Knowledge (XXG)

End-sequence profiling

Source 📝

149:
different cancer types. Accurate identification of copy neutral chromosomal abnormalities is particularly important as translocation can lead to fusion proteins, chimeric proteins, or misregulated proteins that can be seen in tumors. This technique can also be used in evolution studies by identifying large structural variation between different populations. Similar methods are being developed for various applications. For example, a barcoded Illumina paired-end sequencing (BIPES) approach was used to assess microbial diversity by sequencing the 16S V6 tag.
115: 93: 106:
mapping will show a fragment of size (l) in the reference genome. If the paired-ends are closer than distance (l), an insertion is suspected in the sampled DNA. A distance of (l< μ-3σ) can be used as a cut-off to detect an insertion, where μ is the mean length of the insert and σ is the standard deviation. In case of a deletion, the paired-ends are mapped further away in the reference genome compared to the expected distance (l> μ-3σ).
71:(BAC). Basically, the target chromosome is randomly digested and inserted into plasmids which are transformed and cloned in bacteria. The size of fragments inserted is 150–350 kb. Another commonly used artificial chromosome is fosmid. The difference between BAC and fosmids is the size of the DNA inserted. Fosmids can only hold 40 kb DNA fragments, which allows a more accurate breakpoint determination. 59: 38: 136:
karyotyping at that time. In 2007, Dr. Snyder and his group improved the ESP to 3kb resolution by sequencing both pairs of 3-kb DNA fragments without BAC construction. Their approach is able to identify deletions, inversions, insertions with an average breakpoint resolution of 644bp, which close to the resolution of
605:
Korbel, J. O.; Urban, A. E.; Affourtit, J. P.; Godwin, B.; Grubert, F.; Simons, J. F.; Kim, P. M.; Palejev, D.; Carriero, N. J.; Du, L.; Taillon, B. E.; Chen, Z.; Tanzer, A.; Saunders, A. C. E.; Chi, J.; Yang, F.; Carter, N. P.; Hurles, M. E.; Weissman, S. M.; Harkins, T. T.; Gerstein, M. B.; Egholm,
105:
In the case of an insertion or a deletion, mapping of the paired-end is consistent with the reference genome. But the read are disconcordant in apparent size. The apparent size is the distance of the BAC sequenced-ends mapped in the reference genome. If a BAC has an insert of length (l), a concordant
88:
Inversions and translocations are relatively easy to detect by an invalid pair of sequenced-end. For instance, a translocation can be detected if the paired-ends are mapped onto different chromosomes on the reference genome. Inversion can be detected by divergent orientation of the reads, where the
148:
Various bioinformatics tools can be used to analyze end-sequence profiling. Common ones include BreakDancer, PEMer, Variation Hunter, common LAW, GASV, and Spanner. ESP can be used to map structural variation at high-resolution in disease tissue. This technique is mainly used on tumor samples from
166:
to analyze the function of these arrangements. However, BAC construction is still expensive and labor-intensive. Researchers should be really careful to choose which strategy they need for particular project. Because ESP only looks at short paired-end sequences, it has the advantage of providing
135:
ESP was first developed and published in 2003 by Dr. Collins and his colleagues in University of California, San Francisco. Their study revealed the chromosome rearrangements and CNV of MCF7 human cancer cells at a 150kb resolution, which is much more accurate compared to both CGH and spectral
157:
Resolution of structural variation detection by ESP has been increased to the similar level as PCR, and can be further improved by selection of more evenly sized DNA fragments. ESP can be applied for either with or without constructed artificial chromosome. With BAC, precious samples can be
79:
End sequence profiling (ESP) can be used to detect structural variations such as insertions, deletions, and chromosomal rearrangement. Compare to other methods that look at chromosomal abnormalities, ESP is particularly useful to identify copy neutral abnormalities such as inversions and
496:
Korbel, JO; Urban, AE; Affourtit, JP; Godwin, B; Grubert, F; Simons, JF; Kim, PM; Palejev, D; Carriero, NJ; Du, L; Taillon, BE; Chen, Z; Tanzer, A; Saunders, AC; Chi, J; Yang, F; Carter, NP; Hurles, ME; Weissman, SM; Harkins, TT; Gerstein, MB; Egholm, M; Snyder, M (19 October 2007).
80:
translocations that would not be apparent when looking at copy number variation. From the BAC library, both ends of the inserted fragments are sequenced using a sequencing platform. Detection of variations is then achieved by mapping the sequenced reads onto a reference genome.
272:
Tuzun, Eray; Sharp, Andrew J; Bailey, Jeffrey A; Kaul, Rajinder; Morrison, V Anne; Pertz, Lisa M; Haugen, Eric; Hayden, Hillary; Albertson, Donna; Pinkel, Daniel; Olson, Maynard V; Eichler, Evan E (15 May 2005). "Fine-scale structural variation of the human genome".
66:
Before analyzing target genome structural aberration and copy number variation (CNV) with ESP, the target genome is usually amplified and conserved with artificial chromosome construction. The classic strategy to construct an artificial chromosome is
50:(BAC) which are then sequenced and compared to the reference genome. The differences, including orientation and length variations between constructed chromosomes and the reference genome, will suggest copy number and structural aberration. 126:
for example in sequences repeats. For larger CNV, the density of the reads will vary accordingly to the copy number. An increase of copy numbers will be reflected by increasing mapping of the same region on the reference genome.
45:
Briefly, the target genomic DNA is isolated and partially digested with restriction enzymes into large fragments. Following size-fractionation, the fragments are cloned into plasmids to construct artificial chromosomes such as
158:
immortalized and conserved, which is particularly important for small quantity of smalls which are planned for extensive analyses. Furthermore, BACs carrying rearranged DNA fragments can be directly transfected
167:
useful information genome-wide without the need for large-scale sequencing. Approximately 100-200 tumors can be sequenced at a resolution greater than 150kb when compared to sequencing an entire genome.
385:
Volik, S.; Zhao, S.; Chin, K.; Brebner, J. H.; Herndon, D. R.; Tao, Q.; Kowbel, D.; Huang, G.; Lapuk, A.; Kuo, W.-L.; Magrane, G.; de Jong, P.; Gray, J. W.; Collins, C. (4 June 2003).
233:"Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene" 447:
Yang, R; Chen, L; Newman, S; Gandhi, K; Doho, G; Moreno, CS; Vertino, PM; Bernal-Mizarchi, L; Lonial, S; Boise, LH; Rossi, M; Kowalski, J; Qin, ZS (2014).
663:
Zhou, Hong-Wei; Li, Dong-Fang; Tam, Nora Fung-Yee; Jiang, Xiao-Tao; Zhang, Hai; Sheng, Hua-Fang; Qin, Jin; Liu, Xiao; Zou, Fei (21 October 2010).
449:"Integrated analysis of whole-genome paired-end and mate-pair sequencing data for identifying genomic structural variations in multiple myeloma" 782: 231:
Stone, NE; Fan, JB; Willour, V; Pennacchio, LA; Warrington, JA; Hu, A; de la Chapelle, A; Lehesjoki, AE; Cox, DR; Myers, RM (March 1996).
47: 556:"Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives" 68: 777: 319:
Bashir, Ali; Volik, Stanislav; Collins, Colin; Bafna, Vineet; Raphael, Benjamin J.; Ouzounis, Christos A. (25 April 2008).
772: 745: 137: 30: 725: 19:(sometimes "Paired-end mapping (PEM)") is a method based on sequence-tagged connectors developed to facilitate 787: 750: 755: 730: 123: 114: 92: 26: 735: 619: 510: 398: 332: 197: 740: 321:"Evaluation of Paired-End Sequencing Strategies for Detection of Genome Rearrangements in Cancer" 298: 694: 645: 587: 536: 478: 426: 360: 290: 254: 213: 25:
genome sequencing to identify high-resolution copy number and structural aberrations such as
684: 676: 635: 627: 577: 567: 526: 518: 468: 460: 416: 406: 350: 340: 282: 244: 205: 623: 514: 402: 336: 201: 689: 664: 640: 607: 582: 555: 531: 498: 473: 448: 355: 320: 421: 386: 188:; Bender, W (16 June 1989). "Construction of large DNA segments in Escherichia coli". 766: 302: 665:"BIPES, a cost-effective high-throughput method for assessing microbial diversity" 345: 572: 185: 58: 37: 608:"Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome" 499:"Paired-end mapping reveals extensive structural variation in the human genome" 631: 522: 411: 209: 698: 680: 649: 591: 554:
Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming (2013).
540: 482: 430: 364: 294: 258: 217: 20: 464: 249: 232: 387:"End-sequence profiling: Sequence-based analysis of aberrant genomes" 286: 113: 91: 57: 36: 62:
Work flow of bacteria artificial chromosome construction
122:
In some cases, discordant reads can also indicate a
89:insert will have two plus-end or two minus-end. 391:Proceedings of the National Academy of Sciences 380: 378: 376: 374: 8: 314: 312: 688: 639: 581: 571: 530: 472: 420: 410: 354: 344: 248: 96:Chromosome rearrangements detected by ESP 176: 118:Copy number alterations detected by ESP 442: 440: 7: 41:Work flow of End-sequence profiling 606:M.; Snyder, M. (19 October 2007). 54:Artificial chromosome construction 14: 48:bacterial artificial chromosomes 75:Structural aberration detection 69:bacterial artificial chromosome 1: 783:Molecular biology techniques 346:10.1371/journal.pcbi.1000051 17:End-sequence profiling (ESP) 573:10.1186/1471-2105-14-S11-S1 84:Inversion and translocation 804: 325:PLOS Computational Biology 153:Advantages and limitations 746:Chromosomal translocation 138:polymerase chain reaction 726:Chromosome abnormalities 632:10.1126/science.1149504 523:10.1126/science.1149504 412:10.1073/pnas.1232418100 210:10.1126/science.2660262 751:Chromosome abnormality 681:10.1038/ismej.2010.160 119: 101:Insertion and deletion 97: 63: 42: 778:Laboratory techniques 756:Copy-number variation 731:Chromosomal inversion 117: 110:Copy number variation 95: 61: 40: 736:Insertion (genetics) 741:Deletion (genetics) 624:2007Sci...318..420K 515:2007Sci...318..420K 403:2003PNAS..100.7696V 337:2008PLSCB...4E0051B 202:1989Sci...244.1307O 560:BMC Bioinformatics 465:10.4137/CIN.S13783 459:(Suppl 2): 49–53. 453:Cancer Informatics 250:10.1101/gr.6.3.218 120: 98: 64: 43: 773:Molecular biology 618:(5849): 420–426. 397:(13): 7696–7701. 196:(4910): 1307–12. 795: 703: 702: 692: 669:The ISME Journal 660: 654: 653: 643: 602: 596: 595: 585: 575: 566:(Suppl 11): S1. 551: 545: 544: 534: 493: 487: 486: 476: 444: 435: 434: 424: 414: 382: 369: 368: 358: 348: 316: 307: 306: 269: 263: 262: 252: 228: 222: 221: 181: 144:ESP applications 803: 802: 798: 797: 796: 794: 793: 792: 763: 762: 722: 707: 706: 662: 661: 657: 604: 603: 599: 553: 552: 548: 509:(5849): 420–6. 495: 494: 490: 446: 445: 438: 384: 383: 372: 331:(4): e1000051. 318: 317: 310: 275:Nature Genetics 271: 270: 266: 237:Genome Research 230: 229: 225: 183: 182: 178: 173: 155: 146: 133: 112: 103: 86: 77: 56: 34: 12: 11: 5: 801: 799: 791: 790: 788:DNA sequencing 785: 780: 775: 765: 764: 759: 758: 753: 748: 743: 738: 733: 728: 721: 718: 717: 716: 714: 712: 710: 705: 704: 675:(4): 741–749. 655: 597: 546: 488: 436: 370: 308: 287:10.1038/ng1562 281:(7): 727–732. 264: 223: 175: 174: 172: 169: 154: 151: 145: 142: 132: 129: 111: 108: 102: 99: 85: 82: 76: 73: 55: 52: 31:translocations 13: 10: 9: 6: 4: 3: 2: 800: 789: 786: 784: 781: 779: 776: 774: 771: 770: 768: 761: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 723: 719: 715: 713: 711: 709: 708: 700: 696: 691: 686: 682: 678: 674: 670: 666: 659: 656: 651: 647: 642: 637: 633: 629: 625: 621: 617: 613: 609: 601: 598: 593: 589: 584: 579: 574: 569: 565: 561: 557: 550: 547: 542: 538: 533: 528: 524: 520: 516: 512: 508: 504: 500: 492: 489: 484: 480: 475: 470: 466: 462: 458: 454: 450: 443: 441: 437: 432: 428: 423: 418: 413: 408: 404: 400: 396: 392: 388: 381: 379: 377: 375: 371: 366: 362: 357: 352: 347: 342: 338: 334: 330: 326: 322: 315: 313: 309: 304: 300: 296: 292: 288: 284: 280: 276: 268: 265: 260: 256: 251: 246: 243:(3): 218–25. 242: 238: 234: 227: 224: 219: 215: 211: 207: 203: 199: 195: 191: 187: 184:O'Connor, M; 180: 177: 170: 168: 165: 161: 152: 150: 143: 141: 139: 130: 128: 125: 116: 109: 107: 100: 94: 90: 83: 81: 74: 72: 70: 60: 53: 51: 49: 39: 35: 32: 28: 24: 23: 18: 760: 672: 668: 658: 615: 611: 600: 563: 559: 549: 506: 502: 491: 456: 452: 394: 390: 328: 324: 278: 274: 267: 240: 236: 226: 193: 189: 179: 163: 159: 156: 147: 134: 121: 104: 87: 78: 65: 44: 21: 16: 15: 131:ESP history 767:Categories 171:References 27:inversions 186:Peifer, M 720:See also 699:20962877 650:17901297 592:24564169 541:17901297 483:25288879 431:12788976 365:18404202 303:14162962 295:15895083 160:in vitro 690:3105743 641:2674581 620:Bibcode 612:Science 583:3846878 532:2674581 511:Bibcode 503:Science 474:4179644 399:Bibcode 356:2278375 333:Bibcode 259:8963899 218:2660262 198:Bibcode 190:Science 164:in vivo 140:(PCR). 22:de novo 697:  687:  648:  638:  590:  580:  539:  529:  481:  471:  429:  422:164650 419:  363:  353:  301:  293:  257:  216:  299:S2CID 695:PMID 646:PMID 588:PMID 537:PMID 479:PMID 427:PMID 361:PMID 291:PMID 255:PMID 214:PMID 29:and 685:PMC 677:doi 636:PMC 628:doi 616:318 578:PMC 568:doi 527:PMC 519:doi 507:318 469:PMC 461:doi 417:PMC 407:doi 395:100 351:PMC 341:doi 283:doi 245:doi 206:doi 194:244 162:or 124:CNV 769:: 693:. 683:. 671:. 667:. 644:. 634:. 626:. 614:. 610:. 586:. 576:. 564:14 562:. 558:. 535:. 525:. 517:. 505:. 501:. 477:. 467:. 457:13 455:. 451:. 439:^ 425:. 415:. 405:. 393:. 389:. 373:^ 359:. 349:. 339:. 327:. 323:. 311:^ 297:. 289:. 279:37 277:. 253:. 239:. 235:. 212:. 204:. 192:. 33:. 701:. 679:: 673:5 652:. 630:: 622:: 594:. 570:: 543:. 521:: 513:: 485:. 463:: 433:. 409:: 401:: 367:. 343:: 335:: 329:4 305:. 285:: 261:. 247:: 241:6 220:. 208:: 200::

Index

de novo
inversions
translocations

bacterial artificial chromosomes

bacterial artificial chromosome


CNV
polymerase chain reaction
Peifer, M
Bibcode
1989Sci...244.1307O
doi
10.1126/science.2660262
PMID
2660262
"Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene"
doi
10.1101/gr.6.3.218
PMID
8963899
doi
10.1038/ng1562
PMID
15895083
S2CID
14162962

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.