Knowledge (XXG)

End (topology)

Source 📝

297: 157: 1279: 1137: 1567: 1326: 843: 703: 1764: 1630: 1532: 1385: 363: 922: 496: 968: 1794: 1457: 1193: 1041: 1070: 739: 1346: 1213: 1686:, a function mapping finite sets of vertices to connected components of their complements. However, for locally finite graphs (graphs in which each vertex has finite 1162: 443: 396: 785: 1015: 628: 326: 1405: 988: 867: 759: 648: 599: 575: 551: 516: 463: 229: 209: 183: 92: 1796:— of any two of these maps exists a proper homotopy we say that they are equivalent and they define an equivalence class of proper rays. This set is called 1705:; this definition is insensitive to the choice of generating set. Every finitely-generated infinite group has either 1, 2, or infinitely many ends, and 1956: 1961: 1643:
has uncountably many ends, corresponding to the uncountably many different descending paths starting at the root. (This can be seen by letting
1706: 1908: 240: 1656:.) These ends can be thought of as the "leaves" of the infinite tree. In the end compactification, the set of ends has the topology of a 103: 1932: 1820: 881: 329: 48: 40: 1218: 1075: 1537: 602: 1690:), the ends defined in this way correspond one-for-one with the ends of topological spaces defined from the graph ( 554: 1951: 1856: 790: 660: 1698: 1682:, an end is defined slightly differently, as an equivalence class of semi-infinite paths in the graph, or as a 1284: 43:
of the "ideal boundary" of the space. That is, each end represents a topologically distinct way to move to
1734: 1410:
The original definition above represents the special case where the direct system of compact subsets has a
1581: 399: 1687: 17: 1606: 1508: 1351: 335: 1683: 895: 468: 927: 186: 16:
This article is about the notion in general topology. For the construction in category theory, see
1777: 1440: 1171: 1020: 1881: 1767: 1670: 1046: 708: 518:. Such neighborhoods represent the neighborhoods of the corresponding point at infinity in the 1928: 1904: 1873: 1600: 1331: 1198: 578: 527: 95: 36: 415: 368: 1920: 1889: 1865: 1851: 1829: 1725: 1411: 889: 764: 189: 59: 1843: 993: 607: 304: 1893: 1839: 1469: 1915:
Scott, Peter; Wall, Terry; Wall, C. T. C. (1979). "Topological methods in group theory".
1815: 1498:). These ends are usually referred to as "infinity" and "minus infinity", respectively. 1142: 1718: 1676: 1390: 973: 852: 744: 655: 633: 584: 560: 536: 501: 448: 214: 194: 168: 162: 77: 1834: 1945: 1885: 1424: 870: 651: 1702: 1679: 1924: 1640: 28: 1729: 1721: 1657: 1877: 1435: 1428: 402: 44: 24: 1869: 877: 522:(this "compactification" is not always compact; the topological space 292:{\displaystyle U_{1}\supseteq U_{2}\supseteq U_{3}\supseteq \cdots ,} 152:{\displaystyle K_{1}\subseteq K_{2}\subseteq K_{3}\subseteq \cdots } 1588:
is equal to the number of connected components of the boundary of
405:
between the sets of ends associated with any two such sequences.
1818:(2003), "Graph-theoretical versus topological ends of graphs", 1043:
and they are compatible with maps induced by inclusions) then
365:. The number of ends does not depend on the specific sequence 58:
The notion of an end of a topological space was introduced by
1774:: more precisely, if between the restriction —to the subset 1709:
provides a decomposition for groups with more than one end.
1854:(1931), "Über die Enden topologischer Räume und Gruppen", 533:
The definition of ends given above applies only to spaces
47:
within the space. Adding a point at each end yields a
1274:{\displaystyle \pi _{0}(X\setminus \varphi ^{-1}(K'))} 1780: 1737: 1609: 1569:
has only one unbounded component for any compact set
1540: 1511: 1443: 1393: 1354: 1334: 1287: 1221: 1201: 1174: 1145: 1078: 1049: 1023: 996: 976: 930: 898: 855: 793: 767: 747: 711: 663: 636: 610: 587: 563: 539: 504: 471: 451: 418: 371: 338: 307: 243: 217: 197: 171: 106: 80: 1472:, then the two ends are the sequences of open sets 1132:{\displaystyle \varphi _{*}(x_{\varphi ^{-1}(K')})} 741:denotes the set of connected components of a space 1788: 1758: 1624: 1561: 1526: 1451: 1399: 1379: 1340: 1320: 1273: 1207: 1187: 1156: 1131: 1064: 1035: 1009: 982: 962: 916: 861: 837: 779: 753: 733: 697: 642: 622: 593: 581:). However, it can be generalized as follows: let 569: 545: 510: 490: 457: 437: 390: 357: 320: 291: 223: 203: 177: 151: 86: 1701:are defined to be the ends of the corresponding 1562:{\displaystyle \mathbb {R} ^{n}\smallsetminus K} 1584:, then the number of ends of the interior of 8: 876:Under this definition, the set of ends is a 692: 664: 617: 611: 1691: 601:be any topological space, and consider the 63: 1017:in the family is a connected component of 838:{\displaystyle \pi _{0}(Y)\to \pi _{0}(Z)} 698:{\displaystyle \{\pi _{0}(X\setminus K)\}} 1864:, Springer Berlin / Heidelberg: 692–713, 1833: 1782: 1781: 1779: 1744: 1740: 1739: 1736: 1616: 1612: 1611: 1608: 1547: 1543: 1542: 1539: 1518: 1514: 1513: 1510: 1445: 1444: 1442: 1392: 1359: 1353: 1333: 1292: 1286: 1245: 1226: 1220: 1200: 1179: 1173: 1144: 1101: 1096: 1083: 1077: 1048: 1022: 1001: 995: 975: 954: 944: 929: 897: 854: 820: 798: 792: 766: 746: 716: 710: 671: 662: 635: 609: 586: 562: 538: 503: 482: 470: 450: 426: 417: 379: 370: 349: 337: 312: 306: 274: 261: 248: 242: 216: 196: 170: 137: 124: 111: 105: 79: 1505: > 1, then Euclidean space 1321:{\displaystyle \pi _{0}(Y\setminus K')} 1304: 1238: 1027: 683: 342: 1707:Stallings theorem about ends of groups 1459:has two ends. For example, if we let 1759:{\displaystyle \mathbb {R} ^{+}\to X} 1652:be the complete binary tree of depth 7: 1494: = (−∞, − 51:of the original space, known as the 1901:Topological methods in group theory 1724:, the ends can be characterized as 1534:has only one end. This is because 14: 1957:Properties of topological spaces 1625:{\displaystyle \mathbb {R} ^{2}} 1527:{\displaystyle \mathbb {R} ^{n}} 1380:{\displaystyle \varphi ^{-1}(K)} 358:{\displaystyle X\setminus K_{n}} 1821:Journal of Combinatorial Theory 1164:ranges over compact subsets of 917:{\displaystyle \varphi :X\to Y} 1962:Compactification (mathematics) 1750: 1374: 1368: 1315: 1298: 1268: 1265: 1254: 1232: 1126: 1121: 1110: 1089: 1059: 1053: 951: 937: 908: 882:category of topological spaces 832: 826: 813: 810: 804: 771: 728: 722: 689: 677: 491:{\displaystyle V\supset U_{n}} 432: 419: 385: 372: 1: 1835:10.1016/S0095-8956(02)00034-5 1641:infinite complete binary tree 1603:emanating from the origin in 963:{\displaystyle x=(x_{K})_{K}} 1925:10.1017/CBO9781107325449.007 1789:{\displaystyle \mathbb {N} } 1452:{\displaystyle \mathbb {R} } 1348:is used to ensure that each 1188:{\displaystyle \varphi _{*}} 1036:{\displaystyle X\setminus K} 654:. There is a corresponding 398:of compact sets; there is a 161:is an ascending sequence of 1903:, GTM-243 (2008), Springer 1065:{\displaystyle \varphi (x)} 884:, where morphisms are only 734:{\displaystyle \pi _{0}(Y)} 39:are, roughly speaking, the 1978: 1668: 555:exhaustion by compact sets 15: 1857:Mathematische Zeitschrift 1665:Ends of graphs and groups 761:, and each inclusion map 408:Using this definition, a 1917:Homological Group Theory 1699:finitely generated group 1341:{\displaystyle \varphi } 1208:{\displaystyle \varphi } 888:continuous maps, to the 873:of this inverse system. 526:has to be connected and 1692:Diestel & Kühn 2003 1423:The set of ends of any 438:{\displaystyle (U_{i})} 391:{\displaystyle (K_{i})} 1790: 1760: 1626: 1582:manifold with boundary 1563: 1528: 1453: 1401: 1381: 1342: 1322: 1275: 1209: 1195:is the map induced by 1189: 1158: 1133: 1066: 1037: 1011: 984: 964: 918: 863: 839: 781: 780:{\displaystyle Y\to Z} 755: 735: 699: 644: 630:of compact subsets of 624: 595: 571: 547: 512: 492: 459: 439: 392: 359: 322: 293: 225: 205: 179: 153: 88: 1791: 1761: 1627: 1564: 1529: 1454: 1402: 1382: 1343: 1323: 1276: 1210: 1190: 1159: 1134: 1067: 1038: 1012: 1010:{\displaystyle x_{K}} 985: 965: 919: 869:is defined to be the 864: 840: 782: 756: 736: 700: 645: 625: 623:{\displaystyle \{K\}} 596: 572: 548: 513: 493: 460: 440: 393: 360: 323: 321:{\displaystyle U_{n}} 294: 226: 206: 180: 154: 89: 18:End (category theory) 1919:. pp. 137–204. 1778: 1735: 1713:Ends of a CW complex 1607: 1538: 1509: 1441: 1391: 1352: 1332: 1285: 1219: 1199: 1172: 1143: 1076: 1047: 1021: 994: 974: 928: 924:is a proper map and 896: 853: 791: 765: 745: 709: 661: 634: 608: 585: 561: 537: 520:end compactification 502: 469: 449: 416: 369: 336: 305: 241: 215: 195: 169: 104: 78: 60:Hans Freudenthal 53:end compactification 41:connected components 1814:Diestel, Reinhard; 1576:More generally, if 990:(i.e. each element 787:induces a function 330:connected component 235:for every sequence 98:, and suppose that 1870:10.1007/BF01174375 1786: 1756: 1671:End (graph theory) 1622: 1559: 1524: 1449: 1397: 1377: 1338: 1318: 1271: 1205: 1185: 1157:{\displaystyle K'} 1154: 1129: 1062: 1033: 1007: 980: 960: 914: 859: 835: 777: 751: 731: 695: 640: 620: 591: 567: 543: 508: 488: 455: 435: 388: 355: 318: 289: 221: 201: 175: 149: 84: 1909:978-0-387-74611-1 1852:Freudenthal, Hans 1400:{\displaystyle X} 983:{\displaystyle X} 892:. Explicitly, if 862:{\displaystyle X} 754:{\displaystyle Y} 643:{\displaystyle X} 594:{\displaystyle X} 570:{\displaystyle X} 546:{\displaystyle X} 528:locally connected 511:{\displaystyle n} 458:{\displaystyle V} 224:{\displaystyle X} 204:{\displaystyle X} 178:{\displaystyle X} 96:topological space 87:{\displaystyle X} 37:topological space 1969: 1952:General topology 1938: 1899:Ross Geoghegan, 1896: 1846: 1837: 1795: 1793: 1792: 1787: 1785: 1765: 1763: 1762: 1757: 1749: 1748: 1743: 1726:homotopy classes 1631: 1629: 1628: 1623: 1621: 1620: 1615: 1568: 1566: 1565: 1560: 1552: 1551: 1546: 1533: 1531: 1530: 1525: 1523: 1522: 1517: 1458: 1456: 1455: 1450: 1448: 1412:cofinal sequence 1406: 1404: 1403: 1398: 1386: 1384: 1383: 1378: 1367: 1366: 1347: 1345: 1344: 1339: 1328:. Properness of 1327: 1325: 1324: 1319: 1314: 1297: 1296: 1280: 1278: 1277: 1272: 1264: 1253: 1252: 1231: 1230: 1214: 1212: 1211: 1206: 1194: 1192: 1191: 1186: 1184: 1183: 1163: 1161: 1160: 1155: 1153: 1138: 1136: 1135: 1130: 1125: 1124: 1120: 1109: 1108: 1088: 1087: 1071: 1069: 1068: 1063: 1042: 1040: 1039: 1034: 1016: 1014: 1013: 1008: 1006: 1005: 989: 987: 986: 981: 969: 967: 966: 961: 959: 958: 949: 948: 923: 921: 920: 915: 890:category of sets 868: 866: 865: 860: 844: 842: 841: 836: 825: 824: 803: 802: 786: 784: 783: 778: 760: 758: 757: 752: 740: 738: 737: 732: 721: 720: 704: 702: 701: 696: 676: 675: 649: 647: 646: 641: 629: 627: 626: 621: 600: 598: 597: 592: 576: 574: 573: 568: 553:that possess an 552: 550: 549: 544: 517: 515: 514: 509: 497: 495: 494: 489: 487: 486: 464: 462: 461: 456: 444: 442: 441: 436: 431: 430: 397: 395: 394: 389: 384: 383: 364: 362: 361: 356: 354: 353: 327: 325: 324: 319: 317: 316: 298: 296: 295: 290: 279: 278: 266: 265: 253: 252: 230: 228: 227: 222: 210: 208: 207: 202: 184: 182: 181: 176: 158: 156: 155: 150: 142: 141: 129: 128: 116: 115: 93: 91: 90: 85: 49:compactification 1977: 1976: 1972: 1971: 1970: 1968: 1967: 1966: 1942: 1941: 1935: 1914: 1850: 1813: 1810: 1776: 1775: 1738: 1733: 1732: 1715: 1673: 1667: 1651: 1610: 1605: 1604: 1541: 1536: 1535: 1512: 1507: 1506: 1493: 1480: 1470:closed interval 1467: 1439: 1438: 1420: 1389: 1388: 1355: 1350: 1349: 1330: 1329: 1307: 1288: 1283: 1282: 1257: 1241: 1222: 1217: 1216: 1197: 1196: 1175: 1170: 1169: 1146: 1141: 1140: 1113: 1097: 1092: 1079: 1074: 1073: 1045: 1044: 1019: 1018: 997: 992: 991: 972: 971: 950: 940: 926: 925: 894: 893: 851: 850: 816: 794: 789: 788: 763: 762: 743: 742: 712: 707: 706: 667: 659: 658: 632: 631: 606: 605: 583: 582: 559: 558: 535: 534: 500: 499: 478: 467: 466: 447: 446: 445:is an open set 422: 414: 413: 375: 367: 366: 345: 334: 333: 308: 303: 302: 299: 270: 257: 244: 239: 238: 213: 212: 193: 192: 167: 166: 163:compact subsets 159: 133: 120: 107: 102: 101: 76: 75: 72: 21: 12: 11: 5: 1975: 1973: 1965: 1964: 1959: 1954: 1944: 1943: 1940: 1939: 1933: 1912: 1897: 1848: 1828:(1): 197–206, 1809: 1806: 1784: 1755: 1752: 1747: 1742: 1719:path connected 1714: 1711: 1697:The ends of a 1669:Main article: 1666: 1663: 1662: 1661: 1647: 1637: 1619: 1614: 1593: 1574: 1558: 1555: 1550: 1545: 1521: 1516: 1499: 1489: 1485:, ∞) and 1481: = ( 1476: 1463: 1447: 1432: 1419: 1416: 1396: 1387:is compact in 1376: 1373: 1370: 1365: 1362: 1358: 1337: 1317: 1313: 1310: 1306: 1303: 1300: 1295: 1291: 1270: 1267: 1263: 1260: 1256: 1251: 1248: 1244: 1240: 1237: 1234: 1229: 1225: 1204: 1182: 1178: 1152: 1149: 1128: 1123: 1119: 1116: 1112: 1107: 1104: 1100: 1095: 1091: 1086: 1082: 1072:is the family 1061: 1058: 1055: 1052: 1032: 1029: 1026: 1004: 1000: 979: 957: 953: 947: 943: 939: 936: 933: 913: 910: 907: 904: 901: 858: 834: 831: 828: 823: 819: 815: 812: 809: 806: 801: 797: 776: 773: 770: 750: 730: 727: 724: 719: 715: 694: 691: 688: 685: 682: 679: 674: 670: 666: 656:inverse system 652:inclusion maps 639: 619: 616: 613: 590: 566: 542: 507: 485: 481: 477: 474: 454: 434: 429: 425: 421: 387: 382: 378: 374: 352: 348: 344: 341: 315: 311: 288: 285: 282: 277: 273: 269: 264: 260: 256: 251: 247: 237: 220: 200: 174: 148: 145: 140: 136: 132: 127: 123: 119: 114: 110: 100: 83: 71: 68: 27:, a branch of 13: 10: 9: 6: 4: 3: 2: 1974: 1963: 1960: 1958: 1955: 1953: 1950: 1949: 1947: 1936: 1934:9781107325449 1930: 1926: 1922: 1918: 1913: 1910: 1906: 1902: 1898: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1858: 1853: 1849: 1845: 1841: 1836: 1831: 1827: 1823: 1822: 1817: 1816:Kühn, Daniela 1812: 1811: 1807: 1805: 1803: 1799: 1773: 1769: 1753: 1745: 1731: 1727: 1723: 1720: 1712: 1710: 1708: 1704: 1700: 1695: 1693: 1689: 1685: 1681: 1678: 1672: 1664: 1659: 1655: 1650: 1646: 1642: 1638: 1635: 1617: 1602: 1598: 1595:The union of 1594: 1591: 1587: 1583: 1580:is a compact 1579: 1575: 1572: 1556: 1553: 1548: 1519: 1504: 1500: 1497: 1492: 1488: 1484: 1479: 1475: 1471: 1466: 1462: 1437: 1433: 1430: 1426: 1425:compact space 1422: 1421: 1417: 1415: 1413: 1408: 1394: 1371: 1363: 1360: 1356: 1335: 1311: 1308: 1301: 1293: 1289: 1261: 1258: 1249: 1246: 1242: 1235: 1227: 1223: 1202: 1180: 1176: 1167: 1150: 1147: 1117: 1114: 1105: 1102: 1098: 1093: 1084: 1080: 1056: 1050: 1030: 1024: 1002: 998: 977: 970:is an end of 955: 945: 941: 934: 931: 911: 905: 902: 899: 891: 887: 883: 879: 874: 872: 871:inverse limit 856: 848: 829: 821: 817: 807: 799: 795: 774: 768: 748: 725: 717: 713: 686: 680: 672: 668: 657: 653: 637: 614: 604: 603:direct system 588: 580: 564: 556: 540: 531: 529: 525: 521: 505: 483: 479: 475: 472: 452: 427: 423: 411: 406: 404: 401: 380: 376: 350: 346: 339: 331: 313: 309: 286: 283: 280: 275: 271: 267: 262: 258: 254: 249: 245: 236: 234: 218: 198: 191: 188: 172: 164: 146: 143: 138: 134: 130: 125: 121: 117: 112: 108: 99: 97: 81: 69: 67: 65: 61: 56: 54: 50: 46: 42: 38: 34: 30: 26: 19: 1916: 1900: 1861: 1855: 1825: 1824:, Series B, 1819: 1801: 1797: 1771: 1716: 1703:Cayley graph 1696: 1680:graph theory 1674: 1653: 1648: 1644: 1633: 1596: 1589: 1585: 1577: 1570: 1502: 1495: 1490: 1486: 1482: 1477: 1473: 1464: 1460: 1409: 1165: 885: 875: 846: 532: 523: 519: 410:neighborhood 409: 407: 300: 232: 160: 73: 57: 52: 32: 22: 1730:proper maps 847:set of ends 579:hemicompact 301:where each 29:mathematics 1946:Categories 1894:0002.05603 1808:References 1722:CW-complex 1658:Cantor set 557:(that is, 465:such that 412:of an end 70:Definition 1886:120965216 1878:0025-5874 1766:, called 1751:→ 1599:distinct 1554:∖ 1436:real line 1429:empty set 1361:− 1357:φ 1336:φ 1305:∖ 1290:π 1247:− 1243:φ 1239:∖ 1224:π 1203:φ 1181:∗ 1177:φ 1103:− 1099:φ 1085:∗ 1081:φ 1051:φ 1028:∖ 909:→ 900:φ 880:from the 818:π 814:→ 796:π 772:→ 714:π 684:∖ 669:π 498:for some 476:⊃ 403:bijection 343:∖ 284:⋯ 281:⊇ 268:⊇ 255:⊇ 187:interiors 147:⋯ 144:⊆ 131:⊆ 118:⊆ 1677:infinite 1418:Examples 1312:′ 1262:′ 1151:′ 1118:′ 845:. Then 705:, where 577:must be 231:has one 211:. Then 45:infinity 25:topology 1844:1967888 1468:be the 1427:is the 878:functor 400:natural 62: ( 1931:  1907:  1892:  1884:  1876:  1842:  1798:an end 1717:For a 1688:degree 1139:where 886:proper 185:whose 31:, the 1882:S2CID 1684:haven 1636:ends. 1215:from 328:is a 190:cover 94:be a 35:of a 1929:ISBN 1905:ISBN 1874:ISSN 1768:rays 1639:The 1632:has 1601:rays 1434:The 1168:and 650:and 74:Let 64:1931 33:ends 1921:doi 1890:Zbl 1866:doi 1830:doi 1800:of 1770:in 1728:of 1694:). 1675:In 1501:If 1281:to 849:of 530:). 332:of 233:end 165:of 66:). 23:In 1948:: 1927:. 1888:, 1880:, 1872:, 1862:33 1860:, 1840:MR 1838:, 1826:87 1804:. 1414:. 1407:. 55:. 1937:. 1923:: 1911:. 1868:: 1847:. 1832:: 1802:X 1783:N 1772:X 1754:X 1746:+ 1741:R 1660:. 1654:n 1649:n 1645:K 1634:n 1618:2 1613:R 1597:n 1592:. 1590:M 1586:M 1578:M 1573:. 1571:K 1557:K 1549:n 1544:R 1520:n 1515:R 1503:n 1496:n 1491:n 1487:V 1483:n 1478:n 1474:U 1465:n 1461:K 1446:R 1431:. 1395:X 1375:) 1372:K 1369:( 1364:1 1316:) 1309:K 1302:Y 1299:( 1294:0 1269:) 1266:) 1259:K 1255:( 1250:1 1236:X 1233:( 1228:0 1166:Y 1148:K 1127:) 1122:) 1115:K 1111:( 1106:1 1094:x 1090:( 1060:) 1057:x 1054:( 1031:K 1025:X 1003:K 999:x 978:X 956:K 952:) 946:K 942:x 938:( 935:= 932:x 912:Y 906:X 903:: 857:X 833:) 830:Z 827:( 822:0 811:) 808:Y 805:( 800:0 775:Z 769:Y 749:Y 729:) 726:Y 723:( 718:0 693:} 690:) 687:K 681:X 678:( 673:0 665:{ 638:X 618:} 615:K 612:{ 589:X 565:X 541:X 524:X 506:n 484:n 480:U 473:V 453:V 433:) 428:i 424:U 420:( 386:) 381:i 377:K 373:( 351:n 347:K 340:X 314:n 310:U 287:, 276:3 272:U 263:2 259:U 250:1 246:U 219:X 199:X 173:X 139:3 135:K 126:2 122:K 113:1 109:K 82:X 20:.

Index

End (category theory)
topology
mathematics
topological space
connected components
infinity
compactification
Hans Freudenthal
1931
topological space
compact subsets
interiors
cover
connected component
natural
bijection
locally connected
exhaustion by compact sets
hemicompact
direct system
inclusion maps
inverse system
inverse limit
functor
category of topological spaces
category of sets
cofinal sequence
compact space
empty set
real line

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.