Knowledge (XXG)

Activation energy

Source 📝

241:
threshold barrier for an elementary reaction. First, it is often unclear as to whether or not reaction does proceed in one step; threshold barriers that are averaged out over all elementary steps have little theoretical value. Second, even if the reaction being studied is elementary, a spectrum of individual collisions contributes to rate constants obtained from bulk ('bulb') experiments involving billions of molecules, with many different reactant collision geometries and angles, different translational and (possibly) vibrational energies—all of which may lead to different microscopic reaction rates.
439:. However, instead of modeling the temperature dependence of reaction rate phenomenologically, the Eyring equation models individual elementary steps of a reaction. Thus, for a multistep process, there is no straightforward relationship between the two models. Nevertheless, the functional forms of the Arrhenius and Eyring equations are similar, and for a one-step process, simple and chemically meaningful correspondences can be drawn between Arrhenius and Eyring parameters. 256: 268: 31: 1076:, where i, p and t refer respectively to initiation, propagation and termination steps. The propagation step normally has a very small activation energy, so that the overall value is negative if the activation energy for termination is larger than that for initiation. The normal range of overall activation energies for cationic polymerization varies from 324:. A catalyst increases the rate of reaction without being consumed in the reaction. In addition, the catalyst lowers the activation energy, but it does not change the energies of the original reactants or products, and so does not change equilibrium. Rather, the reactant energy and the product energy remain the same and only the 89:. For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that there exists an appreciable number of molecules with translational energy equal to or greater than the activation energy. The term "activation energy" was introduced in 1889 by the Swedish scientist 352:
binding energy released assists in achieving the unstable transition state. Reactions without catalysts need a higher input of energy to achieve the transition state. Non-catalyzed reactions do not have free energy available from active site stabilizing interactions, such as catalytic enzyme reactions.
351:
energy. A chemical reaction is able to manufacture a high-energy transition state molecule more readily when there is a stabilizing fit within the active site of a catalyst. The binding energy of a reaction is this energy released when favorable interactions between substrate and catalyst occur. The
655:
Elementary reactions exhibiting negative activation energies are typically barrierless reactions, in which the reaction proceeding relies on the capture of the molecules in a potential well. Increasing the temperature leads to a reduced probability of the colliding molecules capturing one another
240:
At a more advanced level, the net Arrhenius activation energy term from the Arrhenius equation is best regarded as an experimentally determined parameter that indicates the sensitivity of the reaction rate to temperature. There are two objections to associating this activation energy with the
1301:
Terracciano, Anthony C; De Oliveira, Samuel; Vazquez-Molina, Demetrius; Uribe-Romo, Fernando J; Vasu, Subith S; Orlovskaya, Nina (2017). "Effect of catalytically active Ce 0.8 Gd 0.2 O 1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO 2 porous ceramics".
1367: 1608: 347:). Specific and favorable bonding occurs within the active site until the substrate forms to become the high-energy transition state. Forming the transition state is more favorable with the catalyst because the favorable stabilizing interactions within the active site 1359: 312:. The highest energy position (peak position) represents the transition state. With the catalyst, the energy required to enter transition state decreases, thereby decreasing the energy required to initiate the reaction. 123:
gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds. From the equation, the activation energy can be found through the relation
190: 1074: 1002: 754: 645:
with increasing temperature. When following an approximately exponential relationship so the rate constant can still be fit to an Arrhenius expression, this results in a negative value of
1239:
Wang, Jenqdaw; Raj, Rishi (1990). "Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania".
406:
holds. In transition state theory, a more sophisticated model of the relationship between reaction rates and the transition state, a superficially similar mathematical relationship, the
921: 829: 1266:
Kiraci, A; Yurtseven, H (2012). "Temperature Dependence of the Raman Frequency, Damping Constant and the Activation Energy of a Soft-Optic Mode in Ferroelectric Barium Titanate".
1183: 298: 663:
Some multistep reactions can also have apparent negative activation energies. For example, the overall rate constant k for a two-step reaction A ⇌ B, B → C is given by k = k
331:
A catalyst is able to reduce the activation energy by forming a transition state in a more favorable manner. Catalysts, by nature, create a more "comfortable" fit for the
339:
of a catalyst. This energy is known as Binding Energy. Upon binding to a catalyst, substrates partake in numerous stabilizing forces while within the active site (e.g.
1337: 656:(with more glancing collisions not leading to reaction as the higher momentum carries the colliding particles out of the potential well), expressed as a reaction 1740: 1530:
Mozurkewich, Michael; Benson, Sidney (1984). "Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells".
1217: 472:
are the Boltzmann and Planck constants, respectively. Although the equations look similar, it is important to note that the Gibbs energy contains an
660:
that decreases with increasing temperature. Such a situation no longer leads itself to direct interpretations as the height of a potential barrier.
237:
can be evaluated from the variation in reaction rate coefficients as a function of temperature (within the validity of the Arrhenius equation).
1398: 1952: 621:
The total free energy change of a reaction is independent of the activation energy however. Physical and chemical reactions can be either
335:
of a reaction to progress to a transition state. This is possible due to a release of energy that occurs when the substrate binds to the
1829: 1786: 1191: 1129: 126: 2093: 476:
term in addition to the enthalpic one. In the Arrhenius equation, this entropic term is accounted for by the pre-exponential factor
2207: 1733: 1706: 1681: 1656: 1591: 1566: 1514: 1486: 1453: 42:. The blue flame sustains itself after the sparks stop because the continued combustion of the flame is now energetically favorable. 2001: 1996: 1806: 1167: 2161: 2166: 1089: 301: 1422: 1329: 2192: 1726: 1012: 1018: 2187: 2131: 1821: 926: 697: 1858: 1758: 687:
increases, so that k actually decreases with temperature corresponding to a negative observed activation energy.
834: 2088: 1104: 1099: 572:
for a reaction that proceeds over several hours at room temperature. Due to the relatively small magnitude of
1330:"General Chemistry Online: FAQ: Chemical change: What are some examples of reactions that involve catalysts?" 2136: 1937: 1008: 657: 361: 759: 1891: 1213: 223: 199: 2121: 2053: 1911: 1901: 481: 332: 2116: 1844: 274: 70: 2202: 2126: 2058: 2043: 1986: 1478: 630: 626: 378: 344: 309: 260: 86: 2197: 2151: 1921: 1750: 1283: 1109: 622: 367: 120: 114: 47: 480:. More specifically, we can write the Gibbs free energy of activation in terms of enthalpy and 320:; a catalyst composed only of protein and (if applicable) small molecule cofactors is termed an 2146: 2103: 2048: 1967: 1947: 1883: 1702: 1677: 1652: 1587: 1562: 1510: 1482: 1449: 1394: 1163: 1094: 561:. For a one-step unimolecular process whose half-life at room temperature is about 2 hours, Δ 74: 55: 1184:"Activation Energy and the Arrhenius Equation – Introductory Chemistry- 1st Canadian Edition" 1011:
reactions have negative activation energies so that the rate decreases with temperature. For
2078: 2027: 1981: 1539: 1470: 1311: 1275: 1248: 458: 381: 102: 90: 82: 27:
Minimum amount of energy that must be provided for a system to undergo a reaction or process
1137: 633:
of a reaction. The overall reaction energy change is not altered by the activation energy.
2156: 2068: 2017: 407: 316:
A substance that modifies the transition state to lower the activation energy is termed a
1471: 1863: 1852: 1315: 1252: 615: 66: 2181: 2111: 2083: 1991: 1942: 1916: 1287: 340: 39: 602:
The enthalpy, entropy and Gibbs energy of activation are more correctly written as Δ
17: 2063: 1869: 1776: 1766: 691: 450: 255: 207: 1493:... but we shall omit the standard state sign to avoid overburdening the notation. 1279: 2022: 1957: 831:
with a negative activation energy. This is explained by the two-step mechanism:
336: 267: 35: 1414: 2073: 1718: 250: 30: 54:
is the minimum amount of energy that must be available to reactants for a
679:
is the equilibrium constant of the rapid first step. In some reactions, K
565:
is approximately 23 kcal/mol. This is also the roughly the magnitude of
317: 1543: 557:
is temperature independent, while here, there is a linear dependence on
73:(kcal/mol). Activation energy can be thought of as the magnitude of the 473: 1444:
Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999).
618:. However, some authors omit the o in order to simplify the notation. 321: 215: 78: 599:
are often conflated and all referred to as the "activation energy".
1421:. IUPAC (International Union of Pure and Applied Chemistry). 2019. 584:
at ordinary temperatures for most reactions, in sloppy discourse,
1976: 254: 29: 614:
respectively, where the o indicates a quantity evaluated between
109:
Temperature dependence and the relation to the Arrhenius equation
1701:(2nd ed.). Blackie (USA: Chapman & Hall+). p. 88. 675:
is the rate constant of the rate-limiting slow second step and K
1722: 101:
Although less commonly used, activation energy also applies to
1796: 38:
provide the activation energy to initiate combustion in this
1393:. New York, NY: WH Freeman and Company. pp. 240–244. 990: 970: 954: 941: 909: 896: 742: 722: 457:
to denote the Gibbs energy of activation to achieve the
34:
The sparks created by striking steel against a piece of
553:
hold. Note, however, that in Arrhenius theory proper,
410:, is used to describe the rate constant of a reaction: 1022: 867: 1021: 929: 837: 762: 700: 277: 129: 503:. Then, for a unimolecular, one-step reaction, the 2102: 2036: 2010: 1966: 1930: 1882: 1843: 1820: 1757: 1699:
Polymers: Chemistry and Physics of Modern Materials
308:) with and without a catalyst, plotted against the 1651:(3rd ed.). John Wiley and Sons. p. 316. 1068: 996: 915: 823: 748: 629:, but the activation energy is not related to the 292: 184: 1214:"Energy in a Modern Society: XIV. Nuclear energy" 875: 874: 857: 856: 77:(sometimes called the energy barrier) separating 185:{\displaystyle k=Ae^{{-E_{\textrm {a}}}/{(RT)}}} 1624:The overall activation energy is negative if Ea 1419:IUPAC Gold Book (2nd edition, on-line version) 1069:{\displaystyle \textstyle E=E_{i}+E_{p}-E_{t}} 683:decreases with temperature more rapidly than k 1734: 997:{\displaystyle {\ce {N2O2 + O2 -> 2 NO2}}} 749:{\displaystyle {\ce {2 NO + O2 -> 2 NO2}}} 8: 1586:(8th ed.). W. H. Freeman. p. 822. 1448:(2nd ed.). Prentice Hall. p. 301. 356:Relationship with Gibbs energy of activation 271:The relationship between activation energy ( 85:surface pertaining to the initial and final 1676:. Pearson. Benjamin-Cummings. p. *34. 1505:Laidler, Keith J.; Meiser, John H. (1982). 916:{\displaystyle {\ce {2 NO <=> N2O2}}} 1741: 1727: 1719: 1647:Moore, John W.; Pearson, Ralph G. (1981). 449:, the Eyring equation uses the concept of 377:) is used to describe the energy required 1559:Chemical kinetics and reaction mechanisms 1160:Chemical Kinetics and Reaction Mechanisms 1059: 1046: 1033: 1020: 989: 984: 979: 969: 964: 953: 948: 940: 935: 930: 928: 908: 903: 895: 890: 876: 869: 868: 866: 858: 851: 849: 848: 846: 842: 838: 836: 809: 804: 803: 798: 792: 779: 778: 772: 761: 741: 736: 731: 721: 716: 705: 701: 699: 283: 282: 276: 166: 161: 153: 152: 144: 143: 128: 1360:"The Arrhenius Law: Activation Energies" 266: 214:is the absolute temperature (usually in 1582:Atkins, Peter; de Paula, Julio (2006). 1469:Atkins, Peter; de Paula, Julio (2006). 1241:Journal of the American Ceramic Society 1121: 850: 1767:Unimolecular nucleophilic substitution 1609:"3.2.2: Pre-equilibrium Approximation" 1370:from the original on February 18, 2017 105:and various other physical phenomena. 1777:Bimolecular nucleophilic substitution 1477:(8th ed.). W.H.Freeman. p.  1425:from the original on 21 February 2020 824:{\displaystyle v=k\,\left^{2}\,\left} 7: 1672:Engel, Thomas; Reid, Philip (2006). 1830:Electrophilic aromatic substitution 1607:Kadir, Tamara (10 September 2020). 1015:, the overall activation energy is 384:, and the exponential relationship 1797:Nucleophilic internal substitution 1787:Nucleophilic aromatic substitution 1509:. Benjamin/Cummings. p. 381. 1316:10.1016/j.combustflame.2017.02.019 1253:10.1111/j.1151-2916.1990.tb05175.x 1220:from the original on 22 March 2019 806: 783: 780: 25: 1216:(Course). Ohio State University. 694:which is a termolecular reaction 641:In some cases, rates of reaction 58:to occur. The activation energy ( 1953:Lindemann–Hinshelwood mechanism 1340:from the original on 2016-11-29 690:An example is the oxidation of 293:{\displaystyle E_{\textrm {a}}} 259:Example of an enzyme-catalysed 65:) of a reaction is measured in 2002:Outer sphere electron transfer 1997:Inner sphere electron transfer 1807:Nucleophilic acyl substitution 1446:Chemical Kinetics and Dynamics 973: 877: 852: 725: 370:, the term activation energy ( 176: 167: 1: 2167:Diffusion-controlled reaction 1212:Kagan, Harris; Barrett, Tom. 1090:Activation energy asymptotics 1561:. McGraw-Hill. p. 121. 1391:Biochemistry - Ninth Edition 1280:10.1080/00150193.2012.707592 1822:Electrophilic substitutions 1557:Espenson, James H. (1981). 1013:chain-growth polymerization 2224: 2132:Energy profile (chemistry) 2094:More O'Ferrall–Jencks plot 1759:Nucleophilic substitutions 1584:Atkins' Physical Chemistry 1473:Atkins' Physical Chemistry 637:Negative activation energy 359: 248: 112: 2162:Michaelis–Menten kinetics 224:reaction rate coefficient 2208:Biochemistry terminology 2089:Potential energy surface 1968:Electron/Proton transfer 1853:Unimolecular elimination 1697:Cowie, J. M. G. (1991). 1415:"Enthalpy of activation" 1158:Espenson, James (1995). 1105:Autoignition temperature 1100:Mean kinetic temperature 2137:Transition state theory 1938:Intramolecular reaction 1864:Bimolecular elimination 1009:cationic polymerization 362:Transition state theory 226:. Even without knowing 1931:Unimolecular reactions 1892:Electrophilic addition 1649:Kinetics and mechanism 1070: 998: 917: 825: 750: 442:Instead of also using 328:is altered (lowered). 313: 294: 264: 200:pre-exponential factor 186: 43: 2122:Rate-determining step 2054:Reactive intermediate 1912:Free-radical addition 1902:Nucleophilic addition 1845:Elimination reactions 1389:Berg, Jeremy (2019). 1334:antoine.frostburg.edu 1071: 999: 918: 826: 751: 482:entropy of activation 295: 270: 258: 187: 71:kilocalories per mole 33: 2117:Equilibrium constant 1364:Chemistry LibreTexts 1304:Combustion and Flame 1078:40 to 60 kJ/mol 1019: 927: 835: 760: 698: 345:van der Waals forces 302:enthalpy of reaction 275: 127: 18:Energy of activation 2193:Reaction mechanisms 2127:Reaction coordinate 2059:Radical (chemistry) 2044:Elementary reaction 1987:Grotthuss mechanism 1751:reaction mechanisms 1544:10.1021/j150669a073 1130:"Activation Energy" 992: 972: 956: 943: 911: 898: 863: 744: 724: 461:. In the equation, 310:reaction coordinate 87:thermodynamic state 67:kilojoules per mole 50:of reaction rates, 2152:Arrhenius equation 1922:Oxidative addition 1884:Addition reactions 1674:Physical Chemistry 1507:Physical Chemistry 1110:Quantum tunnelling 1066: 1065: 994: 980: 960: 944: 931: 913: 899: 886: 882: 821: 756:. The rate law is 746: 732: 712: 368:Arrhenius equation 314: 290: 265: 202:for the reaction, 182: 121:Arrhenius equation 115:Arrhenius equation 44: 2188:Chemical kinetics 2175: 2174: 2147:Activated complex 2142:Activation energy 2104:Chemical kinetics 2049:Reaction dynamics 1948:Photodissociation 1538:(25): 6429–6435. 1400:978-1-319-11467-1 1095:Chemical kinetics 983: 963: 947: 934: 902: 889: 884: 845: 735: 715: 708: 326:activation energy 286: 206:is the universal 156: 103:nuclear reactions 75:potential barrier 56:chemical reaction 52:activation energy 16:(Redirected from 2215: 2079:Collision theory 2028:Matrix isolation 1982:Harpoon reaction 1859:E1cB-elimination 1743: 1736: 1729: 1720: 1713: 1712: 1694: 1688: 1687: 1669: 1663: 1662: 1644: 1638: 1637: 1621: 1619: 1613:Chem Libre Texts 1604: 1598: 1597: 1579: 1573: 1572: 1554: 1548: 1547: 1527: 1521: 1520: 1502: 1496: 1495: 1476: 1466: 1460: 1459: 1441: 1435: 1434: 1432: 1430: 1411: 1405: 1404: 1386: 1380: 1379: 1377: 1375: 1355: 1349: 1348: 1346: 1345: 1326: 1320: 1319: 1298: 1292: 1291: 1263: 1257: 1256: 1236: 1230: 1229: 1227: 1225: 1209: 1203: 1202: 1200: 1199: 1190:. Archived from 1180: 1174: 1173: 1155: 1149: 1148: 1146: 1145: 1136:. Archived from 1134:www.chem.fsu.edu 1126: 1079: 1075: 1073: 1072: 1067: 1064: 1063: 1051: 1050: 1038: 1037: 1003: 1001: 1000: 995: 993: 991: 988: 981: 971: 968: 961: 955: 952: 945: 942: 939: 932: 922: 920: 919: 914: 912: 910: 907: 900: 897: 894: 887: 885: 883: 881: 880: 873: 865: 864: 862: 855: 847: 843: 830: 828: 827: 822: 820: 816: 815: 814: 813: 797: 796: 791: 787: 786: 755: 753: 752: 747: 745: 743: 740: 733: 723: 720: 713: 706: 552: 523: 502: 459:transition state 453:and the symbol Δ 438: 405: 382:transition state 341:hydrogen bonding 299: 297: 296: 291: 289: 288: 287: 284: 191: 189: 188: 183: 181: 180: 179: 165: 160: 159: 158: 157: 154: 91:Svante Arrhenius 83:potential energy 21: 2223: 2222: 2218: 2217: 2216: 2214: 2213: 2212: 2178: 2177: 2176: 2171: 2157:Eyring equation 2098: 2069:Stereochemistry 2032: 2018:Solvent effects 2006: 1962: 1926: 1907: 1897: 1878: 1873: 1839: 1835: 1816: 1812: 1802: 1792: 1782: 1772: 1753: 1747: 1717: 1716: 1709: 1696: 1695: 1691: 1684: 1671: 1670: 1666: 1659: 1646: 1645: 1641: 1635: 1631: 1627: 1617: 1615: 1606: 1605: 1601: 1594: 1581: 1580: 1576: 1569: 1556: 1555: 1551: 1529: 1528: 1524: 1517: 1504: 1503: 1499: 1489: 1468: 1467: 1463: 1456: 1443: 1442: 1438: 1428: 1426: 1413: 1412: 1408: 1401: 1388: 1387: 1383: 1373: 1371: 1357: 1356: 1352: 1343: 1341: 1328: 1327: 1323: 1300: 1299: 1295: 1265: 1264: 1260: 1238: 1237: 1233: 1223: 1221: 1211: 1210: 1206: 1197: 1195: 1182: 1181: 1177: 1170: 1162:. McGraw-Hill. 1157: 1156: 1152: 1143: 1141: 1128: 1127: 1123: 1118: 1086: 1077: 1055: 1042: 1029: 1017: 1016: 925: 924: 833: 832: 805: 799: 774: 773: 758: 757: 696: 695: 686: 682: 678: 674: 670: 666: 651: 639: 616:standard states 590: 571: 535: 525: 514: 508: 485: 467: 448: 421: 411: 408:Eyring equation 399: 385: 376: 364: 358: 278: 273: 272: 253: 247: 236: 148: 139: 125: 124: 117: 111: 99: 64: 48:Arrhenius model 28: 23: 22: 15: 12: 11: 5: 2221: 2219: 2211: 2210: 2205: 2200: 2195: 2190: 2180: 2179: 2173: 2172: 2170: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2108: 2106: 2100: 2099: 2097: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2040: 2038: 2037:Related topics 2034: 2033: 2031: 2030: 2025: 2020: 2014: 2012: 2011:Medium effects 2008: 2007: 2005: 2004: 1999: 1994: 1989: 1984: 1979: 1973: 1971: 1964: 1963: 1961: 1960: 1955: 1950: 1945: 1940: 1934: 1932: 1928: 1927: 1925: 1924: 1919: 1914: 1909: 1905: 1899: 1895: 1888: 1886: 1880: 1879: 1877: 1876: 1871: 1867: 1861: 1856: 1849: 1847: 1841: 1840: 1838: 1837: 1833: 1826: 1824: 1818: 1817: 1815: 1814: 1810: 1804: 1800: 1794: 1790: 1784: 1780: 1774: 1770: 1763: 1761: 1755: 1754: 1748: 1746: 1745: 1738: 1731: 1723: 1715: 1714: 1707: 1689: 1682: 1664: 1657: 1639: 1633: 1629: 1625: 1599: 1592: 1574: 1567: 1549: 1522: 1515: 1497: 1487: 1461: 1454: 1436: 1406: 1399: 1381: 1358:Bui, Matthew. 1350: 1321: 1293: 1268:Ferroelectrics 1258: 1231: 1204: 1175: 1168: 1150: 1120: 1119: 1117: 1114: 1113: 1112: 1107: 1102: 1097: 1092: 1085: 1082: 1062: 1058: 1054: 1049: 1045: 1041: 1036: 1032: 1028: 1025: 987: 978: 975: 967: 959: 951: 938: 906: 893: 879: 872: 861: 854: 841: 819: 812: 808: 802: 795: 790: 785: 782: 777: 771: 768: 765: 739: 730: 727: 719: 711: 704: 684: 680: 676: 672: 668: 664: 649: 638: 635: 588: 569: 533: 512: 507:relationships 465: 446: 419: 397: 374: 360:Main article: 357: 354: 281: 249:Main article: 246: 243: 234: 178: 175: 172: 169: 164: 151: 147: 142: 138: 135: 132: 113:Main article: 110: 107: 98: 95: 62: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2220: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2185: 2183: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2112:Rate equation 2110: 2109: 2107: 2105: 2101: 2095: 2092: 2090: 2087: 2085: 2084:Arrow pushing 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2041: 2039: 2035: 2029: 2026: 2024: 2021: 2019: 2016: 2015: 2013: 2009: 2003: 2000: 1998: 1995: 1993: 1992:Marcus theory 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1974: 1972: 1969: 1965: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1943:Isomerization 1941: 1939: 1936: 1935: 1933: 1929: 1923: 1920: 1918: 1917:Cycloaddition 1915: 1913: 1910: 1903: 1900: 1893: 1890: 1889: 1887: 1885: 1881: 1875: 1868: 1865: 1862: 1860: 1857: 1854: 1851: 1850: 1848: 1846: 1842: 1831: 1828: 1827: 1825: 1823: 1819: 1808: 1805: 1798: 1795: 1788: 1785: 1778: 1775: 1768: 1765: 1764: 1762: 1760: 1756: 1752: 1744: 1739: 1737: 1732: 1730: 1725: 1724: 1721: 1710: 1708:0-216-92980-6 1704: 1700: 1693: 1690: 1685: 1683:0-8053-3842-X 1679: 1675: 1668: 1665: 1660: 1658:0-471-03558-0 1654: 1650: 1643: 1640: 1636: 1614: 1610: 1603: 1600: 1595: 1593:0-7167-8759-8 1589: 1585: 1578: 1575: 1570: 1568:0-07-019667-2 1564: 1560: 1553: 1550: 1545: 1541: 1537: 1533: 1532:J. Phys. Chem 1526: 1523: 1518: 1516:0-8053-5682-7 1512: 1508: 1501: 1498: 1494: 1490: 1488:0-7167-8759-8 1484: 1480: 1475: 1474: 1465: 1462: 1457: 1455:0-13-737123-3 1451: 1447: 1440: 1437: 1424: 1420: 1416: 1410: 1407: 1402: 1396: 1392: 1385: 1382: 1369: 1365: 1361: 1354: 1351: 1339: 1335: 1331: 1325: 1322: 1317: 1313: 1309: 1305: 1297: 1294: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1246: 1242: 1235: 1232: 1219: 1215: 1208: 1205: 1194:on 2017-07-08 1193: 1189: 1188:opentextbc.ca 1185: 1179: 1176: 1171: 1165: 1161: 1154: 1151: 1140:on 2016-12-07 1139: 1135: 1131: 1125: 1122: 1115: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1087: 1083: 1081: 1060: 1056: 1052: 1047: 1043: 1039: 1034: 1030: 1026: 1023: 1014: 1010: 1005: 985: 976: 965: 957: 949: 936: 904: 891: 870: 859: 839: 817: 810: 800: 793: 788: 775: 769: 766: 763: 737: 728: 717: 709: 702: 693: 688: 661: 659: 658:cross section 653: 648: 644: 636: 634: 632: 628: 624: 619: 617: 613: 609: 605: 600: 598: 594: 587: 583: 579: 575: 568: 564: 560: 556: 550: 546: 542: 538: 532: 528: 522: 518: 511: 506: 501: 497: 493: 489: 483: 479: 475: 471: 464: 460: 456: 452: 445: 440: 436: 432: 428: 424: 418: 414: 409: 403: 396: 392: 388: 383: 380: 373: 369: 363: 355: 353: 350: 346: 342: 338: 334: 329: 327: 323: 319: 311: 307: 303: 279: 269: 262: 257: 252: 244: 242: 238: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 192: 173: 170: 162: 149: 145: 140: 136: 133: 130: 122: 116: 108: 106: 104: 96: 94: 92: 88: 84: 80: 76: 72: 68: 61: 57: 53: 49: 41: 40:Bunsen burner 37: 32: 19: 2141: 2064:Molecularity 1698: 1692: 1673: 1667: 1648: 1642: 1623: 1616:. Retrieved 1612: 1602: 1583: 1577: 1558: 1552: 1535: 1531: 1525: 1506: 1500: 1492: 1472: 1464: 1445: 1439: 1427:. Retrieved 1418: 1409: 1390: 1384: 1374:February 17, 1372:. Retrieved 1366:. UC Davis. 1363: 1353: 1342:. Retrieved 1333: 1324: 1307: 1303: 1296: 1271: 1267: 1261: 1244: 1240: 1234: 1222:. Retrieved 1207: 1196:. Retrieved 1192:the original 1187: 1178: 1159: 1153: 1142:. Retrieved 1138:the original 1133: 1124: 1006: 692:nitric oxide 689: 662: 654: 646: 642: 640: 620: 611: 607: 603: 601: 596: 592: 585: 581: 577: 573: 566: 562: 558: 554: 548: 544: 540: 536: 530: 526: 520: 516: 509: 504: 499: 495: 491: 487: 477: 469: 462: 454: 451:Gibbs energy 443: 441: 434: 430: 426: 422: 416: 412: 401: 394: 390: 386: 379:to reach the 371: 365: 348: 330: 325: 315: 305: 239: 231: 227: 219: 211: 208:gas constant 203: 195: 193: 118: 100: 69:(kJ/mol) or 59: 51: 45: 2023:Cage effect 1958:RRKM theory 1874:elimination 1247:(5): 1172. 631:spontaneity 543:) exp(1 + Δ 505:approximate 337:active site 2203:Combustion 2182:Categories 1618:23 January 1344:2017-01-13 1224:15 October 1198:2018-04-05 1169:0070202605 1144:2017-01-13 1116:References 627:endergonic 261:exothermic 97:Other uses 2198:Catalysis 2074:Catalysis 1970:reactions 1310:: 32–39. 1288:121142463 1274:: 14–21. 1053:− 974:⟶ 878:⇀ 871:− 860:− 853:↽ 726:⟶ 671:, where k 623:exergonic 333:substrate 251:Catalysis 245:Catalysts 146:− 1423:Archived 1368:Archived 1338:Archived 1218:Archived 1084:See also 1007:Certain 643:decrease 474:entropic 429:) exp(−Δ 318:catalyst 263:reaction 1632:< Ea 595:, and Δ 366:In the 349:release 222:is the 218:), and 216:kelvins 198:is the 81:of the 46:In the 1749:Basic 1705:  1680:  1655:  1590:  1565:  1513:  1485:  1452:  1429:10 May 1397:  1286:  1166:  322:enzyme 300:) and 194:where 79:minima 1977:Redox 1813:Acyl) 1284:S2CID 610:and Δ 393:exp(− 36:flint 1866:(E2) 1855:(E1) 1703:ISBN 1678:ISBN 1653:ISBN 1628:+ Ea 1620:2022 1588:ISBN 1563:ISBN 1511:ISBN 1483:ISBN 1450:ISBN 1431:2020 1395:ISBN 1376:2017 1226:2021 1164:ISBN 923:and 580:and 524:and 468:and 119:The 1836:Ar) 1793:Ar) 1540:doi 1479:883 1312:doi 1308:180 1276:doi 1272:432 1249:doi 625:or 606:, Δ 591:, Δ 529:= ( 515:= Δ 490:= Δ 415:= ( 343:or 2184:: 1904:(A 1894:(A 1832:(S 1809:(S 1803:i) 1799:(S 1789:(S 1783:2) 1779:(S 1773:1) 1769:(S 1634:−1 1622:. 1611:. 1536:88 1534:. 1491:. 1481:. 1417:. 1362:. 1336:. 1332:. 1306:. 1282:. 1270:. 1245:73 1243:. 1186:. 1132:. 1080:. 1004:. 982:NO 844:NO 734:NO 707:NO 652:. 582:RT 521:RT 519:+ 494:− 484:: 435:RT 433:/ 425:/ 402:RT 389:= 304:(Δ 230:, 210:, 93:. 1908:) 1906:N 1898:) 1896:E 1872:i 1870:E 1834:E 1811:N 1801:N 1791:N 1781:N 1771:N 1742:e 1735:t 1728:v 1711:. 1686:. 1661:. 1630:2 1626:1 1596:. 1571:. 1546:. 1542:: 1519:. 1458:. 1433:. 1403:. 1378:. 1347:. 1318:. 1314:: 1290:. 1278:: 1255:. 1251:: 1228:. 1201:. 1172:. 1147:. 1061:t 1057:E 1048:p 1044:E 1040:+ 1035:i 1031:E 1027:= 1024:E 986:2 977:2 966:2 962:O 958:+ 950:2 946:O 937:2 933:N 905:2 901:O 892:2 888:N 840:2 818:] 811:2 807:O 801:[ 794:2 789:] 784:O 781:N 776:[ 770:k 767:= 764:v 738:2 729:2 718:2 714:O 710:+ 703:2 685:2 681:1 677:1 673:2 669:1 667:K 665:2 650:a 647:E 612:G 608:S 604:H 597:H 593:G 589:a 586:E 578:S 576:Δ 574:T 570:a 567:E 563:G 559:T 555:A 551:) 549:R 547:/ 545:S 541:h 539:/ 537:T 534:B 531:k 527:A 517:H 513:a 510:E 500:S 498:Δ 496:T 492:H 488:G 486:Δ 478:A 470:h 466:B 463:k 455:G 447:a 444:E 437:) 431:G 427:h 423:T 420:B 417:k 413:k 404:) 400:/ 398:a 395:E 391:A 387:k 375:a 372:E 306:H 285:a 280:E 235:a 232:E 228:A 220:k 212:T 204:R 196:A 177:) 174:T 171:R 168:( 163:/ 155:a 150:E 141:e 137:A 134:= 131:k 63:a 60:E 20:)

Index

Energy of activation

flint
Bunsen burner
Arrhenius model
chemical reaction
kilojoules per mole
kilocalories per mole
potential barrier
minima
potential energy
thermodynamic state
Svante Arrhenius
nuclear reactions
Arrhenius equation
Arrhenius equation
pre-exponential factor
gas constant
kelvins
reaction rate coefficient
Catalysis

exothermic

enthalpy of reaction
reaction coordinate
catalyst
enzyme
substrate
active site

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.