Knowledge (XXG)

Electric power quality

Source đź“ť

501:
over a long period of time, of at least a month, two months or even a year. The compression is performed in real time, as the signals are acquired; it calculates a compression decision before all the compressed data is received. For instance should one parameter remain constant, and various others fluctuate, the compression decision retains only what is relevant from the constant data, and retains all the fluctuation data. It then decomposes the waveform of the power signal of numerous components, over various periods of the waveform. It concludes the process by compressing the values of at least some of these components over different periods, separately. This real time compression algorithm, performed independent of the sampling, prevents data gaps and has a typical 1000:1 compression ratio.
239:"Undervoltage" occurs when the nominal voltage drops below 90% for more than 1 minute. The term "brownout" is an apt description for voltage drops somewhere between full power (bright lights) and a blackout (no power – no light). It comes from the noticeable to significant dimming of regular incandescent lights, during system faults or overloading etc., when insufficient power is available to achieve full brightness in (usually) domestic lighting. This term is in common usage has no formal definition but is commonly used to describe a reduction in system voltage by the utility or system operator to decrease demand or to increase system operating margins. 90: 1247: 1826: 305:
site may cause a transient that affects all other customers on the same subsystem. Problems, such as harmonics, arise within the customer’s own installation and may propagate onto the network and affect other customers. Harmonic problems can be dealt with by a combination of good design practice and well proven reduction equipment.
480:
instance, at a sampling rate of 32 samples per cycle, 1,920 samples are collected per second. For three-phase meters that measure both voltage and current waveforms, the data is 6–8 times as much. More practical solutions developed in recent years store data only when an event occurs (for example, when high levels of power system
156: 530:
algorithms can be significant. By using prediction and modeling on the stored time series in the actual power quality archive the efficiency of post processing compression is usually further improved. This combination of simplistic techniques implies savings in both data storage and data acquisition
500:
methods) that enables meters to continuously store the waveform of one or more power signals, regardless whether or not an event of interest was identified. This algorithm referred to as PQZip empowers a processor with a memory that is sufficient to store the waveform, under normal power conditions,
144:
problem: is the equipment connected to the grid compatible with the events on the grid, and is the power delivered by the grid, including the events, compatible with the equipment that is connected? Compatibility problems always have at least two solutions: in this case, either clean up the power,
74:
then moves through the wiring system of the end user until it reaches the load. The complexity of the system to move electric energy from the point of production to the point of consumption combined with variations in weather, generation, demand and other factors provide many opportunities for the
304:
Each of these power quality problems has a different cause. Some problems are a result of the shared infrastructure. For example, a fault on the network may cause a dip that will affect some customers; the higher the level of the fault, the greater the number affected. A problem on one customer’s
33:
is the degree to which the voltage, frequency, and waveform of a power supply system conform to established specifications. Good power quality can be defined as a steady supply voltage that stays within the prescribed range, steady AC frequency close to the rated value, and smooth voltage curve
479:
In order to sufficiently monitor unforeseen events, Ribeiro et al. explains that it is not enough to display these parameters, but to also capture voltage waveform data at all times. This is impracticable due to the large amount of data involved, causing what is known the “bottle effect”. For
42:
and the load's ability to function properly. Without the proper power, an electrical device (or load) may malfunction, fail prematurely or not operate at all. There are many ways in which electric power can be of poor quality, and many more causes of such poor quality power.
334:
atop the sine wave. High-quality UPS units utilize a double conversion topology which breaks down incoming AC power into DC, charges the batteries, then remanufactures an AC sine wave. This remanufactured sine wave is of higher quality than the original AC power feed.
847: 513:
is generation of data archive aggregated over given interval. Most typically 10 minute or 1 minute interval is used as specified by the IEC/IEEE PQ standards. A significant archive sizes are created during an operation of such instrument. As Kraus
407:
used in the analysis of power quality. To provide high quality electric power service, it is essential to monitor the quality of the electric signals also termed as power quality (PQ) at different locations along an electrical
38:). In general, it is useful to consider power quality as the compatibility between what comes out of an electric outlet and the load that is plugged into it. The term is used to describe electric power that drives an 221:" in lighting equipment. Flicker is rapid visible changes of light level. Definition of the characteristics of voltage fluctuations that produce objectionable light flicker has been the subject of ongoing research. 214:
A "dip" (in British English) or a "sag" (in American English the two terms are equivalent) is the opposite situation: the RMS voltage is below the nominal voltage by 10 to 90% for 0.5 cycle to 1 minute.
294:
Typically, generators cause voltage distortions and loads cause current distortions. These distortions occur as oscillations more rapid than the nominal frequency, and are referred to as harmonics.
548:
IEC 61000-4-30 is the standard defining methods for monitoring power quality. Edition 3 (2015) includes current measurements, unlike earlier editions which related to voltage measurement alone.
149: 630: 545:
IEEE-519 is the North American guideline for power systems. It is defined as "recommended practice" and, unlike EN50160, this guideline refers to current distortion as well as voltage.
383:
features of rapid sensing and automated self healing of anomalies in the network promises to bring higher quality power and less downtime while simultaneously supporting power from
583: 416:
and blackouts. This is particularly critical at sites where the environment and public safety are at risk (institutions such as hospitals, sewage treatment plants, mines, etc.).
484:
are detected) or alternatively to store the RMS value of the electrical signals. This data, however, is not always sufficient to determine the exact nature of problems.
412:. Electrical utilities carefully monitor waveforms and currents at various network locations constantly, to understand what lead up to any unforeseen events such as a 291:
The oscillation of voltage and current ideally follows the form of a sine or cosine function, however it can alter due to imperfections in the generators or loads.
1098: 300:
Low harmonic content in a waveform is ideal because harmonics can cause vibrations, buzzing, equipment distortions, and losses and overheating in transformers.
1771: 424:
Engineers use many kinds of meters, that read and display electrical power waveforms and calculate parameters of the waveforms. They measure, for example:
542:
EN50160 is the European standard for power quality, setting the acceptable limits of distortion for the different parameters defining voltage in AC power.
845:, Nisenblat, Pol; Broshi, Amir M. & Efrati, Ofir, "Power Quality Monitoring", published April 18, 2004, issued September 21, 2006 519: 641: 327:(temporary) condition on the line. However, cheaper UPS units create poor-quality power themselves, akin to imposing a higher-frequency and lower- 1066: 1043: 1024: 1005: 929: 339: 86:—that is actually described by the term. Power is simply the flow of energy, and the current demanded by a load is largely uncontrollable. 1829: 874: 702: 539:
The quality of electricity supplied is set forth in international standards and their local derivatives, adopted by different countries:
270:
Nonzero high-frequency impedance (when a load demands a large amount of current, then suddenly stops demanding it, there will be a dip or
1668: 1776: 1246: 1091: 967: 948: 678: 1855: 1396: 986: 798: 762:. Nov. 29-Dec. 2, 2001, IEEE, The 27th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. pp. 676–681. 605: 281:
at lower frequencies (usually less than 3 kHz) and described as Common Mode Distortion or Interharmonics at higher frequencies.
379:(PMU) distributed throughout their network to monitor power quality and in some cases respond automatically to them. Using such 1850: 1559: 1484: 1355: 1731: 1663: 1653: 1529: 1429: 1084: 781:
Ribeiro; et al. (Apr 2004). "An improved method for signal processing and compression in power quality evaluation".
297:
The relative contribution of harmonics to the distortion of the ideal waveform is called total harmonic distortion (THD).
1584: 1544: 1121: 320: 278: 133: 211:
When the RMS voltage exceeds the nominal voltage by 10 to 80% for 0.5 cycle to 1 minute, the event is called a "swell".
1811: 1806: 1524: 1499: 1489: 1465: 1460: 1166: 557: 63: 59: 217:
Random or repetitive variations in the RMS voltage between 90 and 110% of nominal can produce a phenomenon known as "
1058: 1860: 1726: 1444: 1414: 1191: 384: 1781: 1270: 1231: 451: 1756: 1564: 1504: 1161: 758:
Ribeiro; et al. (2001). "An enhanced data compression method for applications in power quality analysis".
1695: 1685: 1675: 376: 324: 127: 47: 891:"IEEE 519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems" 106: 1616: 1479: 1262: 869:. 20th International Conference and Exhibition on Electricity Distribution, 8–11 June 2009. pp. 1–4. 388: 118: 51: 1751: 1519: 1514: 1494: 842: 1345: 1107: 593: 562: 527: 264: 172: 510: 171:) or system specifications (in the case of a power feed not directly attached to the mains) with an 1716: 1549: 1449: 1424: 1377: 1186: 1176: 1141: 89: 1590: 1201: 816: 804: 409: 358: 218: 710: 148:
The tolerance of data-processing equipment to voltage variations is often characterized by the
1741: 1621: 1226: 1062: 1039: 1020: 1001: 982: 963: 944: 925: 870: 867:
CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1
794: 684: 674: 601: 597: 497: 446: 364: 313: 257: 168: 67: 191:
No real-life power source is ideal and generally can deviate in at least the following ways:
1690: 1631: 1335: 1330: 1307: 1216: 1156: 786: 763: 740: 582: 428: 205: 110: 102:
The quality of electrical power may be described as a set of values of parameters, such as:
83: 1721: 1680: 1658: 1539: 1509: 1474: 1434: 1236: 828: 346: 39: 703:"Harmonic filtering in a data center? [A Power Quality discussion on UPS design]" 1746: 1736: 1534: 1146: 229: 141: 1844: 1766: 1554: 1439: 1419: 1350: 1340: 1297: 1181: 1136: 271: 225: 152:, which give the duration and magnitude of voltage variations that can be tolerated. 114: 808: 1786: 1761: 1626: 1595: 1409: 1211: 441: 413: 17: 863:"Lossless encodings and compression algorithms applied on power quality datasets" 1611: 1579: 1372: 1360: 1280: 1206: 1196: 1126: 331: 243: 71: 862: 1574: 1569: 1382: 1365: 1221: 767: 380: 167:
having an amplitude and frequency given by national standards (in the case of
78:
While "power quality" is a convenient term for many, it is the quality of the
790: 688: 1290: 1285: 1171: 1131: 890: 783:
2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491)
481: 404: 350: 328: 233: 201: 180: 164: 35: 731:
Galli; et al. (Oct 1996). "Exploring the power of wavelet analysis".
246:" occurs when the nominal voltage rises above 110% for more than 1 minute. 117:
or overages below or above a threshold level thereby causing blackouts or
1404: 920:
Dugan, Roger C.; Mark McGranaghan; Surya Santoso; H. Wayne Beaty (2003).
354: 55: 1053:
Chattopadhyay, Surajit; Mitra, Madhuchhanda; Sengupta, Samarjit (2011).
155: 1325: 1315: 1076: 432: 79: 744: 1320: 496:
proposes the idea of power quality compression algorithm (similar to
979:
Understanding Power Quality Problems: Voltage Sags and Interruptions
70:
located at the premises of the end user of the electric power. The
154: 88: 208:(RMS) voltage are both important to different types of equipment. 1275: 962:. Stars in a Circle Publications. Library Of Congress 621.3191. 895: 523: 518:
have demonstrated the compression ratio on such archives using
274:
in the voltage due to the inductances in the power supply line).
1080: 176: 323:(UPS) can be used to switch off of mains power if there is a 438:
phase relationship between waveforms of a multi-phase signal
357:
can protect against most overvoltage conditions, while a
342:(SSSC) are utilized for series voltage-sag compensation. 228:", "impulses", or "surges", generally caused by large 277:
Variations in the wave shape – usually described as
1795: 1705: 1642: 1604: 1458: 1395: 1306: 1261: 1254: 1114: 861:Kraus, Jan; Tobiska, Tomas; Bubla, Viktor (2009). 640:. Pacific Gas and Electric Company. Archived from 391:, which would if unchecked degrade power quality. 267:(when a load draws more power, the voltage drops). 140:It is often useful to think of power quality as a 93:Frequency stability of some large electrical grids 941:Electric Power Systems: A Conceptual Introduction 585:Electric power systems: a conceptual introduction 224:Abrupt, very brief increases in voltage, called " 163:Ideally, AC voltage is supplied by a utility as 316:is modifying the power to improve its quality. 1092: 8: 664: 662: 27:Measurement of power meeting specifications 1258: 1099: 1085: 1077: 671:Distributed photovoltaic grid transformers 124:Variation in voltage magnitude (see below) 669:Shertukde, Hemchandra Madhusudan (2014). 785:. Vol. 19. IEEE. pp. 464–471. 573: 824: 814: 338:A dynamic voltage regulator (DVR) and 145:or make the equipment more resilient. 340:static synchronous series compensator 232:being turned ON, or more severely by 136:content in the waveforms for AC power 75:quality of supply to be compromised. 7: 1036:Power Quality in Electrical Systems 1034:Kusko, Alex; Marc Thompson (2007). 733:IEEE Computer Applications in Power 401:power quality compression algorithm 1777:Renewable energy commercialization 375:Modern systems use sensors called 25: 520:Lempel–Ziv–Markov chain algorithm 1825: 1824: 1245: 922:Electrical Power Systems Quality 361:protects against severe spikes. 943:. John Wiley & Sons, Inc. 924:. McGraw-Hill Companies, Inc. 1: 1772:Renewable Energy Certificates 1732:Cost of electricity by source 1654:Arc-fault circuit interrupter 1530:High-voltage shore connection 939:Meier, Alexandra von (2006). 581:Von Meier, Alexandra (2006). 371:Smart grids and power quality 1787:Spark/Dark/Quark/Bark spread 1585:Transmission system operator 1545:Mains electricity by country 1122:Automatic generation control 631:"Voltage Tolerance Boundary" 321:uninterruptible power supply 34:waveform (which resembles a 1812:List of electricity sectors 1807:Electric energy consumption 1525:High-voltage direct current 1500:Electric power transmission 1490:Electric power distribution 1167:Energy return on investment 558:Dynamic voltage restoration 505:Aggregated data compression 64:electric power distribution 60:electric power transmission 1877: 1727:Carbon offsets and credits 1445:Three-phase electric power 977:Bollen, Math H.J. (2000). 620:Energy Storage Association 385:intermittent power sources 1820: 1782:Renewable Energy Payments 1271:Fossil fuel power station 1243: 1059:Springer Science+Business 1017:Handbook of Power Quality 768:10.1109/IECON.2001.976594 673:. CRC Press. p. 91. 452:total harmonic distortion 1856:Electrical power control 1565:Single-wire earth return 1505:Electrical busbar system 1162:Energy demand management 981:. New York: IEEE Press. 791:10.1109/PES.2003.1270480 509:A typical function of a 377:phasor measurement units 1696:Residual-current device 1686:Power system protection 1676:Generator interlock kit 469:reactive energy (kVArh) 48:electric power industry 1851:Electric power quality 1480:Distributed generation 1152:Electric power quality 1055:Electric Power Quality 960:Electric Power Quality 472:apparent energy (kVAh) 389:distributed generation 367:can remove harmonics. 263:Nonzero low-frequency 160: 94: 82:—rather than power or 52:electricity generation 31:Electric power quality 1752:Fossil fuel phase-out 1520:Electricity retailing 1515:Electrical substation 1495:Electric power system 996:Sankaran, C. (2002). 594:John Wiley & Sons 460:reactive power (kVAr) 395:Compression algorithm 158: 130:voltages and currents 107:Continuity of service 92: 1108:Electricity delivery 1015:Baggini, A. (2008). 958:Heydt, G.T. (1991). 563:Rapid voltage change 528:lossless compression 488:Raw data compression 463:apparent power (kVA) 1717:Availability factor 1669:Sulfur hexafluoride 1550:Overhead power line 1450:Virtual power plant 1425:Induction generator 1378:Sustainable biofuel 1187:Home energy storage 1177:Grid energy storage 1142:Droop speed control 466:active energy (kWh) 18:Electrical overload 1591:Transmission tower 1202:Nameplate capacity 739:(4). IEEE: 37–41. 365:Electronic filters 359:lightning arrester 314:Power conditioning 309:Power conditioning 256:Variations in the 200:Variations in the 161: 95: 1861:Power engineering 1838: 1837: 1742:Environmental tax 1622:Cascading failure 1391: 1390: 1227:Utility frequency 1068:978-94-007-0634-7 1045:978-0-07-147075-9 1026:978-0-470-06561-7 1007:978-0-8493-1040-9 1000:. CRC Press LLC. 931:978-0-07-138622-7 745:10.1109/67.539845 707:DataCenterFix.com 526:or other similar 498:lossy compression 457:active power (kW) 68:electricity meter 16:(Redirected from 1868: 1828: 1827: 1737:Energy subsidies 1691:Protective relay 1632:Rolling blackout 1259: 1249: 1217:Power-flow study 1157:Electrical fault 1101: 1094: 1087: 1078: 1072: 1049: 1030: 1011: 992: 973: 954: 935: 907: 906: 904: 903: 887: 881: 880: 876:978-1-84919126-5 858: 852: 851: 850: 846: 839: 833: 832: 826: 822: 820: 812: 778: 772: 771: 755: 749: 748: 728: 722: 721: 719: 718: 709:. Archived from 699: 693: 692: 666: 657: 656: 654: 652: 646: 635: 627: 621: 618: 612: 611: 591: 588: 578: 206:root mean square 111:electrical power 84:electric current 21: 1876: 1875: 1871: 1870: 1869: 1867: 1866: 1865: 1841: 1840: 1839: 1834: 1816: 1800: 1798: 1791: 1722:Capacity factor 1710: 1708: 1701: 1681:Numerical relay 1659:Circuit breaker 1647: 1645: 1638: 1600: 1540:Load management 1510:Electrical grid 1475:Demand response 1468: 1463: 1454: 1435:Microgeneration 1387: 1302: 1250: 1241: 1237:Vehicle-to-grid 1110: 1105: 1075: 1069: 1052: 1046: 1038:. McGraw Hill. 1033: 1027: 1014: 1008: 995: 989: 976: 970: 957: 951: 938: 932: 919: 915: 910: 901: 899: 889: 888: 884: 877: 860: 859: 855: 848: 841: 840: 836: 823: 813: 801: 780: 779: 775: 757: 756: 752: 730: 729: 725: 716: 714: 701: 700: 696: 681: 668: 667: 660: 650: 648: 647:on 1 April 2018 644: 633: 629: 628: 624: 619: 615: 608: 589: 580: 579: 575: 571: 554: 537: 507: 490: 422: 397: 373: 347:surge protector 311: 288: 253: 230:inductive loads 197: 189: 100: 62:and ultimately 40:electrical load 28: 23: 22: 15: 12: 11: 5: 1874: 1872: 1864: 1863: 1858: 1853: 1843: 1842: 1836: 1835: 1833: 1832: 1821: 1818: 1817: 1815: 1814: 1809: 1803: 1801: 1797:Statistics and 1796: 1793: 1792: 1790: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1754: 1749: 1747:Feed-in tariff 1744: 1739: 1734: 1729: 1724: 1719: 1713: 1711: 1706: 1703: 1702: 1700: 1699: 1693: 1688: 1683: 1678: 1673: 1672: 1671: 1666: 1656: 1650: 1648: 1643: 1640: 1639: 1637: 1636: 1635: 1634: 1624: 1619: 1614: 1608: 1606: 1602: 1601: 1599: 1598: 1593: 1588: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1535:Interconnector 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1485:Dynamic demand 1482: 1477: 1471: 1469: 1459: 1456: 1455: 1453: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1415:Combined cycle 1412: 1407: 1401: 1399: 1393: 1392: 1389: 1388: 1386: 1385: 1380: 1375: 1370: 1369: 1368: 1363: 1358: 1353: 1348: 1338: 1333: 1328: 1323: 1318: 1312: 1310: 1304: 1303: 1301: 1300: 1295: 1294: 1293: 1288: 1283: 1278: 1267: 1265: 1256: 1252: 1251: 1244: 1242: 1240: 1239: 1234: 1229: 1224: 1219: 1214: 1209: 1204: 1199: 1194: 1192:Load-following 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1154: 1149: 1147:Electric power 1144: 1139: 1134: 1129: 1124: 1118: 1116: 1112: 1111: 1106: 1104: 1103: 1096: 1089: 1081: 1074: 1073: 1067: 1050: 1044: 1031: 1025: 1012: 1006: 993: 987: 974: 969:978-9992203040 968: 955: 950:978-0471178590 949: 936: 930: 916: 914: 911: 909: 908: 882: 875: 853: 834: 825:|journal= 799: 773: 750: 723: 694: 680:978-1482247190 679: 658: 622: 613: 606: 572: 570: 567: 566: 565: 560: 553: 550: 536: 533: 511:power analyzer 506: 503: 489: 486: 477: 476: 473: 470: 467: 464: 461: 458: 455: 449: 444: 439: 436: 421: 418: 396: 393: 372: 369: 310: 307: 302: 301: 298: 295: 292: 287: 284: 283: 282: 275: 268: 261: 252: 249: 248: 247: 240: 237: 222: 215: 212: 209: 196: 193: 188: 185: 138: 137: 131: 125: 122: 113:is subject to 99: 96: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1873: 1862: 1859: 1857: 1854: 1852: 1849: 1848: 1846: 1831: 1823: 1822: 1819: 1813: 1810: 1808: 1805: 1804: 1802: 1794: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1767:Pigouvian tax 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1714: 1712: 1704: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1670: 1667: 1665: 1664:Earth-leakage 1662: 1661: 1660: 1657: 1655: 1652: 1651: 1649: 1641: 1633: 1630: 1629: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1609: 1607: 1605:Failure modes 1603: 1597: 1594: 1592: 1589: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1555:Power station 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1472: 1470: 1467: 1462: 1457: 1451: 1448: 1446: 1443: 1441: 1440:Rankine cycle 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1420:Cooling tower 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1402: 1400: 1398: 1394: 1384: 1381: 1379: 1376: 1374: 1371: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1343: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1313: 1311: 1309: 1305: 1299: 1296: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1273: 1272: 1269: 1268: 1266: 1264: 1263:Non-renewable 1260: 1257: 1253: 1248: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1182:Grid strength 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1137:Demand factor 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1119: 1117: 1113: 1109: 1102: 1097: 1095: 1090: 1088: 1083: 1082: 1079: 1070: 1064: 1060: 1056: 1051: 1047: 1041: 1037: 1032: 1028: 1022: 1018: 1013: 1009: 1003: 999: 998:Power Quality 994: 990: 988:0-7803-4713-7 984: 980: 975: 971: 965: 961: 956: 952: 946: 942: 937: 933: 927: 923: 918: 917: 912: 898: 897: 892: 886: 883: 878: 872: 868: 864: 857: 854: 844: 838: 835: 830: 818: 810: 806: 802: 800:0-7803-7989-6 796: 792: 788: 784: 777: 774: 769: 765: 761: 754: 751: 746: 742: 738: 734: 727: 724: 713:on 2011-07-08 712: 708: 704: 698: 695: 690: 686: 682: 676: 672: 665: 663: 659: 643: 639: 632: 626: 623: 617: 614: 609: 607:9780470036402 603: 599: 595: 587: 586: 577: 574: 568: 564: 561: 559: 556: 555: 551: 549: 546: 543: 540: 534: 532: 529: 525: 521: 517: 512: 504: 502: 499: 495: 487: 485: 483: 475:and many more 474: 471: 468: 465: 462: 459: 456: 453: 450: 448: 445: 443: 440: 437: 434: 430: 427: 426: 425: 419: 417: 415: 411: 410:power network 406: 402: 394: 392: 390: 386: 382: 378: 370: 368: 366: 362: 360: 356: 352: 348: 343: 341: 336: 333: 330: 326: 322: 317: 315: 308: 306: 299: 296: 293: 290: 289: 285: 280: 276: 273: 269: 266: 262: 259: 255: 254: 250: 245: 241: 238: 235: 231: 227: 223: 220: 216: 213: 210: 207: 203: 199: 198: 194: 192: 186: 184: 182: 178: 174: 170: 166: 157: 153: 151: 146: 143: 142:compatibility 135: 132: 129: 126: 123: 120: 116: 115:voltage drops 112: 109:(whether the 108: 105: 104: 103: 97: 91: 87: 85: 81: 76: 73: 69: 65: 61: 57: 53: 49: 44: 41: 37: 32: 19: 1762:Net metering 1709:and policies 1627:Power outage 1596:Utility pole 1560:Pumped hydro 1466:distribution 1461:Transmission 1410:Cogeneration 1212:Power factor 1151: 1054: 1035: 1016: 997: 978: 959: 940: 921: 900:. Retrieved 894: 885: 866: 856: 837: 782: 776: 759: 753: 736: 732: 726: 715:. Retrieved 711:the original 706: 697: 670: 649:. Retrieved 642:the original 637: 625: 616: 584: 576: 547: 544: 541: 538: 515: 508: 493: 491: 478: 442:power factor 423: 414:power outage 400: 398: 374: 363: 344: 337: 318: 312: 303: 190: 162: 147: 139: 101: 98:Introduction 77: 45: 30: 29: 1757:Load factor 1612:Black start 1580:Transformer 1281:Natural gas 1232:Variability 1207:Peak demand 1197:Merit order 1127:Backfeeding 531:processes. 381:smart grids 332:square wave 244:Overvoltage 181:frequencies 159:CBEMA curve 150:CBEMA curve 72:electricity 1845:Categories 1799:production 1644:Protective 1575:Super grid 1570:Smart grid 1397:Generation 1331:Geothermal 1222:Repowering 913:Literature 902:2020-11-16 843:US 7415370 717:2010-12-14 596:. p.  569:References 492:Nisenblat 420:Challenges 349:or simple 187:Deviations 165:sinusoidal 50:comprises 1707:Economics 1430:Micro CHP 1308:Renewable 1291:Petroleum 1286:Oil shale 1172:Grid code 1132:Base load 1019:. Wiley. 827:ignored ( 817:cite book 760:IECON '01 689:897338163 535:Standards 482:harmonics 447:frequency 405:algorithm 351:capacitor 329:amplitude 325:transient 279:harmonics 265:impedance 258:frequency 251:Frequency 234:lightning 173:impedance 128:Transient 119:brownouts 36:sine wave 1830:Category 1617:Brownout 1405:AC power 1115:Concepts 809:62578540 552:See also 355:varistor 286:Waveform 175:of zero 134:Harmonic 56:AC power 1646:devices 1356:Thermal 1351:Osmotic 1346:Current 1326:Biomass 1316:Biofuel 1298:Nuclear 1255:Sources 651:21 June 638:pge.com 433:voltage 429:current 219:flicker 195:Voltage 179:at all 80:voltage 1341:Marine 1321:Biogas 1065:  1042:  1023:  1004:  985:  966:  947:  928:  873:  849:  807:  797:  687:  677:  604:  516:et al. 494:et al. 403:is an 226:spikes 66:to an 1698:(GFI) 1587:(TSO) 1373:Solar 1361:Tidal 1336:Hydro 805:S2CID 645:(PDF) 634:(PDF) 590:(PDF) 454:(THD) 272:spike 169:mains 1464:and 1383:Wind 1366:Wave 1276:Coal 1063:ISBN 1040:ISBN 1021:ISBN 1002:ISBN 983:ISBN 964:ISBN 945:ISBN 926:ISBN 896:IEEE 871:ISBN 829:help 795:ISBN 685:OCLC 675:ISBN 653:2022 602:ISBN 524:bzip 431:and 387:and 202:peak 177:ohms 46:The 787:doi 764:doi 741:doi 435:RMS 353:or 319:An 204:or 58:), 1847:: 1061:. 1057:. 893:. 865:. 821:: 819:}} 815:{{ 803:. 793:. 735:. 705:. 683:. 661:^ 636:. 600:. 592:. 522:, 399:A 345:A 183:. 1100:e 1093:t 1086:v 1071:. 1048:. 1029:. 1010:. 991:. 972:. 953:. 934:. 905:. 879:. 831:) 811:. 789:: 770:. 766:: 747:. 743:: 737:9 720:. 691:. 655:. 610:. 598:1 260:. 242:" 236:. 121:) 54:( 20:)

Index

Electrical overload
sine wave
electrical load
electric power industry
electricity generation
AC power
electric power transmission
electric power distribution
electricity meter
electricity
voltage
electric current

Continuity of service
electrical power
voltage drops
brownouts
Transient
Harmonic
compatibility
CBEMA curve

sinusoidal
mains
impedance
ohms
frequencies
peak
root mean square
flicker

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑