524: 1519: 1513: 1511: 1507: 1506: 1504: 1503: 1498: 1493: 1488: 1483: 1478: 1473: 1468: 1462: 1460: 1456: 1455: 1453: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1390:Ernst G. Bauer 1387: 1382: 1377: 1371: 1369: 1362: 1358: 1357: 1355: 1354: 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1299: 1294: 1289: 1284: 1283: 1282: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1231: 1229: 1225: 1224: 1221: 1220: 1218: 1217: 1212: 1211: 1210: 1200: 1195: 1190: 1189: 1188: 1177: 1175: 1169: 1168: 1166: 1165: 1160: 1155: 1150: 1145: 1139: 1137: 1131: 1130: 1128: 1127: 1122: 1117: 1112: 1107: 1102: 1096: 1094: 1085: 1081: 1080: 1078: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1041: 1039: 1035: 1034: 1032: 1031: 1026: 1021: 1016: 1011: 1006: 1004:Bremsstrahlung 1001: 995: 993: 984: 983: 981: 980: 975: 970: 965: 960: 954: 952: 948: 947: 942: 940: 939: 932: 925: 917: 911: 910: 905: 885: 884:External links 882: 879: 878: 837: 794: 747: 690: 626: 572: 553:(1): 107–112. 537: 499: 432: 413:(2): 343–357. 392: 391: 389: 386: 384: 383: 377: 372: 367: 362: 357: 352: 350:Metal carbonyl 347: 342: 336: 334: 331: 330: 329: 326: 319: 317: 310: 303: 301: 294: 287: 285: 282: 275: 272: 271: 268: 261: 258: 249: 246: 245: 244: 241: 234: 233: 226: 223: 211: 208: 207: 206: 203: 200: 195: 192: 191: 190: 171: 168: 163: 160: 155: 151: 146: 136: 125: 121: 117: 113: 109: 106: 100: 97: 91: 88: 39: 36: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1631: 1620: 1617: 1615: 1612: 1610: 1609:Electron beam 1607: 1606: 1604: 1589: 1588: 1579: 1577: 1576: 1567: 1566: 1563: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1514: 1512: 1508: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1466:Carl Zeiss AG 1464: 1463: 1461: 1459:Manufacturers 1457: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1410:James Hillier 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1372: 1370: 1366: 1363: 1359: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1281: 1278: 1277: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1230: 1226: 1216: 1213: 1209: 1206: 1205: 1204: 1201: 1199: 1196: 1194: 1191: 1187: 1184: 1183: 1182: 1179: 1178: 1176: 1174: 1170: 1164: 1163:Ultrafast SEM 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1140: 1138: 1136: 1132: 1126: 1123: 1121: 1120:Low-energy EM 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1097: 1095: 1093: 1089: 1086: 1082: 1076: 1073: 1071: 1070:Magnetic lens 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1042: 1040: 1036: 1030: 1027: 1025: 1022: 1020: 1019:Kikuchi lines 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 996: 994: 989: 985: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 955: 953: 949: 945: 938: 933: 931: 926: 924: 919: 918: 915: 909: 906: 904: 900: 896: 895:981-270-076-5 892: 888: 887: 883: 874: 870: 866: 862: 858: 854: 846: 844: 842: 838: 833: 829: 825: 821: 817: 813: 810:(7): 1303–7. 809: 805: 798: 795: 790: 786: 782: 778: 774: 770: 767:(9): 096101. 766: 762: 758: 751: 748: 743: 739: 734: 729: 725: 721: 717: 713: 710:(2): 023002. 709: 705: 701: 694: 691: 686: 682: 677: 672: 668: 664: 660: 656: 653:(1): 014110. 652: 648: 644: 637: 635: 633: 631: 627: 622: 618: 614: 610: 606: 602: 598: 594: 587: 585: 583: 581: 579: 577: 573: 568: 564: 560: 556: 552: 548: 541: 538: 533: 529: 525: 521: 517: 513: 506: 504: 500: 495: 491: 486: 481: 477: 473: 468: 463: 459: 455: 451: 447: 443: 436: 433: 428: 424: 420: 416: 412: 408: 404: 397: 394: 387: 382: 378: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 346: 343: 341: 338: 337: 332: 323: 318: 315:grown by IBID 314: 307: 302: 299:grown by IBID 298: 297:bacteriophage 291: 286: 279: 274: 269: 266: 262: 259: 256: 255: 254: 247: 243:Higher purity 242: 239: 238: 237: 231: 227: 224: 221: 220: 219: 217: 209: 204: 201: 198: 197: 194:Disadvantages 193: 188: 184: 180: 176: 172: 169: 166: 165: 161: 159: 149: 142: 139:structure or 134: 129: 107: 105: 98: 96: 89: 87: 83: 79: 77: 73: 69: 65: 61: 52: 44: 37: 35: 33: 29: 19: 1585: 1573: 1527:EM Data Bank 1491:Nion Company 1385:Dennis Gabor 1375:Albert Crewe 1153:Confocal SEM 1050:Electron gun 999:Auger effect 859:(17): 6791. 856: 852: 807: 804:Nano Letters 803: 797: 764: 760: 750: 707: 703: 693: 650: 646: 596: 592: 550: 546: 540: 518:(10): 1096. 515: 511: 452:(17): 5808. 449: 445: 435: 410: 406: 396: 251: 235: 213: 141:metallocenes 130: 111: 102: 93: 84: 80: 57: 27: 26: 1471:FEI Company 1405:Harald Rose 1395:Ernst Ruska 1084:Microscopes 992:with matter 990:interaction 355:Metallocene 311:A model of 295:A model of 76:sublimation 1603:Categories 1552:Multislice 1368:Developers 1228:Techniques 973:Microscope 968:Micrograph 388:References 162:Advantages 54:EBID setup 1420:Max Knoll 1075:Stigmator 599:(3): 55. 476:1996-1944 446:Materials 427:2159-6867 158:for GaN. 135:of Me(CO) 62:(SEM) or 1575:Category 1522:CrysTBox 1510:Software 1181:Cryo-TEM 988:Electron 832:16178228 789:19392535 742:27877950 685:27877936 621:93769658 494:37687502 485:10488958 333:See also 1587:Commons 1235:4D STEM 1208:4D STEM 1186:Cryo-ET 1158:SEM-XRF 1148:CryoSEM 1105:Cryo-EM 963:History 861:Bibcode 812:Bibcode 769:Bibcode 733:5099707 712:Bibcode 676:5099805 655:Bibcode 601:Bibcode 555:Bibcode 520:Bibcode 454:Bibcode 267:device) 38:Process 1532:EMsoft 1517:CASINO 1496:TESCAN 1361:Others 1260:cryoEM 951:Basics 901:  893:  830:  787:  740:  730:  683:  673:  619:  492:  482:  474:  425:  248:Shapes 1486:Leica 1332:PINEM 1198:HRTEM 1193:EFTEM 617:S2CID 265:SQUID 124:, TiO 120:, SiO 1547:IUCr 1481:JEOL 1352:WBDF 1347:WDXS 1297:EBIC 1292:EELS 1287:ECCI 1275:EBSD 1255:CBED 1203:STEM 899:ISBN 891:ISBN 828:PMID 785:PMID 738:PMID 681:PMID 490:PMID 472:ISSN 423:ISSN 179:EELS 1317:FEM 1312:FIB 1280:TKD 1270:EDS 1173:TEM 1135:SEM 1110:EMP 869:doi 857:515 820:doi 777:doi 765:102 728:PMC 720:doi 671:PMC 663:doi 609:doi 563:doi 551:151 528:doi 480:PMC 462:doi 415:doi 183:EDS 175:TEM 154:GaN 1605:: 1092:EM 897:, 867:. 855:. 840:^ 826:. 818:. 806:. 783:. 775:. 763:. 759:. 736:. 726:. 718:. 706:. 702:. 679:. 669:. 661:. 649:. 645:. 629:^ 615:. 607:. 597:31 595:. 575:^ 561:. 549:. 526:. 516:17 514:. 502:^ 488:. 478:. 470:. 460:. 450:16 448:. 444:. 421:. 409:. 405:. 185:, 181:, 177:, 145:WF 936:e 929:t 922:v 875:. 871:: 863:: 834:. 822:: 814:: 808:5 791:. 779:: 771:: 744:. 722:: 714:: 708:9 687:. 665:: 657:: 651:9 623:. 611:: 603:: 569:. 565:: 557:: 534:. 530:: 522:: 496:. 464:: 456:: 429:. 417:: 411:8 156:3 152:2 147:6 137:x 126:x 122:x 118:4 116:N 114:3 20:)

Index

Electron beam induced deposition
scanning electron microscope


scanning electron microscope
scanning transmission electron microscope
ion-beam-induced deposition
focused ion beam
sublimation
metal carbonyls
metallocenes
WF6
TEM
EELS
EDS
electron diffraction
focused ion beam
focused ion beam
SQUID
Snapshots of growing a doll-like nanostructure by IBID
A model of bacteriophage grown by IBID
bacteriophage
A model of Leaning Tower of Pisa grown by IBID
Leaning Tower of Pisa
Letter Φ grown by EBID
Electron microscopy
Focused ion beam
Metal carbonyl
Metallocene
Organometallic chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑