Knowledge

Enriques–Kodaira classification

Source 📝

222:) is similar to that of algebraic surfaces in characteristic 0, except that there are no Kodaira surfaces or surfaces of type VII, and there are some extra families of Enriques surfaces in characteristic 2, and hyperelliptic surfaces in characteristics 2 and 3, and in Kodaira dimension 1 in characteristics 2 and 3 one also allows quasielliptic fibrations. These extra families can be understood as follows: In characteristic 0 these surfaces are the quotients of surfaces by finite groups, but in finite characteristics it is also possible to take quotients by finite 837: 1174: 634: 36: 5935:. There are a large number of other constructions known. However, there is no known construction that can produce "typical" surfaces of general type for large Chern numbers; in fact it is not even known if there is any reasonable concept of a "typical" surface of general type. There are many other examples that have been found, including most 199:
The Enriques–Kodaira classification of compact complex surfaces states that every nonsingular minimal compact complex surface is of exactly one of the 10 types listed on this page; in other words, it is one of the rational, ruled (genus > 0), type VII, K3, Enriques, Kodaira, toric, hyperelliptic,
5681:, there is a quasi-projective scheme classifying the surfaces of general type with those Chern numbers. However it is a very difficult problem to describe these schemes explicitly, and there are very few pairs of Chern numbers for which this has been done (except when the scheme is empty!) 970: 832:{\displaystyle {\begin{aligned}\kappa =-\infty &\longleftrightarrow P_{12}=0\\\kappa =0&\longleftrightarrow P_{12}=1\\\kappa =1&\longleftrightarrow P_{12}>1{\text{ and }}K\cdot K=0\\\kappa =2&\longleftrightarrow P_{12}>1{\text{ and }}K\cdot K>0\\\end{aligned}}} 4916:
which are quotients of these by finite groups of orders 2, 3, 4, or 6, and which have non-trivial canonical bundles. The secondary Kodaira surfaces have the same relation to primary ones that Enriques surfaces have to K3 surfaces, or bielliptic surfaces have to abelian surfaces.
1839: 4217: 192: 3848: 5473:. Conversely, given a genus 1 curve over the function field of a curve, its relative minimal model is an elliptic surface. Kodaira and others have given a fairly complete description of all elliptic surfaces. In particular, Kodaira gave a 454:
there are examples of surfaces that are homeomorphic but have different plurigenera and Kodaira dimensions. The individual plurigenera are not often used; the most important thing about them is their growth rate, measured by the
4068: 2718: 1169:{\displaystyle {\begin{matrix}&&h^{0,0}&&\\&h^{1,0}&&h^{0,1}&\\h^{2,0}&&h^{1,1}&&h^{0,2}\\&h^{2,1}&&h^{1,2}&\\&&h^{2,2}&&\\\end{matrix}}} 3979: 2549: 183:); it is similar to the characteristic 0 projective case, except that one also gets singular and supersingular Enriques surfaces in characteristic 2, and quasi-hyperelliptic surfaces in characteristics 2 and 3. 4768:. One-dimensional complex tori are just elliptic curves and are all algebraic, but Riemann discovered that most complex tori of dimension 2 are not algebraic. The algebraic ones are exactly the 2-dimensional 121:. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known. 1599: 1609: 4752:). The moduli space of marked K3 surfaces is connected non-Hausdorff smooth analytic space of dimension 20. The algebraic K3 surfaces form a countable collection of 19-dimensional subvarieties of it. 5920: 432: 3716: 639: 4079: 2423: 2346: 919: 1959: 5854: 2235: 5621: 2130: 450:
showed that for complex manifolds they only depend on the underlying oriented smooth 4-manifold. For non-Kähler surfaces the plurigenera are determined by the fundamental group, but for
5788: 2794: 3657: 318: 5739: 1245: 3711: 1303: 623: 3494:
implies that all minimal class VII surfaces with positive second Betti number are Kato surfaces, which would more or less complete the classification of the type VII surfaces.
552: 1399: 278: 3703: 946: 2031: 1507: 5527: 2994: 2951: 2581: 510: 5469:
such that all but finitely many fibers are smooth irreducible curves of genus 1). The generic fiber in such a fibration is a genus 1 curve over the function field of
1468: 1435: 1340: 481: 2611: 579: 203:
For the 9 classes of surfaces other than general type, there is a fairly complete description of what all the surfaces look like (which for class VII depends on the
2451: 3331:, so the classification of ruled surfaces up to birational equivalence is essentially the same as the classification of curves. A ruled surface not isomorphic to 57: 2965:
blown up twice. So to classify all compact complex surfaces up to birational isomorphism it is (more or less) enough to classify the minimal non-singular ones.
163:) later extended the classification to include non-algebraic compact surfaces. The analogous classification of surfaces in positive characteristic was begun by 4772:. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Criteria to be a product of two elliptic curves (up to 5506:
1 is an elliptic surface (or a quasielliptic surface in characteristics 2 or 3), but the converse is not true: an elliptic surface can have Kodaira dimension
6608: 3994: 2815:
There are further invariants of compact complex surfaces that are not used so much in the classification. These include algebraic invariants such as the
5791: 2953:
may be birational to more than one minimal non-singular surface, but it is easy to describe the relation between these minimal surfaces. For example,
207:, still unproved in 2024). For surfaces of general type not much is known about their explicit classification, though many examples have been found. 2622: 3000:> 0 then the map to the Albanese variety has fibers that are projective lines (if the surface is minimal) so the surface is a ruled surface. If 5266:
In characteristic 2 there are some extra families of Enriques surfaces called singular and supersingular Enriques surfaces; see the article on
5449:
Over fields of characteristics 2 or 3 there are some extra families given by taking quotients by a non-etale group scheme; see the article on
3859: 3319:. They are all algebraic. (The ones of genus 0 are the Hirzebruch surfaces and are rational.) Any ruled surface is birationally equivalent to 6515: 6395: 6047: 6028: 5986: 5284:
Over the complex numbers these are quotients of a product of two elliptic curves by a finite group of automorphisms. The finite group can be
2880:
this point, which means roughly that we replace it by a copy of the projective line. For the purpose of this article, a non-singular surface
4588:. All K3 surfaces are diffeomorphic, and their diffeomorphism class is an important example of a smooth spin simply connected 4-manifold. 2889: 2462: 337:
The most important invariants of a compact complex surfaces used in the classification can be given in terms of the dimensions of various
1519:
There are many invariants that (at least for complex surfaces) can be written as linear combinations of the Hodge numbers, as follows:
6462: 6096: 3491: 204: 89: 1834:{\displaystyle {\begin{cases}b_{0}=b_{4}=1\\b_{1}=b_{3}=h^{1,0}+h^{0,1}=h^{2,1}+h^{1,2}\\b_{2}=h^{2,0}+h^{1,1}+h^{0,2}\end{cases}}} 1531: 2245: 6339: 6301: 6245: 6207: 5557:
is of genus at least 2 always has Kodaira dimension 1, but the Kodaira dimension can be 1 also for some elliptic surfaces with
2919:. A smooth projective surface has a minimal model in that stronger sense if and only if its Kodaira dimension is nonnegative.) 2873:
Any surface is birational to a non-singular surface, so for most purposes it is enough to classify the non-singular surfaces.
512:(sometimes written −1) if the plurigenera are all 0, and is otherwise the smallest number (0, 1, or 2 for surfaces) such that 5137:= 0 and the canonical line bundle is non-trivial, but has trivial square. Enriques surfaces are all algebraic (and therefore 4908:
These are never algebraic, though they have non-constant meromorphic functions. They are usually divided into two subtypes:
4212:{\displaystyle 8h^{0,1}+2\left(2h^{0,1}-b_{1}\right)+b_{2}={\begin{cases}22&K=0\\10&{\text{otherwise}}\end{cases}}} 3011:
For non-algebraic surfaces Kodaira found an extra class of surfaces, called type VII, which are still not well understood.
6507: 6428: 5861: 363: 5141:). They are quotients of K3 surfaces by a group of order 2 and their theory is similar to that of algebraic K3 surfaces. 2858: 6598: 2362: 2262: 847: 6603: 1876: 447: 5499:
surfaces, whose fibers may almost all be rational curves with a single node, which are "degenerate elliptic curves".
2896:
has no (−1)-curves (smooth rational curves with self-intersection number −1). (In the more modern terminology of the
6567:. Theorem 4.3 of this article classifies the Hodge numbers of a quasi-hyperelliptic surface in characteristic three. 5931:
The simplest examples are the product of two curves of genus at least 2, and a hypersurface of degree at least 5 in
5799: 2153: 6012: 5956: 5925:
Most pairs of integers satisfying these conditions are the Chern numbers for some complex surface of general type.
5569: 5553:
are elliptic surfaces, and these examples have Kodaira dimension less than 1. An elliptic surface whose base curve
2831: 2054: 443: 6593: 6560: 1969: 338: 320:, and Igusa showed that even when they are equal they may be greater than the irregularity (the dimension of the 5108:
Take a non-trivial line bundle over an elliptic curve, remove the zero section, then quotient out the fibers by
6124: 5745: 5687:
There are several conditions that the Chern numbers of a minimal complex surface of general type must satisfy:
3664: 3479: 3023: 2739: 71: 6171:(1914), "Sulla classificazione delle superficie algebriche e particolarmente sulle superficie di genere p=1", 6116: 5477:. The theory of elliptic surfaces is analogous to the theory of proper regular models of elliptic curves over 3605: 6580:
is an interactive visualisation of the Enriques--Kodaira classification, by Pieter Belmans and Johan Commelin
4233:, so three terms on the left are non-negative integers and there are only a few solutions to this equation. 5936: 5658:
These are all algebraic, and in some sense most surfaces are in this class. Gieseker showed that there is a
5653: 5478: 3843:{\displaystyle {\begin{aligned}\chi &=h^{0,0}-h^{0,1}+h^{0,2}\\c_{2}&=2-2b_{1}+b_{2}\end{aligned}}} 283: 5693: 1186: 236:
constructed some surfaces in positive characteristic that are unirational but not rational, derived from
5940: 5534: 5450: 5279: 2897: 1250: 584: 237: 515: 227: 5263:
Marked Enriques surfaces form a connected 10-dimensional family, which has been described explicitly.
6442: 6133: 5973:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 5659: 3454: 2353: 1859: 1352: 949: 4171: 4022: 2926:
is birational to a minimal non-singular surface, and this minimal non-singular surface is unique if
2631: 1618: 247: 6559:, Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 12 (1979) no. 4, pp. 473-500. 2862: 3670: 6476: 6432: 6401: 6356: 6318: 6262: 6224: 6157: 5171: 4607: 4299:
Most solutions to these conditions correspond to classes of surfaces, as in the following table:
3034: 2826: 924: 5138: 4585: 4567: 4538: 4458: 4378: 4273: 3460: 1994: 1473: 1346: 451: 17: 6511: 6458: 6391: 6288: 6183: 6168: 6092: 6043: 6024: 5982: 5509: 5503: 3292: 2976: 2933: 2930:
has Kodaira dimension at least 0 or is not algebraic. Algebraic surfaces of Kodaira dimension
2845: 2559: 1850: 492: 485: 456: 132: 128: 1440: 1407: 1312: 466: 6487: 6450: 6383: 6348: 6310: 6278: 6254: 6216: 6202: 6141: 6084: 6016: 6004: 5974: 5550: 5530: 5474: 5462: 5267: 5128: 4920:
Invariants: If the surface is the quotient of a primary Kodaira surface by a group of order
3296: 3019: 3005: 2586: 2140: 1978: 557: 144: 67: 6549: 6525: 6472: 6413: 6368: 6330: 6274: 6236: 6195: 6153: 6070: 6038: 5996: 2436: 6545: 6541: 6521: 6495: 6468: 6409: 6364: 6326: 6270: 6232: 6191: 6149: 6108: 6066: 6054: 6034: 5992: 5546: 5538: 5489: 5465:
is a surface equipped with an elliptic fibration (a surjective holomorphic map to a curve
4903: 4769: 4765: 2916: 2041: 353: 241: 172: 6556: 6299:
Kodaira, Kunihiko (1968a), "On the structure of compact complex analytic surfaces. III",
6077:
Bombieri, E.; Mumford, D. (1977). "Enriques' Classification of Surfaces in Char. P, II".
2853:
and the integral homology and cohomology groups, and invariants of the underlying smooth
6533: 6446: 6137: 5662:
for surfaces of general type; this means that for any fixed values of the Chern numbers
6243:
Kodaira, Kunihiko (1966), "On the structure of compact complex analytic surfaces. II",
5944: 5482: 5113: 4713: 1974: 50: 44: 6283: 191: 6587: 6480: 6375: 6161: 6112: 6078: 6058: 4063:{\displaystyle h^{0,2}={\begin{cases}1&K=0\\0&{\text{otherwise}}\end{cases}}} 3483: 3475: 3288: 3004:= 0 this argument does not work as the Albanese variety is a point, but in this case 2888:
if it cannot be obtained from another non-singular surface by blowing up a point. By
2840: 1181: 233: 164: 111: 4890:
A product of two elliptic curves. The Jacobian of a genus 2 curve. Any quotient of
4761: 3487: 3471: 2817: 2798: 1524: 1309:
ring of the surface, and are invariant under birational transformations except for
957: 321: 223: 118: 6564: 6088: 6337:
Kodaira, Kunihiko (1968b), "On the structure of complex analytic surfaces. IV",
2803: 554:
is bounded. Enriques did not use this definition: instead he used the values of
342: 124: 103: 6405: 5969:
Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004),
6491: 6420: 6387: 5978: 5542: 2877: 2854: 2713:{\displaystyle {\begin{cases}b^{+}+b^{-}=b_{2}\\b^{+}-b^{-}=\tau \end{cases}}} 2583:
are the dimensions of the maximal positive and negative definite subspaces of
2357: 1306: 439: 6020: 6454: 1985:. For complex surfaces (but not always for surfaces of prime characteristic) 6292: 6050:
softcover) – including a more elementary introduction to the classification
4580:
These are the minimal compact complex surfaces of Kodaira dimension 0 with
625:. These determine the Kodaira dimension given the following correspondence: 6011:, London Mathematical Society Student Texts, vol. 34 (2nd ed.), 6437: 5162:
is odd. The fundamental group has order 2. The second cohomology group H(
3974:{\displaystyle 10+12h^{0,2}=8h^{0,1}+2\left(2h^{0,1}-b_{1}\right)+b_{2}} 1305:
The Hodge numbers of a complex surface depend only on the oriented real
6498:; Tjurina, Galina N.; Tjurin, Andrei N. (1967) , "Algebraic surfaces", 6360: 6322: 6266: 6228: 6145: 4773: 3284: 210:
The classification of algebraic surfaces in positive characteristic (
6352: 6314: 6258: 6220: 6205:(1964), "On the structure of compact complex analytic surfaces. I", 2544:{\displaystyle \tau =4\chi -e=\sum \nolimits _{i,j}(-1)^{j}h^{i,j}.} 2433:
of the second cohomology group for complex surfaces is denoted by
3602:
These surfaces are classified by starting with Noether's formula
3095:
The plurigenera are all 0 and the fundamental group is trivial.
6061:(1977), "Enriques' classification of surfaces in char. p. II", 4736:
K3 surface is a K3 surface together with an isomorphism from II
143:) described the classification of complex projective surfaces. 29: 5900: 3029:. These are all algebraic. The minimal rational surfaces are 2249:
of the trivial bundle (usually differs from the Euler number
6378:(1969), "Enriques' classification of surfaces in char p I", 1594:{\displaystyle b_{i}=\dim H^{i}(S),0\leqslant i\leqslant 4.} 302: 6577: 6540:, Lecture Notes in Math., vol. 677, Berlin, New York: 6490:; Averbuh, Boris G.; Vaĭnberg, Ju. R.; Zhizhchenko, A. B.; 6427:, IAS/Park City Math. Ser., vol. 3, Providence, R.I.: 4782:
The plurigenera are all 1. The surface is diffeomorphic to
4205: 4056: 2876:
Given any point on a surface, we can form a new surface by
2706: 1827: 6000:– the standard reference book for compact complex surfaces 5648:
Surfaces of Kodaira dimension 2 (surfaces of general type)
5178:
of dimension 10 and signature −8 and a group of order 2.
2802:, defined as the integrals of various polynomials in the 6117:"Enriques' classification of surfaces in char. p. III." 62: 6534:"On the Enriques classification of algebraic surfaces" 3470:= 0 have been classified by Bogomolov, and are either 2367: 1849: > 0 the Betti numbers are defined using 1342:
which increases by 1 under blowing up a single point.
975: 127:
began the systematic study of algebraic surfaces, and
5864: 5802: 5748: 5696: 5572: 5512: 4461:
over the complex numbers, but need not be algebraic.
4381:
over the complex numbers, but need not be algebraic.
4082: 3997: 3862: 3714: 3673: 3608: 3478:. Examples with positive second Betti number include 2979: 2936: 2742: 2625: 2589: 2562: 2465: 2439: 2365: 2265: 2156: 2057: 1997: 1879: 1612: 1534: 1476: 1443: 1410: 1355: 1315: 1253: 1189: 973: 927: 850: 637: 587: 560: 518: 495: 469: 366: 286: 250: 5915:{\displaystyle c_{1}^{2}+c_{2}\equiv 0{\bmod {1}}2.} 4584:= 0 and trivial canonical line bundle. They are all 442:
invariants, i.e., invariant under blowing up. Using
427:{\displaystyle P_{n}=\dim H^{0}(K^{n}),n\geqslant 1} 6500:
Proceedings of the Steklov Institute of Mathematics
1401:
and there are only three independent Hodge numbers.
200:properly quasi-elliptic, or general type surfaces. 5914: 5848: 5782: 5733: 5615: 5521: 5495:In finite characteristic 2 and 3 one can also get 4776:) were a popular study in the nineteenth century. 4211: 4062: 3973: 3842: 3697: 3651: 2988: 2945: 2788: 2712: 2605: 2575: 2543: 2445: 2418:{\displaystyle {\tfrac {1}{12}}(c_{1}^{2}+c_{2}).} 2417: 2341:{\displaystyle \chi =p_{g}-q+1=h^{0,2}-h^{0,1}+1.} 2340: 2229: 2124: 2025: 1953: 1833: 1593: 1501: 1462: 1429: 1393: 1334: 1297: 1239: 1168: 940: 914:{\displaystyle h^{i,j}=\dim H^{j}(X,\Omega ^{i}),} 913: 831: 617: 573: 546: 504: 475: 426: 312: 272: 6557:"Quasi-elliptic surfaces in characteristic three" 4073:combining this with the previous equation gives: 6425:Complex algebraic geometry (Park City, UT, 1993) 5492:(e.g., the ring of integers of a number field). 1954:{\displaystyle e=b_{0}-b_{1}+b_{2}-b_{3}+b_{4}.} 244:). In positive characteristic Serre showed that 6380:Global Analysis (Papers in Honor of K. Kodaira) 5644:is an elliptic surface of Kodaira dimension 1. 4756:Abelian surfaces and 2-dimensional complex tori 219: 215: 180: 176: 6382:, Tokyo: Univ. Tokyo Press, pp. 325–339, 5849:{\displaystyle 5c_{1}^{2}-c_{2}+36\geqslant 0} 5170:) is isomorphic to the sum of the unique even 3441:The product of any curve of genus > 0 with 2230:{\displaystyle p_{a}=p_{g}-q=h^{0,2}-h^{0,1}.} 131:proved important parts of the classification. 5616:{\displaystyle c_{1}^{2}=0,c_{2}\geqslant 0.} 5475:complete list of the possible singular fibers 8: 2125:{\displaystyle p_{g}=h^{0,2}=h^{2,0}=P_{1}.} 5364:, giving seven families of such surfaces. 5112:acting as multiplication by powers of some 3311:have a smooth morphism to a curve of genus 356:whose sections are the holomorphic 2-forms. 6423:(1997), "Chapters on algebraic surfaces", 3299:. Many of these examples are non-minimal. 345:and the Hodge numbers defined as follows: 6436: 6282: 6065:, Tokyo: Iwanami Shoten, pp. 23–42, 5903: 5899: 5887: 5874: 5869: 5863: 5828: 5815: 5810: 5801: 5783:{\displaystyle c_{1}^{2}\leqslant 3c_{2}} 5774: 5758: 5753: 5747: 5719: 5706: 5701: 5695: 5601: 5582: 5577: 5571: 5511: 5133:These are the complex surfaces such that 4728:, then blowing up the 16 singular points. 4197: 4166: 4157: 4139: 4120: 4090: 4081: 4048: 4017: 4002: 3996: 3965: 3947: 3928: 3898: 3876: 3861: 3830: 3817: 3791: 3771: 3752: 3733: 3715: 3713: 3683: 3678: 3672: 3640: 3635: 3622: 3607: 2978: 2935: 2789:{\displaystyle c_{1}^{2}=K^{2}=12\chi -e} 2765: 2752: 2747: 2741: 2691: 2678: 2664: 2651: 2638: 2626: 2624: 2594: 2588: 2567: 2561: 2526: 2516: 2491: 2464: 2438: 2403: 2390: 2385: 2366: 2364: 2320: 2301: 2276: 2264: 2212: 2193: 2174: 2161: 2155: 2113: 2094: 2075: 2062: 2056: 2008: 1996: 1942: 1929: 1916: 1903: 1890: 1878: 1812: 1793: 1774: 1761: 1741: 1722: 1703: 1684: 1671: 1658: 1638: 1625: 1613: 1611: 1558: 1539: 1533: 1481: 1475: 1448: 1442: 1415: 1409: 1379: 1360: 1354: 1320: 1314: 1277: 1258: 1252: 1213: 1194: 1188: 1148: 1125: 1106: 1085: 1066: 1047: 1026: 1007: 984: 974: 972: 932: 926: 899: 880: 855: 849: 805: 793: 749: 737: 701: 665: 638: 636: 609: 604: 586: 565: 559: 538: 529: 523: 517: 494: 468: 403: 390: 371: 365: 301: 300: 291: 285: 255: 249: 195:Chern numbers of minimal complex surfaces 117:into ten classes, each parametrized by a 90:Learn how and when to remove this message 5119:. This gives a primary Kodaira surface. 4301: 3652:{\displaystyle 12\chi =c_{2}+c_{1}^{2}.} 3089:blown up at a point so is not minimal.) 2973:Algebraic surfaces of Kodaira dimension 190: 160: 156: 140: 136: 6538:Séminaire Bourbaki, 29e année (1976/77) 6080:Complex Analysis and Algebraic Geometry 6063:Complex analysis and algebraic geometry 4720:an abelian surface by the automorphism 211: 168: 152: 148: 27:Mathematical classification of surfaces 5274:Hyperelliptic (or bielliptic) surfaces 4924:= 1, 2, 3, 4, 6, then the plurigenera 3459:These surfaces are never algebraic or 3008:implies that the surface is rational. 2843:ρ, topological invariants such as the 961:, often arranged in the Hodge diamond: 214:, Mumford & Bombieri  5636:is a curve of genus at least 2, then 2961:blown up at a point is isomorphic to 1853:and need not satisfy these relations. 313:{\displaystyle h^{1}({\mathcal {O}})} 66:. Parenthetical referencing has been 7: 5734:{\displaystyle c_{1}^{2},c_{2}>0} 2892:, this is equivalent to saying that 6609:Mathematical classification systems 4912:with trivial canonical bundle, and 4614:of dimension 22 and signature −16. 4606:) is isomorphic to the unique even 2488: 1973:is defined as the dimension of the 1515:Invariants related to Hodge numbers 1240:{\displaystyle h^{i,j}=h^{2-i,2-j}} 333:Hodge numbers and Kodaira dimension 5516: 4248:is an even integer between 0 and 2 2983: 2940: 1298:{\displaystyle h^{0,0}=h^{2,2}=1.} 929: 896: 651: 618:{\displaystyle K\cdot K=c_{1}^{2}} 499: 264: 25: 3492:global spherical shell conjecture 3065:associated to the sheaf O(0) + O( 2996:can be classified as follows. If 2890:Castelnuovo's contraction theorem 547:{\displaystyle P_{n}/n^{\kappa }} 205:global spherical shell conjecture 175: and David Mumford ( 5792:Bogomolov–Miyaoka–Yau inequality 3022:means surface birational to the 2969:Surfaces of Kodaira dimension −∞ 2246:holomorphic Euler characteristic 34: 6340:American Journal of Mathematics 6302:American Journal of Mathematics 6246:American Journal of Mathematics 6208:American Journal of Mathematics 5457:Surfaces of Kodaira dimension 1 3665:intersection number with itself 3598:Surfaces of Kodaira dimension 0 1404:If the surface is compact then 1394:{\displaystyle h^{i,j}=h^{j,i}} 341:groups. The basic ones are the 187:Statement of the classification 108:Enriques–Kodaira classification 18:Enriques-Kodaira classification 6190:, Nicola Zanichelli, Bologna, 4258:For compact complex surfaces 2 3303:Ruled surfaces of genus > 0 3051:≥ 2. (The Hirzebruch surface Σ 2900:, a smooth projective surface 2513: 2503: 2409: 2378: 1570: 1564: 905: 886: 786: 730: 694: 658: 409: 396: 307: 297: 273:{\displaystyle h^{0}(\Omega )} 267: 261: 1: 6532:Van de Ven, Antonius (1978), 6508:American Mathematical Society 6429:American Mathematical Society 2908:if its canonical line bundle 2869:Minimal models and blowing up 6089:10.1017/CBO9780511569197.004 4798:so the fundamental group is 4594:The second cohomology group 3698:{\displaystyle c_{1}^{2}=0.} 3507:= 0. All plurigenera are 0. 3353:The plurigenera are all 0. 941:{\displaystyle \Omega ^{i}} 6625: 6013:Cambridge University Press 6009:Complex algebraic surfaces 5957:List of algebraic surfaces 5651: 5277: 5126: 4914:secondary Kodaira surfaces 4901: 4702:Degree 4 hypersurfaces in 4511:Only characteristics 2, 3 3452: 2026:{\displaystyle q=h^{0,1}.} 1502:{\displaystyle h^{0,1}-1.} 6388:10.1515/9781400871230-019 5979:10.1007/978-3-642-57739-0 5632:is an elliptic curve and 3659:For Kodaira dimension 0, 3480:Inoue-Hirzebruch surfaces 2859:Seiberg–Witten invariants 339:coherent sheaf cohomology 6578:le superficie algebriche 6188:Le Superficie Algebriche 6173:Atti. Acc. Lincei V Ser. 6125:Inventiones Mathematicae 6021:10.1017/CBO9780511623936 5971:Compact Complex Surfaces 5937:Hilbert modular surfaces 5856:(the Noether inequality) 5522:{\displaystyle -\infty } 5479:discrete valuation rings 4910:primary Kodaira surfaces 4716:. These are obtained by 4237:For algebraic surfaces 2 3463:. The minimal ones with 3307:Ruled surfaces of genus 3024:complex projective plane 2989:{\displaystyle -\infty } 2946:{\displaystyle -\infty } 2576:{\displaystyle b^{\pm }} 2356:it is also equal to the 505:{\displaystyle -\infty } 5654:Surface of general type 4454:Abelian surfaces, tori 4428:Non-classical Enriques 4407:Any. Always algebraic. 3315:whose fibers are lines 3279:, Hirzebruch surfaces Σ 1463:{\displaystyle h^{0,1}} 1430:{\displaystyle h^{1,0}} 1335:{\displaystyle h^{1,1}} 476:{\displaystyle \kappa } 5941:fake projective planes 5916: 5850: 5784: 5735: 5617: 5535:hyperelliptic surfaces 5523: 5451:hyperelliptic surfaces 4487:Any. Always algebraic 4431:Only characteristic 2 4213: 4064: 3975: 3844: 3699: 3653: 2990: 2947: 2790: 2714: 2607: 2606:{\displaystyle H^{2},} 2577: 2545: 2447: 2419: 2342: 2231: 2126: 2027: 1955: 1835: 1595: 1503: 1464: 1431: 1395: 1336: 1299: 1241: 1170: 942: 915: 833: 619: 575: 574:{\displaystyle P_{12}} 548: 506: 477: 446:, Robert Friedman and 428: 328:Invariants of surfaces 314: 274: 238:inseparable extensions 196: 43:This article includes 5917: 5851: 5785: 5736: 5618: 5524: 5280:hyperelliptic surface 4214: 4065: 3976: 3845: 3700: 3654: 3486:, and more generally 3449:Surfaces of class VII 3339:has a unique ruling ( 3226:(Hirzebruch surfaces) 3006:Castelnuovo's theorem 2991: 2948: 2898:minimal model program 2825:) of divisors modulo 2791: 2715: 2608: 2578: 2546: 2448: 2446:{\displaystyle \tau } 2420: 2343: 2232: 2127: 2028: 1956: 1836: 1596: 1504: 1465: 1432: 1396: 1337: 1300: 1242: 1171: 943: 916: 834: 620: 576: 549: 507: 478: 444:Seiberg–Witten theory 429: 354:canonical line bundle 315: 275: 194: 133:Federigo Enriques 6544:, pp. 237–251, 6506:, Providence, R.I.: 6488:Shafarevich, Igor R. 5862: 5800: 5746: 5694: 5660:coarse moduli scheme 5570: 5510: 4760:The two-dimensional 4566:Only complex, never 4537:Only complex, never 4508:Quasi-hyperelliptic 4080: 3995: 3860: 3712: 3671: 3606: 3455:Surface of class VII 2977: 2934: 2863:Donaldson invariants 2740: 2623: 2587: 2560: 2463: 2437: 2363: 2263: 2154: 2055: 1995: 1877: 1860:Euler characteristic 1610: 1532: 1474: 1441: 1408: 1353: 1313: 1251: 1187: 971: 925: 848: 635: 585: 558: 516: 493: 467: 364: 284: 248: 145:Kunihiko Kodaira 6599:Birational geometry 6565:10.24033/asens.1373 6496:Moishezon, Boris G. 6455:10.1090/pcms/003/02 6447:1996alg.geom..2006R 6138:1976InMat..35..197B 5879: 5820: 5763: 5711: 5587: 5481:(e.g., the ring of 4404:Classical Enriques 3688: 3645: 3327:for a unique curve 3035:Hirzebruch surfaces 2829:, its quotient the 2757: 2395: 614: 173:Enrico Bombieri 171:) and completed by 72:shortened footnotes 6604:Algebraic surfaces 6431:, pp. 3–159, 6184:Enriques, Federigo 6169:Enriques, Federigo 6146:10.1007/BF01390138 6083:. pp. 23–42. 5912: 5865: 5846: 5806: 5780: 5749: 5731: 5697: 5613: 5573: 5519: 5172:unimodular lattice 4608:unimodular lattice 4563:Secondary Kodaira 4209: 4204: 4060: 4055: 3971: 3840: 3838: 3695: 3674: 3649: 3631: 3293:del Pezzo surfaces 3148:(Projective plane) 2986: 2943: 2832:Néron–Severi group 2827:linear equivalence 2806:over the manifold. 2786: 2743: 2710: 2705: 2603: 2573: 2541: 2443: 2415: 2381: 2376: 2338: 2227: 2122: 2023: 1951: 1845:In characteristic 1831: 1826: 1591: 1499: 1460: 1427: 1391: 1345:If the surface is 1332: 1295: 1237: 1166: 1164: 938: 911: 829: 827: 615: 600: 571: 544: 502: 473: 424: 310: 270: 197: 51:properly formatted 6555:Lang, William E. 6517:978-0-8218-1875-6 6397:978-1-4008-7123-0 6203:Kodaira, Kunihiko 6048:978-0-521-49842-5 6030:978-0-521-49510-3 6005:Beauville, Arnaud 5988:978-3-540-00832-3 5561:of genus 0 or 1. 5551:rational surfaces 5531:Enriques surfaces 5504:Kodaira dimension 5502:Every surface of 5445: 5444: 5268:Enriques surfaces 5259: 5258: 5158:is even and 0 if 5123:Enriques surfaces 5101: 5100: 5023: 5022: 4939:and 0 otherwise. 4883: 4882: 4770:abelian varieties 4693: 4692: 4573: 4572: 4200: 4051: 3593: 3592: 3434: 3433: 3257: 3256: 3179: 3178: 3085:is isomorphic to 3073:is isomorphic to 3015:Rational surfaces 2846:fundamental group 2375: 2354:Noether's formula 1851:l-adic cohomology 808: 752: 486:Kodaira dimension 457:Kodaira dimension 165:David Mumford 129:Guido Castelnuovo 100: 99: 92: 16:(Redirected from 6616: 6594:Complex surfaces 6552: 6528: 6483: 6440: 6438:alg-geom/9602006 6416: 6371: 6347:(4): 1048–1066, 6333: 6295: 6286: 6239: 6198: 6179: 6164: 6121: 6109:Bombieri, Enrico 6102: 6073: 6055:Bombieri, Enrico 6041: 5999: 5921: 5919: 5918: 5913: 5908: 5907: 5892: 5891: 5878: 5873: 5855: 5853: 5852: 5847: 5833: 5832: 5819: 5814: 5789: 5787: 5786: 5781: 5779: 5778: 5762: 5757: 5740: 5738: 5737: 5732: 5724: 5723: 5710: 5705: 5673: 5672: 5622: 5620: 5619: 5614: 5606: 5605: 5586: 5581: 5547:abelian surfaces 5539:Kodaira surfaces 5528: 5526: 5525: 5520: 5490:Dedekind domains 5463:elliptic surface 5374: 5373: 5188: 5187: 5147:The plurigenera 5129:Enriques surface 5027: 5026: 4949: 4948: 4935:is divisible by 4898:Kodaira surfaces 4812: 4811: 4766:abelian surfaces 4622: 4621: 4586:Kähler manifolds 4534:Primary Kodaira 4302: 4218: 4216: 4215: 4210: 4208: 4207: 4201: 4198: 4162: 4161: 4149: 4145: 4144: 4143: 4131: 4130: 4101: 4100: 4069: 4067: 4066: 4061: 4059: 4058: 4052: 4049: 4013: 4012: 3980: 3978: 3977: 3972: 3970: 3969: 3957: 3953: 3952: 3951: 3939: 3938: 3909: 3908: 3887: 3886: 3849: 3847: 3846: 3841: 3839: 3835: 3834: 3822: 3821: 3796: 3795: 3782: 3781: 3763: 3762: 3744: 3743: 3704: 3702: 3701: 3696: 3687: 3682: 3658: 3656: 3655: 3650: 3644: 3639: 3627: 3626: 3517: 3516: 3363: 3362: 3297:Veronese surface 3183: 3182: 3105: 3104: 3069:). The surface Σ 3020:Rational surface 2995: 2993: 2992: 2987: 2952: 2950: 2949: 2944: 2904:would be called 2839:) with rank the 2811:Other invariants 2795: 2793: 2792: 2787: 2770: 2769: 2756: 2751: 2719: 2717: 2716: 2711: 2709: 2708: 2696: 2695: 2683: 2682: 2669: 2668: 2656: 2655: 2643: 2642: 2612: 2610: 2609: 2604: 2599: 2598: 2582: 2580: 2579: 2574: 2572: 2571: 2550: 2548: 2547: 2542: 2537: 2536: 2521: 2520: 2502: 2501: 2452: 2450: 2449: 2444: 2424: 2422: 2421: 2416: 2408: 2407: 2394: 2389: 2377: 2368: 2347: 2345: 2344: 2339: 2331: 2330: 2312: 2311: 2281: 2280: 2236: 2234: 2233: 2228: 2223: 2222: 2204: 2203: 2179: 2178: 2166: 2165: 2141:arithmetic genus 2131: 2129: 2128: 2123: 2118: 2117: 2105: 2104: 2086: 2085: 2067: 2066: 2032: 2030: 2029: 2024: 2019: 2018: 1979:Albanese variety 1960: 1958: 1957: 1952: 1947: 1946: 1934: 1933: 1921: 1920: 1908: 1907: 1895: 1894: 1840: 1838: 1837: 1832: 1830: 1829: 1823: 1822: 1804: 1803: 1785: 1784: 1766: 1765: 1752: 1751: 1733: 1732: 1714: 1713: 1695: 1694: 1676: 1675: 1663: 1662: 1643: 1642: 1630: 1629: 1600: 1598: 1597: 1592: 1563: 1562: 1544: 1543: 1508: 1506: 1505: 1500: 1492: 1491: 1469: 1467: 1466: 1461: 1459: 1458: 1436: 1434: 1433: 1428: 1426: 1425: 1400: 1398: 1397: 1392: 1390: 1389: 1371: 1370: 1341: 1339: 1338: 1333: 1331: 1330: 1304: 1302: 1301: 1296: 1288: 1287: 1269: 1268: 1246: 1244: 1243: 1238: 1236: 1235: 1205: 1204: 1175: 1173: 1172: 1167: 1165: 1162: 1161: 1159: 1158: 1142: 1141: 1138: 1136: 1135: 1119: 1117: 1116: 1100: 1096: 1095: 1079: 1077: 1076: 1060: 1058: 1057: 1039: 1037: 1036: 1020: 1018: 1017: 1001: 998: 997: 995: 994: 978: 977: 955:-forms, are the 948:is the sheaf of 947: 945: 944: 939: 937: 936: 920: 918: 917: 912: 904: 903: 885: 884: 866: 865: 838: 836: 835: 830: 828: 809: 806: 798: 797: 753: 750: 742: 741: 706: 705: 670: 669: 624: 622: 621: 616: 613: 608: 580: 578: 577: 572: 570: 569: 553: 551: 550: 545: 543: 542: 533: 528: 527: 511: 509: 508: 503: 482: 480: 479: 474: 433: 431: 430: 425: 408: 407: 395: 394: 376: 375: 319: 317: 316: 311: 306: 305: 296: 295: 280:may differ from 279: 277: 276: 271: 260: 259: 242:Zariski surfaces 115:complex surfaces 95: 88: 84: 81: 75: 65: 60:this article by 45:inline citations 38: 37: 30: 21: 6624: 6623: 6619: 6618: 6617: 6615: 6614: 6613: 6584: 6583: 6574: 6542:Springer-Verlag 6531: 6518: 6486: 6465: 6419: 6406:j.ctt13x10qw.21 6398: 6374: 6353:10.2307/2373289 6336: 6315:10.2307/2373426 6298: 6259:10.2307/2373150 6242: 6221:10.2307/2373157 6201: 6182: 6167: 6119: 6107: 6099: 6076: 6053: 6031: 6003: 5989: 5968: 5965: 5953: 5945:Barlow surfaces 5883: 5860: 5859: 5824: 5798: 5797: 5770: 5744: 5743: 5715: 5692: 5691: 5680: 5671: 5668: 5667: 5666: 5656: 5650: 5597: 5568: 5567: 5529:, 0, or 1. All 5508: 5507: 5459: 5282: 5276: 5177: 5152: 5131: 5125: 4929: 4906: 4904:Kodaira surface 4900: 4758: 4739: 4718:quotienting out 4714:Kummer surfaces 4613: 4578: 4330: 4318: 4310: 4286: 4274:Kähler surfaces 4268: 4253: 4247: 4232: 4203: 4202: 4195: 4189: 4188: 4177: 4167: 4153: 4135: 4116: 4112: 4108: 4086: 4078: 4077: 4054: 4053: 4046: 4040: 4039: 4028: 4018: 3998: 3993: 3992: 3984:Moreover since 3961: 3943: 3924: 3920: 3916: 3894: 3872: 3858: 3857: 3837: 3836: 3826: 3813: 3797: 3787: 3784: 3783: 3767: 3748: 3729: 3722: 3710: 3709: 3669: 3668: 3618: 3604: 3603: 3600: 3557: 3469: 3457: 3451: 3305: 3282: 3278: 3084: 3072: 3056: 3042: 3033:itself and the 3017: 2975: 2974: 2971: 2932: 2931: 2913: 2871: 2852: 2813: 2761: 2738: 2737: 2731: 2704: 2703: 2687: 2674: 2671: 2670: 2660: 2647: 2634: 2627: 2621: 2620: 2590: 2585: 2584: 2563: 2558: 2557: 2522: 2512: 2487: 2461: 2460: 2435: 2434: 2399: 2361: 2360: 2316: 2297: 2272: 2261: 2260: 2253:defined above): 2208: 2189: 2170: 2157: 2152: 2151: 2109: 2090: 2071: 2058: 2053: 2052: 2042:geometric genus 2004: 1993: 1992: 1981:and denoted by 1938: 1925: 1912: 1899: 1886: 1875: 1874: 1825: 1824: 1808: 1789: 1770: 1757: 1754: 1753: 1737: 1718: 1699: 1680: 1667: 1654: 1651: 1650: 1634: 1621: 1614: 1608: 1607: 1554: 1535: 1530: 1529: 1517: 1477: 1472: 1471: 1444: 1439: 1438: 1411: 1406: 1405: 1375: 1356: 1351: 1350: 1316: 1311: 1310: 1273: 1254: 1249: 1248: 1209: 1190: 1185: 1184: 1163: 1160: 1144: 1139: 1137: 1121: 1118: 1102: 1098: 1097: 1081: 1078: 1062: 1059: 1043: 1040: 1038: 1022: 1019: 1003: 999: 996: 980: 969: 968: 928: 923: 922: 895: 876: 851: 846: 845: 826: 825: 807: and  789: 782: 770: 769: 751: and  733: 726: 714: 713: 697: 690: 678: 677: 661: 654: 633: 632: 583: 582: 561: 556: 555: 534: 519: 514: 513: 491: 490: 465: 464: 452:Kähler surfaces 434:are called the 399: 386: 367: 362: 361: 335: 330: 287: 282: 281: 251: 246: 245: 189: 96: 85: 79: 76: 63:correcting them 61: 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 6622: 6620: 6612: 6611: 6606: 6601: 6596: 6586: 6585: 6582: 6581: 6573: 6572:External links 6570: 6569: 6568: 6553: 6529: 6516: 6492:Manin, Yuri I. 6484: 6463: 6417: 6396: 6376:Mumford, David 6372: 6334: 6296: 6253:(3): 682–721, 6240: 6215:(4): 751–798, 6199: 6180: 6165: 6113:Mumford, David 6105: 6104: 6103: 6097: 6059:Mumford, David 6051: 6029: 6001: 5987: 5964: 5961: 5960: 5959: 5952: 5949: 5923: 5922: 5911: 5906: 5902: 5898: 5895: 5890: 5886: 5882: 5877: 5872: 5868: 5857: 5845: 5842: 5839: 5836: 5831: 5827: 5823: 5818: 5813: 5809: 5805: 5795: 5777: 5773: 5769: 5766: 5761: 5756: 5752: 5741: 5730: 5727: 5722: 5718: 5714: 5709: 5704: 5700: 5678: 5669: 5652:Main article: 5649: 5646: 5612: 5609: 5604: 5600: 5596: 5593: 5590: 5585: 5580: 5576: 5518: 5515: 5497:quasi-elliptic 5486:-adic integers 5458: 5455: 5447: 5446: 5443: 5442: 5440: 5438: 5435: 5433: 5430: 5429: 5427: 5424: 5422: 5419: 5416: 5415: 5412: 5410: 5407: 5405: 5401: 5400: 5398: 5395: 5393: 5390: 5387: 5386: 5384: 5382: 5379: 5377: 5368:Hodge diamond: 5278:Main article: 5275: 5272: 5261: 5260: 5257: 5256: 5254: 5252: 5249: 5247: 5244: 5243: 5241: 5238: 5236: 5233: 5230: 5229: 5226: 5224: 5221: 5219: 5215: 5214: 5212: 5209: 5207: 5204: 5201: 5200: 5198: 5196: 5193: 5191: 5182:Hodge diamond: 5175: 5150: 5127:Main article: 5124: 5121: 5114:complex number 5103: 5102: 5099: 5098: 5096: 5094: 5091: 5089: 5086: 5085: 5083: 5080: 5078: 5075: 5072: 5071: 5068: 5065: 5063: 5060: 5058: 5054: 5053: 5051: 5048: 5046: 5043: 5040: 5039: 5037: 5035: 5032: 5030: 5024: 5021: 5020: 5018: 5016: 5013: 5011: 5008: 5007: 5005: 5002: 5000: 4997: 4994: 4993: 4990: 4987: 4985: 4982: 4980: 4976: 4975: 4973: 4970: 4968: 4965: 4962: 4961: 4959: 4957: 4954: 4952: 4943:Hodge diamond: 4927: 4902:Main article: 4899: 4896: 4894:by a lattice. 4885: 4884: 4881: 4880: 4878: 4876: 4873: 4871: 4868: 4867: 4865: 4862: 4860: 4857: 4854: 4853: 4850: 4848: 4845: 4843: 4839: 4838: 4836: 4833: 4831: 4828: 4825: 4824: 4822: 4820: 4817: 4815: 4806:Hodge diamond: 4757: 4754: 4737: 4730: 4729: 4711: 4691: 4690: 4688: 4686: 4683: 4681: 4678: 4677: 4675: 4672: 4670: 4667: 4664: 4663: 4660: 4658: 4655: 4653: 4649: 4648: 4646: 4643: 4641: 4638: 4635: 4634: 4632: 4630: 4627: 4625: 4618:Hodge diamond: 4611: 4577: 4574: 4571: 4570: 4564: 4561: 4558: 4555: 4552: 4549: 4546: 4542: 4541: 4535: 4532: 4529: 4526: 4523: 4520: 4517: 4513: 4512: 4509: 4506: 4504: 4502: 4499: 4496: 4493: 4489: 4488: 4485: 4484:Hyperelliptic 4482: 4479: 4476: 4473: 4470: 4467: 4463: 4462: 4455: 4452: 4449: 4446: 4443: 4440: 4437: 4433: 4432: 4429: 4426: 4424: 4422: 4419: 4416: 4413: 4409: 4408: 4405: 4402: 4399: 4396: 4393: 4390: 4387: 4383: 4382: 4375: 4372: 4369: 4366: 4363: 4360: 4357: 4353: 4352: 4349: 4346: 4341: 4336: 4328: 4324: 4319: 4316: 4311: 4308: 4297: 4296: 4284: 4270: 4266: 4256: 4251: 4245: 4230: 4220: 4219: 4206: 4196: 4194: 4191: 4190: 4187: 4184: 4181: 4178: 4176: 4173: 4172: 4170: 4165: 4160: 4156: 4152: 4148: 4142: 4138: 4134: 4129: 4126: 4123: 4119: 4115: 4111: 4107: 4104: 4099: 4096: 4093: 4089: 4085: 4071: 4070: 4057: 4047: 4045: 4042: 4041: 4038: 4035: 4032: 4029: 4027: 4024: 4023: 4021: 4016: 4011: 4008: 4005: 4001: 3982: 3981: 3968: 3964: 3960: 3956: 3950: 3946: 3942: 3937: 3934: 3931: 3927: 3923: 3919: 3915: 3912: 3907: 3904: 3901: 3897: 3893: 3890: 3885: 3882: 3879: 3875: 3871: 3868: 3865: 3853:we arrive at: 3851: 3850: 3833: 3829: 3825: 3820: 3816: 3812: 3809: 3806: 3803: 3800: 3798: 3794: 3790: 3786: 3785: 3780: 3777: 3774: 3770: 3766: 3761: 3758: 3755: 3751: 3747: 3742: 3739: 3736: 3732: 3728: 3725: 3723: 3721: 3718: 3717: 3694: 3691: 3686: 3681: 3677: 3648: 3643: 3638: 3634: 3630: 3625: 3621: 3617: 3614: 3611: 3599: 3596: 3595: 3594: 3591: 3590: 3588: 3586: 3583: 3581: 3578: 3577: 3575: 3572: 3570: 3567: 3564: 3563: 3560: 3558: 3555: 3550: 3548: 3544: 3543: 3541: 3538: 3536: 3533: 3530: 3529: 3527: 3525: 3522: 3520: 3511:Hodge diamond: 3484:Enoki surfaces 3476:Inoue surfaces 3467: 3453:Main article: 3450: 3447: 3436: 3435: 3432: 3431: 3429: 3427: 3424: 3422: 3419: 3418: 3416: 3413: 3411: 3408: 3405: 3404: 3401: 3399: 3396: 3394: 3390: 3389: 3387: 3384: 3382: 3379: 3376: 3375: 3373: 3371: 3368: 3366: 3357:Hodge diamond: 3304: 3301: 3289:cubic surfaces 3280: 3276: 3259: 3258: 3255: 3254: 3252: 3250: 3247: 3245: 3242: 3241: 3239: 3236: 3234: 3231: 3228: 3227: 3224: 3221: 3219: 3216: 3214: 3210: 3209: 3207: 3204: 3202: 3199: 3196: 3195: 3193: 3191: 3188: 3186: 3180: 3177: 3176: 3174: 3172: 3169: 3167: 3164: 3163: 3161: 3158: 3156: 3153: 3150: 3149: 3146: 3143: 3141: 3138: 3136: 3132: 3131: 3129: 3126: 3124: 3121: 3118: 3117: 3115: 3113: 3110: 3108: 3099:Hodge diamond: 3082: 3070: 3052: 3038: 3016: 3013: 2985: 2982: 2970: 2967: 2942: 2939: 2922:Every surface 2911: 2870: 2867: 2850: 2812: 2809: 2808: 2807: 2785: 2782: 2779: 2776: 2773: 2768: 2764: 2760: 2755: 2750: 2746: 2729: 2723: 2722: 2721: 2720: 2707: 2702: 2699: 2694: 2690: 2686: 2681: 2677: 2673: 2672: 2667: 2663: 2659: 2654: 2650: 2646: 2641: 2637: 2633: 2632: 2630: 2615: 2614: 2602: 2597: 2593: 2570: 2566: 2554: 2553: 2552: 2551: 2540: 2535: 2532: 2529: 2525: 2519: 2515: 2511: 2508: 2505: 2500: 2497: 2494: 2490: 2486: 2483: 2480: 2477: 2474: 2471: 2468: 2455: 2454: 2442: 2426: 2425: 2414: 2411: 2406: 2402: 2398: 2393: 2388: 2384: 2380: 2374: 2371: 2350: 2349: 2348: 2337: 2334: 2329: 2326: 2323: 2319: 2315: 2310: 2307: 2304: 2300: 2296: 2293: 2290: 2287: 2284: 2279: 2275: 2271: 2268: 2255: 2254: 2240: 2239: 2238: 2237: 2226: 2221: 2218: 2215: 2211: 2207: 2202: 2199: 2196: 2192: 2188: 2185: 2182: 2177: 2173: 2169: 2164: 2160: 2146: 2145: 2135: 2134: 2133: 2132: 2121: 2116: 2112: 2108: 2103: 2100: 2097: 2093: 2089: 2084: 2081: 2078: 2074: 2070: 2065: 2061: 2047: 2046: 2036: 2035: 2034: 2033: 2022: 2017: 2014: 2011: 2007: 2003: 2000: 1987: 1986: 1975:Picard variety 1964: 1963: 1962: 1961: 1950: 1945: 1941: 1937: 1932: 1928: 1924: 1919: 1915: 1911: 1906: 1902: 1898: 1893: 1889: 1885: 1882: 1869: 1868: 1855: 1854: 1843: 1842: 1841: 1828: 1821: 1818: 1815: 1811: 1807: 1802: 1799: 1796: 1792: 1788: 1783: 1780: 1777: 1773: 1769: 1764: 1760: 1756: 1755: 1750: 1747: 1744: 1740: 1736: 1731: 1728: 1725: 1721: 1717: 1712: 1709: 1706: 1702: 1698: 1693: 1690: 1687: 1683: 1679: 1674: 1670: 1666: 1661: 1657: 1653: 1652: 1649: 1646: 1641: 1637: 1633: 1628: 1624: 1620: 1619: 1617: 1602: 1601: 1590: 1587: 1584: 1581: 1578: 1575: 1572: 1569: 1566: 1561: 1557: 1553: 1550: 1547: 1542: 1538: 1516: 1513: 1512: 1511: 1510: 1509: 1498: 1495: 1490: 1487: 1484: 1480: 1457: 1454: 1451: 1447: 1424: 1421: 1418: 1414: 1402: 1388: 1385: 1382: 1378: 1374: 1369: 1366: 1363: 1359: 1329: 1326: 1323: 1319: 1294: 1291: 1286: 1283: 1280: 1276: 1272: 1267: 1264: 1261: 1257: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1212: 1208: 1203: 1200: 1197: 1193: 1178: 1177: 1176: 1157: 1154: 1151: 1147: 1143: 1140: 1134: 1131: 1128: 1124: 1120: 1115: 1112: 1109: 1105: 1101: 1099: 1094: 1091: 1088: 1084: 1080: 1075: 1072: 1069: 1065: 1061: 1056: 1053: 1050: 1046: 1042: 1041: 1035: 1032: 1029: 1025: 1021: 1016: 1013: 1010: 1006: 1002: 1000: 993: 990: 987: 983: 979: 976: 963: 962: 935: 931: 910: 907: 902: 898: 894: 891: 888: 883: 879: 875: 872: 869: 864: 861: 858: 854: 842: 841: 840: 839: 824: 821: 818: 815: 812: 804: 801: 796: 792: 788: 785: 783: 781: 778: 775: 772: 771: 768: 765: 762: 759: 756: 748: 745: 740: 736: 732: 729: 727: 725: 722: 719: 716: 715: 712: 709: 704: 700: 696: 693: 691: 689: 686: 683: 680: 679: 676: 673: 668: 664: 660: 657: 655: 653: 650: 647: 644: 641: 640: 627: 626: 612: 607: 603: 599: 596: 593: 590: 568: 564: 541: 537: 532: 526: 522: 501: 498: 472: 461: 460: 423: 420: 417: 414: 411: 406: 402: 398: 393: 389: 385: 382: 379: 374: 370: 358: 357: 334: 331: 329: 326: 322:Picard variety 309: 304: 299: 294: 290: 269: 266: 263: 258: 254: 188: 185: 98: 97: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6621: 6610: 6607: 6605: 6602: 6600: 6597: 6595: 6592: 6591: 6589: 6579: 6576: 6575: 6571: 6566: 6562: 6558: 6554: 6551: 6547: 6543: 6539: 6535: 6530: 6527: 6523: 6519: 6513: 6509: 6505: 6501: 6497: 6493: 6489: 6485: 6482: 6478: 6474: 6470: 6466: 6464:9780821811450 6460: 6456: 6452: 6448: 6444: 6439: 6434: 6430: 6426: 6422: 6418: 6415: 6411: 6407: 6403: 6399: 6393: 6389: 6385: 6381: 6377: 6373: 6370: 6366: 6362: 6358: 6354: 6350: 6346: 6342: 6341: 6335: 6332: 6328: 6324: 6320: 6316: 6312: 6308: 6304: 6303: 6297: 6294: 6290: 6285: 6280: 6276: 6272: 6268: 6264: 6260: 6256: 6252: 6248: 6247: 6241: 6238: 6234: 6230: 6226: 6222: 6218: 6214: 6210: 6209: 6204: 6200: 6197: 6193: 6189: 6185: 6181: 6178: 6174: 6170: 6166: 6163: 6159: 6155: 6151: 6147: 6143: 6139: 6135: 6131: 6127: 6126: 6118: 6114: 6110: 6106: 6100: 6098:9780521217774 6094: 6090: 6086: 6082: 6081: 6075: 6074: 6072: 6068: 6064: 6060: 6056: 6052: 6049: 6045: 6040: 6036: 6032: 6026: 6022: 6018: 6014: 6010: 6006: 6002: 5998: 5994: 5990: 5984: 5980: 5976: 5972: 5967: 5966: 5962: 5958: 5955: 5954: 5950: 5948: 5947:, and so on. 5946: 5942: 5938: 5934: 5930: 5926: 5909: 5904: 5896: 5893: 5888: 5884: 5880: 5875: 5870: 5866: 5858: 5843: 5840: 5837: 5834: 5829: 5825: 5821: 5816: 5811: 5807: 5803: 5796: 5793: 5775: 5771: 5767: 5764: 5759: 5754: 5750: 5742: 5728: 5725: 5720: 5716: 5712: 5707: 5702: 5698: 5690: 5689: 5688: 5686: 5682: 5677: 5665: 5661: 5655: 5647: 5645: 5643: 5639: 5635: 5631: 5627: 5623: 5610: 5607: 5602: 5598: 5594: 5591: 5588: 5583: 5578: 5574: 5566: 5562: 5560: 5556: 5552: 5548: 5544: 5540: 5536: 5532: 5513: 5505: 5500: 5498: 5493: 5491: 5487: 5485: 5480: 5476: 5472: 5468: 5464: 5456: 5454: 5453:for details. 5452: 5441: 5439: 5436: 5434: 5432: 5431: 5428: 5425: 5423: 5420: 5418: 5417: 5413: 5411: 5408: 5406: 5403: 5402: 5399: 5396: 5394: 5391: 5389: 5388: 5385: 5383: 5380: 5378: 5376: 5375: 5372: 5371: 5370: 5369: 5365: 5363: 5359: 5355: 5351: 5348: +  5347: 5343: 5339: 5335: 5331: 5327: 5324: +  5323: 5319: 5315: 5311: 5307: 5303: 5300: +  5299: 5295: 5291: 5287: 5281: 5273: 5271: 5270:for details. 5269: 5264: 5255: 5253: 5250: 5248: 5246: 5245: 5242: 5239: 5237: 5234: 5232: 5231: 5227: 5225: 5222: 5220: 5217: 5216: 5213: 5210: 5208: 5205: 5203: 5202: 5199: 5197: 5194: 5192: 5190: 5189: 5186: 5185: 5184: 5183: 5179: 5173: 5169: 5165: 5161: 5157: 5153: 5146: 5142: 5140: 5136: 5130: 5122: 5120: 5118: 5115: 5111: 5107: 5097: 5095: 5092: 5090: 5088: 5087: 5084: 5081: 5079: 5076: 5074: 5073: 5069: 5066: 5064: 5061: 5059: 5056: 5055: 5052: 5049: 5047: 5044: 5042: 5041: 5038: 5036: 5033: 5031: 5029: 5028: 5025: 5019: 5017: 5014: 5012: 5010: 5009: 5006: 5003: 5001: 4998: 4996: 4995: 4991: 4988: 4986: 4983: 4981: 4978: 4977: 4974: 4971: 4969: 4966: 4964: 4963: 4960: 4958: 4955: 4953: 4951: 4950: 4947: 4946: 4945: 4944: 4940: 4938: 4934: 4930: 4923: 4918: 4915: 4911: 4905: 4897: 4895: 4893: 4889: 4879: 4877: 4874: 4872: 4870: 4869: 4866: 4863: 4861: 4858: 4856: 4855: 4851: 4849: 4846: 4844: 4841: 4840: 4837: 4834: 4832: 4829: 4827: 4826: 4823: 4821: 4818: 4816: 4814: 4813: 4810: 4809: 4808: 4807: 4803: 4801: 4797: 4793: 4789: 4785: 4781: 4777: 4775: 4771: 4767: 4763: 4755: 4753: 4751: 4747: 4743: 4735: 4727: 4723: 4719: 4715: 4712: 4709: 4705: 4701: 4700: 4699: 4697: 4689: 4687: 4684: 4682: 4680: 4679: 4676: 4673: 4671: 4668: 4666: 4665: 4661: 4659: 4656: 4654: 4651: 4650: 4647: 4644: 4642: 4639: 4637: 4636: 4633: 4631: 4628: 4626: 4624: 4623: 4620: 4619: 4615: 4609: 4605: 4601: 4597: 4593: 4589: 4587: 4583: 4575: 4569: 4565: 4562: 4559: 4556: 4553: 4550: 4547: 4544: 4543: 4540: 4536: 4533: 4530: 4527: 4524: 4521: 4518: 4515: 4514: 4510: 4507: 4505: 4503: 4500: 4497: 4494: 4491: 4490: 4486: 4483: 4480: 4477: 4474: 4471: 4468: 4465: 4464: 4460: 4456: 4453: 4450: 4447: 4444: 4441: 4438: 4435: 4434: 4430: 4427: 4425: 4423: 4420: 4417: 4414: 4411: 4410: 4406: 4403: 4400: 4397: 4394: 4391: 4388: 4385: 4384: 4380: 4376: 4373: 4370: 4367: 4364: 4361: 4358: 4355: 4354: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4331: 4325: 4323: 4320: 4315: 4312: 4307: 4304: 4303: 4300: 4294: 4290: 4283: 4279: 4275: 4271: 4265: 4261: 4257: 4254: 4244: 4240: 4236: 4235: 4234: 4229: 4225: 4192: 4185: 4182: 4179: 4174: 4168: 4163: 4158: 4154: 4150: 4146: 4140: 4136: 4132: 4127: 4124: 4121: 4117: 4113: 4109: 4105: 4102: 4097: 4094: 4091: 4087: 4083: 4076: 4075: 4074: 4043: 4036: 4033: 4030: 4025: 4019: 4014: 4009: 4006: 4003: 3999: 3991: 3990: 3989: 3988:= 0 we have: 3987: 3966: 3962: 3958: 3954: 3948: 3944: 3940: 3935: 3932: 3929: 3925: 3921: 3917: 3913: 3910: 3905: 3902: 3899: 3895: 3891: 3888: 3883: 3880: 3877: 3873: 3869: 3866: 3863: 3856: 3855: 3854: 3831: 3827: 3823: 3818: 3814: 3810: 3807: 3804: 3801: 3799: 3792: 3788: 3778: 3775: 3772: 3768: 3764: 3759: 3756: 3753: 3749: 3745: 3740: 3737: 3734: 3730: 3726: 3724: 3719: 3708: 3707: 3706: 3692: 3689: 3684: 3679: 3675: 3666: 3662: 3646: 3641: 3636: 3632: 3628: 3623: 3619: 3615: 3612: 3609: 3597: 3589: 3587: 3584: 3582: 3580: 3579: 3576: 3573: 3571: 3568: 3566: 3565: 3561: 3559: 3554: 3551: 3549: 3546: 3545: 3542: 3539: 3537: 3534: 3532: 3531: 3528: 3526: 3523: 3521: 3519: 3518: 3515: 3514: 3513: 3512: 3508: 3506: 3502: 3499: 3495: 3493: 3489: 3488:Kato surfaces 3485: 3481: 3477: 3473: 3472:Hopf surfaces 3466: 3462: 3456: 3448: 3446: 3444: 3440: 3430: 3428: 3425: 3423: 3421: 3420: 3417: 3414: 3412: 3409: 3407: 3406: 3402: 3400: 3397: 3395: 3392: 3391: 3388: 3385: 3383: 3380: 3378: 3377: 3374: 3372: 3369: 3367: 3365: 3364: 3361: 3360: 3359: 3358: 3354: 3352: 3348: 3346: 3342: 3338: 3334: 3330: 3326: 3322: 3318: 3314: 3310: 3302: 3300: 3298: 3294: 3290: 3286: 3274: 3270: 3266: 3263: 3253: 3251: 3248: 3246: 3244: 3243: 3240: 3237: 3235: 3232: 3230: 3229: 3225: 3222: 3220: 3217: 3215: 3212: 3211: 3208: 3205: 3203: 3200: 3198: 3197: 3194: 3192: 3189: 3187: 3185: 3184: 3181: 3175: 3173: 3170: 3168: 3166: 3165: 3162: 3159: 3157: 3154: 3152: 3151: 3147: 3144: 3142: 3139: 3137: 3134: 3133: 3130: 3127: 3125: 3122: 3120: 3119: 3116: 3114: 3111: 3109: 3107: 3106: 3103: 3102: 3101: 3100: 3096: 3094: 3090: 3088: 3080: 3076: 3068: 3064: 3060: 3055: 3050: 3046: 3041: 3036: 3032: 3028: 3025: 3021: 3014: 3012: 3009: 3007: 3003: 2999: 2980: 2968: 2966: 2964: 2960: 2956: 2937: 2929: 2925: 2920: 2918: 2914: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2874: 2868: 2866: 2864: 2860: 2856: 2848: 2847: 2842: 2841:Picard number 2838: 2834: 2833: 2828: 2824: 2820: 2819: 2810: 2805: 2804:Chern classes 2801: 2800: 2799:Chern numbers 2783: 2780: 2777: 2774: 2771: 2766: 2762: 2758: 2753: 2748: 2744: 2735: 2728: 2725: 2724: 2700: 2697: 2692: 2688: 2684: 2679: 2675: 2665: 2661: 2657: 2652: 2648: 2644: 2639: 2635: 2628: 2619: 2618: 2617: 2616: 2600: 2595: 2591: 2568: 2564: 2556: 2555: 2538: 2533: 2530: 2527: 2523: 2517: 2509: 2506: 2498: 2495: 2492: 2484: 2481: 2478: 2475: 2472: 2469: 2466: 2459: 2458: 2457: 2456: 2440: 2432: 2428: 2427: 2412: 2404: 2400: 2396: 2391: 2386: 2382: 2372: 2369: 2359: 2355: 2351: 2335: 2332: 2327: 2324: 2321: 2317: 2313: 2308: 2305: 2302: 2298: 2294: 2291: 2288: 2285: 2282: 2277: 2273: 2269: 2266: 2259: 2258: 2257: 2256: 2252: 2248: 2247: 2242: 2241: 2224: 2219: 2216: 2213: 2209: 2205: 2200: 2197: 2194: 2190: 2186: 2183: 2180: 2175: 2171: 2167: 2162: 2158: 2150: 2149: 2148: 2147: 2143: 2142: 2137: 2136: 2119: 2114: 2110: 2106: 2101: 2098: 2095: 2091: 2087: 2082: 2079: 2076: 2072: 2068: 2063: 2059: 2051: 2050: 2049: 2048: 2044: 2043: 2038: 2037: 2020: 2015: 2012: 2009: 2005: 2001: 1998: 1991: 1990: 1989: 1988: 1984: 1980: 1976: 1972: 1971: 1966: 1965: 1948: 1943: 1939: 1935: 1930: 1926: 1922: 1917: 1913: 1909: 1904: 1900: 1896: 1891: 1887: 1883: 1880: 1873: 1872: 1871: 1870: 1866: 1862: 1861: 1857: 1856: 1852: 1848: 1844: 1819: 1816: 1813: 1809: 1805: 1800: 1797: 1794: 1790: 1786: 1781: 1778: 1775: 1771: 1767: 1762: 1758: 1748: 1745: 1742: 1738: 1734: 1729: 1726: 1723: 1719: 1715: 1710: 1707: 1704: 1700: 1696: 1691: 1688: 1685: 1681: 1677: 1672: 1668: 1664: 1659: 1655: 1647: 1644: 1639: 1635: 1631: 1626: 1622: 1615: 1606: 1605: 1604: 1603: 1588: 1585: 1582: 1579: 1576: 1573: 1567: 1559: 1555: 1551: 1548: 1545: 1540: 1536: 1528:: defined by 1527: 1526: 1525:Betti numbers 1522: 1521: 1520: 1514: 1496: 1493: 1488: 1485: 1482: 1478: 1455: 1452: 1449: 1445: 1422: 1419: 1416: 1412: 1403: 1386: 1383: 1380: 1376: 1372: 1367: 1364: 1361: 1357: 1348: 1344: 1343: 1327: 1324: 1321: 1317: 1308: 1292: 1289: 1284: 1281: 1278: 1274: 1270: 1265: 1262: 1259: 1255: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1210: 1206: 1201: 1198: 1195: 1191: 1183: 1182:Serre duality 1179: 1155: 1152: 1149: 1145: 1132: 1129: 1126: 1122: 1113: 1110: 1107: 1103: 1092: 1089: 1086: 1082: 1073: 1070: 1067: 1063: 1054: 1051: 1048: 1044: 1033: 1030: 1027: 1023: 1014: 1011: 1008: 1004: 991: 988: 985: 981: 967: 966: 965: 964: 960: 959: 958:Hodge numbers 954: 951: 933: 908: 900: 892: 889: 881: 877: 873: 870: 867: 862: 859: 856: 852: 844: 843: 822: 819: 816: 813: 810: 802: 799: 794: 790: 784: 779: 776: 773: 766: 763: 760: 757: 754: 746: 743: 738: 734: 728: 723: 720: 717: 710: 707: 702: 698: 692: 687: 684: 681: 674: 671: 666: 662: 656: 648: 645: 642: 631: 630: 629: 628: 610: 605: 601: 597: 594: 591: 588: 566: 562: 539: 535: 530: 524: 520: 496: 488: 487: 470: 463: 462: 458: 453: 449: 445: 441: 437: 421: 418: 415: 412: 404: 400: 391: 387: 383: 380: 377: 372: 368: 360: 359: 355: 351: 348: 347: 346: 344: 340: 332: 327: 325: 323: 292: 288: 256: 252: 243: 239: 235: 234:Oscar Zariski 231: 229: 226:that are not 225: 224:group schemes 221: 217: 213: 208: 206: 201: 193: 186: 184: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 120: 116: 113: 109: 105: 94: 91: 83: 73: 70:; convert to 69: 64: 59: 54: 52: 49:they are not 46: 41: 32: 31: 19: 6537: 6503: 6499: 6424: 6379: 6344: 6338: 6309:(1): 55–83, 6306: 6300: 6250: 6244: 6212: 6206: 6187: 6176: 6172: 6129: 6123: 6079: 6062: 6008: 5970: 5932: 5928: 5927: 5924: 5684: 5683: 5675: 5663: 5657: 5641: 5637: 5633: 5629: 5625: 5624: 5564: 5563: 5558: 5554: 5501: 5496: 5494: 5483: 5470: 5466: 5460: 5448: 5367: 5366: 5361: 5357: 5353: 5349: 5345: 5341: 5337: 5333: 5329: 5325: 5321: 5317: 5313: 5309: 5305: 5301: 5297: 5293: 5289: 5285: 5283: 5265: 5262: 5181: 5180: 5167: 5163: 5159: 5155: 5148: 5144: 5143: 5134: 5132: 5116: 5109: 5105: 5104: 4942: 4941: 4936: 4932: 4925: 4921: 4919: 4913: 4909: 4907: 4891: 4887: 4886: 4805: 4804: 4799: 4795: 4791: 4787: 4783: 4779: 4778: 4764:include the 4762:complex tori 4759: 4749: 4745: 4741: 4733: 4731: 4725: 4721: 4717: 4707: 4703: 4695: 4694: 4617: 4616: 4603: 4599: 4595: 4591: 4590: 4581: 4579: 4457:Any. Always 4377:Any. Always 4343: 4338: 4333: 4326: 4321: 4313: 4305: 4298: 4292: 4288: 4281: 4277: 4263: 4259: 4249: 4242: 4238: 4227: 4223: 4222:In general 2 4221: 4072: 3985: 3983: 3852: 3660: 3601: 3552: 3510: 3509: 3504: 3500: 3497: 3496: 3464: 3458: 3442: 3438: 3437: 3356: 3355: 3350: 3349: 3344: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3308: 3306: 3272: 3268: 3264: 3261: 3260: 3098: 3097: 3092: 3091: 3086: 3078: 3074: 3066: 3062: 3061:bundle over 3058: 3053: 3048: 3044: 3039: 3030: 3026: 3018: 3010: 3001: 2997: 2972: 2962: 2958: 2954: 2927: 2923: 2921: 2909: 2905: 2901: 2893: 2885: 2881: 2875: 2872: 2857:such as the 2844: 2836: 2830: 2822: 2818:Picard group 2816: 2814: 2797: 2733: 2726: 2430: 2250: 2244: 2139: 2040: 1982: 1970:irregularity 1968: 1865:Euler number 1864: 1858: 1846: 1523: 1518: 956: 952: 484: 435: 349: 336: 232: 212:Mumford 1969 209: 202: 198: 123: 119:moduli space 114: 107: 101: 86: 77: 48: 6421:Reid, Miles 6132:: 197–232, 5685:Invariants: 5565:Invariants: 5549:, and some 5543:K3 surfaces 5145:Invariants: 5070:(Secondary) 4780:Invariants: 4592:Invariants: 4576:K3 surfaces 3498:Invariants: 3351:Invariants: 3093:Invariants: 950:holomorphic 448:John Morgan 438:. They are 436:plurigenera 343:plurigenera 125:Max Noether 104:mathematics 6588:Categories 5963:References 3347:has two). 2884:is called 2878:blowing up 2855:4-manifold 2358:Todd genus 1307:cohomology 440:birational 80:March 2022 68:deprecated 6510:: 1–215, 6481:116933286 6162:122816845 5929:Examples: 5894:≡ 5841:⩾ 5822:− 5765:⩽ 5608:⩾ 5517:∞ 5514:− 5154:are 1 if 5106:Examples: 4992:(Primary) 4931:are 1 if 4888:Examples: 4348:Surfaces 4269:= 0 or 1. 4199:otherwise 4133:− 4050:otherwise 3941:− 3808:− 3746:− 3720:χ 3663:has zero 3613:χ 3439:Examples: 3262:Examples: 2984:∞ 2981:− 2941:∞ 2938:− 2781:− 2778:χ 2701:τ 2693:− 2685:− 2653:− 2569:± 2507:− 2489:∑ 2479:− 2476:χ 2467:τ 2441:τ 2431:signature 2314:− 2283:− 2267:χ 2206:− 2181:− 1923:− 1897:− 1586:⩽ 1580:⩽ 1552:⁡ 1494:− 1230:− 1218:− 930:Ω 897:Ω 874:⁡ 814:⋅ 787:⟷ 774:κ 758:⋅ 731:⟷ 718:κ 695:⟷ 682:κ 659:⟷ 652:∞ 649:− 643:κ 592:⋅ 540:κ 500:∞ 497:− 471:κ 419:⩾ 384:⁡ 265:Ω 6563: : 6293:16578569 6186:(1949), 6115:(1976), 6007:(1996), 5951:See also 5626:Example: 5340:,   5332:,   5316:,   5292:,   4696:Examples 4287:= 0 and 3285:quadrics 2796:are the 1977:and the 489:: it is 6550:0521772 6526:0190143 6473:1442522 6443:Bibcode 6414:0254053 6369:0239114 6361:2373289 6331:0228019 6323:2373426 6275:0205280 6267:2373150 6237:0187255 6229:2373157 6196:0031770 6154:0491720 6134:Bibcode 6071:0491719 6039:1406314 5997:2030225 5545:, some 5541:, some 4774:isogeny 4501:0 or 1 4498:1 or 2 4351:Fields 3081:, and Σ 3057:is the 3047:= 0 or 2906:minimal 2886:minimal 1437:equals 483:is the 352:is the 167: ( 147: ( 135: ( 112:compact 110:groups 58:improve 56:Please 6548:  6524:  6514:  6479:  6471:  6461:  6412:  6404:  6394:  6367:  6359:  6329:  6321:  6291:  6284:300219 6281:  6273:  6265:  6235:  6227:  6194:  6160:  6152:  6095:  6069:  6046:  6037:  6027:  5995:  5985:  5537:, all 5533:, all 5488:) and 5139:Kähler 4734:marked 4568:Kähler 4539:Kähler 4459:Kähler 4379:Kähler 3705:Using 3490:. The 3461:Kähler 1347:Kähler 921:where 106:, the 47:, but 6477:S2CID 6433:arXiv 6402:JSTOR 6357:JSTOR 6319:JSTOR 6263:JSTOR 6225:JSTOR 6158:S2CID 6120:(PDF) 5790:(the 5356:, or 3667:, so 3503:= 1, 1349:then 228:étale 161:1968b 157:1968a 6512:ISBN 6459:ISBN 6392:ISBN 6289:PMID 6093:ISBN 6044:ISBN 6025:ISBN 5983:ISBN 5726:> 5674:and 4738:3,19 4612:3,19 4272:For 3043:for 2861:and 2821:Pic( 2736:and 2429:The 2243:The 2138:The 2039:The 1967:The 1247:and 820:> 800:> 744:> 581:and 220:1977 216:1976 181:1977 177:1976 169:1969 153:1966 149:1964 141:1949 137:1914 6561:doi 6451:doi 6384:doi 6349:doi 6311:doi 6279:PMC 6255:doi 6217:doi 6142:doi 6085:doi 6042:; ( 6017:doi 5975:doi 5901:mod 5628:If 5461:An 5176:1,9 4740:to 4724:→ − 4412:10 4401:10 4386:10 4374:K3 4371:20 4356:22 3474:or 3275:= Σ 2917:nef 2915:is 2835:NS( 2613:so: 2352:By 1863:or 1549:dim 1470:or 1180:By 871:dim 381:dim 324:). 102:In 6590:: 6546:MR 6536:, 6522:MR 6520:, 6504:75 6502:, 6494:; 6475:, 6469:MR 6467:, 6457:, 6449:, 6441:, 6410:MR 6408:, 6400:, 6390:, 6365:MR 6363:, 6355:, 6345:90 6343:, 6327:MR 6325:, 6317:, 6307:90 6305:, 6287:, 6277:, 6271:MR 6269:, 6261:, 6251:88 6249:, 6233:MR 6231:, 6223:, 6213:86 6211:, 6192:MR 6177:23 6175:, 6156:, 6150:MR 6148:, 6140:, 6130:35 6128:, 6122:, 6111:; 6091:. 6067:MR 6057:; 6035:MR 6033:, 6023:, 6015:, 5993:MR 5991:, 5981:, 5943:, 5939:, 5910:2. 5838:36 5611:0. 5360:/6 5352:/2 5344:/4 5336:/4 5328:/3 5320:/3 5312:/3 5308:, 5304:/2 5296:/2 5288:/2 5223:10 5174:II 5166:, 4802:. 4794:× 4790:× 4786:× 4748:, 4732:A 4698:: 4657:20 4610:II 4602:, 4560:0 4557:0 4554:0 4551:1 4548:1 4545:0 4531:2 4528:1 4525:1 4522:2 4519:3 4516:4 4495:2 4492:2 4481:2 4478:1 4475:0 4472:1 4469:2 4466:2 4451:4 4448:2 4445:1 4442:2 4439:4 4436:6 4421:1 4418:1 4415:0 4398:0 4395:0 4392:0 4389:0 4368:0 4365:1 4362:0 4359:0 4332:= 4291:= 4280:− 4262:− 4241:− 4226:≥ 4193:10 4175:22 3870:12 3864:10 3693:0. 3610:12 3482:, 3445:. 3343:× 3335:× 3323:× 3295:, 3291:, 3287:, 3283:, 3271:× 3267:, 3077:× 2957:× 2865:. 2775:12 2732:= 2373:12 2336:1. 1589:4. 1497:1. 1293:1. 795:12 739:12 703:12 667:12 567:12 230:. 218:, 179:, 159:, 155:, 151:, 139:, 6453:: 6445:: 6435:: 6386:: 6351:: 6313:: 6257:: 6219:: 6144:: 6136:: 6101:. 6087:: 6019:: 5977:: 5933:P 5905:1 5897:0 5889:2 5885:c 5881:+ 5876:2 5871:1 5867:c 5844:0 5835:+ 5830:2 5826:c 5817:2 5812:1 5808:c 5804:5 5794:) 5776:2 5772:c 5768:3 5760:2 5755:1 5751:c 5729:0 5721:2 5717:c 5713:, 5708:2 5703:1 5699:c 5679:2 5676:c 5670:1 5664:c 5642:B 5640:× 5638:E 5634:B 5630:E 5603:2 5599:c 5595:, 5592:0 5589:= 5584:2 5579:1 5575:c 5559:B 5555:B 5484:p 5471:B 5467:B 5437:1 5426:1 5421:1 5414:0 5409:2 5404:0 5397:1 5392:1 5381:1 5362:Z 5358:Z 5354:Z 5350:Z 5346:Z 5342:Z 5338:Z 5334:Z 5330:Z 5326:Z 5322:Z 5318:Z 5314:Z 5310:Z 5306:Z 5302:Z 5298:Z 5294:Z 5290:Z 5286:Z 5251:1 5240:0 5235:0 5228:0 5218:0 5211:0 5206:0 5195:1 5168:Z 5164:X 5160:n 5156:n 5151:n 5149:P 5135:q 5117:z 5110:Z 5093:1 5082:0 5077:1 5067:0 5062:0 5057:0 5050:1 5045:0 5034:1 5015:1 5004:1 4999:2 4989:1 4984:2 4979:1 4972:2 4967:1 4956:1 4937:k 4933:n 4928:n 4926:P 4922:k 4892:C 4875:1 4864:2 4859:2 4852:1 4847:4 4842:1 4835:2 4830:2 4819:1 4800:Z 4796:S 4792:S 4788:S 4784:S 4750:Z 4746:X 4744:( 4742:H 4726:a 4722:a 4710:) 4708:C 4706:( 4704:P 4685:1 4674:0 4669:0 4662:1 4652:1 4645:0 4640:0 4629:1 4604:Z 4600:X 4598:( 4596:H 4582:q 4344:h 4339:h 4334:h 4329:g 4327:p 4322:h 4317:1 4314:b 4309:2 4306:b 4295:. 4293:h 4289:h 4285:1 4282:b 4278:h 4276:2 4267:1 4264:b 4260:h 4255:. 4252:g 4250:p 4246:1 4243:b 4239:h 4231:1 4228:b 4224:h 4186:0 4183:= 4180:K 4169:{ 4164:= 4159:2 4155:b 4151:+ 4147:) 4141:1 4137:b 4128:1 4125:, 4122:0 4118:h 4114:2 4110:( 4106:2 4103:+ 4098:1 4095:, 4092:0 4088:h 4084:8 4044:0 4037:0 4034:= 4031:K 4026:1 4020:{ 4015:= 4010:2 4007:, 4004:0 4000:h 3986:κ 3967:2 3963:b 3959:+ 3955:) 3949:1 3945:b 3936:1 3933:, 3930:0 3926:h 3922:2 3918:( 3914:2 3911:+ 3906:1 3903:, 3900:0 3896:h 3892:8 3889:= 3884:2 3881:, 3878:0 3874:h 3867:+ 3832:2 3828:b 3824:+ 3819:1 3815:b 3811:2 3805:2 3802:= 3793:2 3789:c 3779:2 3776:, 3773:0 3769:h 3765:+ 3760:1 3757:, 3754:0 3750:h 3741:0 3738:, 3735:0 3731:h 3727:= 3690:= 3685:2 3680:1 3676:c 3661:K 3647:. 3642:2 3637:1 3633:c 3629:+ 3624:2 3620:c 3616:= 3585:1 3574:0 3569:1 3562:0 3556:2 3553:b 3547:0 3540:1 3535:0 3524:1 3505:h 3501:q 3468:2 3465:b 3443:P 3426:1 3415:g 3410:g 3403:0 3398:2 3393:0 3386:g 3381:g 3370:1 3345:P 3341:P 3337:P 3333:P 3329:C 3325:C 3321:P 3317:P 3313:g 3309:g 3281:n 3277:0 3273:P 3269:P 3265:P 3249:1 3238:0 3233:0 3223:0 3218:2 3213:0 3206:0 3201:0 3190:1 3171:1 3160:0 3155:0 3145:0 3140:1 3135:0 3128:0 3123:0 3112:1 3087:P 3083:1 3079:P 3075:P 3071:0 3067:n 3063:P 3059:P 3054:n 3049:n 3045:n 3040:n 3037:Σ 3031:P 3027:P 3002:q 2998:q 2963:P 2959:P 2955:P 2928:X 2924:X 2912:X 2910:K 2902:X 2894:X 2882:X 2851:1 2849:π 2837:X 2823:X 2784:e 2772:= 2767:2 2763:K 2759:= 2754:2 2749:1 2745:c 2734:e 2730:2 2727:c 2698:= 2689:b 2680:+ 2676:b 2666:2 2662:b 2658:= 2649:b 2645:+ 2640:+ 2636:b 2629:{ 2601:, 2596:2 2592:H 2565:b 2539:. 2534:j 2531:, 2528:i 2524:h 2518:j 2514:) 2510:1 2504:( 2499:j 2496:, 2493:i 2485:= 2482:e 2473:4 2470:= 2453:: 2413:. 2410:) 2405:2 2401:c 2397:+ 2392:2 2387:1 2383:c 2379:( 2370:1 2333:+ 2328:1 2325:, 2322:0 2318:h 2309:2 2306:, 2303:0 2299:h 2295:= 2292:1 2289:+ 2286:q 2278:g 2274:p 2270:= 2251:e 2225:. 2220:1 2217:, 2214:0 2210:h 2201:2 2198:, 2195:0 2191:h 2187:= 2184:q 2176:g 2172:p 2168:= 2163:a 2159:p 2144:: 2120:. 2115:1 2111:P 2107:= 2102:0 2099:, 2096:2 2092:h 2088:= 2083:2 2080:, 2077:0 2073:h 2069:= 2064:g 2060:p 2045:: 2021:. 2016:1 2013:, 2010:0 2006:h 2002:= 1999:q 1983:q 1949:. 1944:4 1940:b 1936:+ 1931:3 1927:b 1918:2 1914:b 1910:+ 1905:1 1901:b 1892:0 1888:b 1884:= 1881:e 1867:: 1847:p 1820:2 1817:, 1814:0 1810:h 1806:+ 1801:1 1798:, 1795:1 1791:h 1787:+ 1782:0 1779:, 1776:2 1772:h 1768:= 1763:2 1759:b 1749:2 1746:, 1743:1 1739:h 1735:+ 1730:1 1727:, 1724:2 1720:h 1716:= 1711:1 1708:, 1705:0 1701:h 1697:+ 1692:0 1689:, 1686:1 1682:h 1678:= 1673:3 1669:b 1665:= 1660:1 1656:b 1648:1 1645:= 1640:4 1636:b 1632:= 1627:0 1623:b 1616:{ 1583:i 1577:0 1574:, 1571:) 1568:S 1565:( 1560:i 1556:H 1546:= 1541:i 1537:b 1489:1 1486:, 1483:0 1479:h 1456:1 1453:, 1450:0 1446:h 1423:0 1420:, 1417:1 1413:h 1387:i 1384:, 1381:j 1377:h 1373:= 1368:j 1365:, 1362:i 1358:h 1328:1 1325:, 1322:1 1318:h 1290:= 1285:2 1282:, 1279:2 1275:h 1271:= 1266:0 1263:, 1260:0 1256:h 1233:j 1227:2 1224:, 1221:i 1215:2 1211:h 1207:= 1202:j 1199:, 1196:i 1192:h 1156:2 1153:, 1150:2 1146:h 1133:2 1130:, 1127:1 1123:h 1114:1 1111:, 1108:2 1104:h 1093:2 1090:, 1087:0 1083:h 1074:1 1071:, 1068:1 1064:h 1055:0 1052:, 1049:2 1045:h 1034:1 1031:, 1028:0 1024:h 1015:0 1012:, 1009:1 1005:h 992:0 989:, 986:0 982:h 953:i 934:i 909:, 906:) 901:i 893:, 890:X 887:( 882:j 878:H 868:= 863:j 860:, 857:i 853:h 823:0 817:K 811:K 803:1 791:P 780:2 777:= 767:0 764:= 761:K 755:K 747:1 735:P 724:1 721:= 711:1 708:= 699:P 688:0 685:= 675:0 672:= 663:P 646:= 611:2 606:1 602:c 598:= 595:K 589:K 563:P 536:n 531:/ 525:n 521:P 459:. 422:1 416:n 413:, 410:) 405:n 401:K 397:( 392:0 388:H 378:= 373:n 369:P 350:K 308:) 303:O 298:( 293:1 289:h 268:) 262:( 257:0 253:h 240:( 93:) 87:( 82:) 78:( 74:. 53:. 20:)

Index

Enriques-Kodaira classification
inline citations
properly formatted
improve
correcting them
deprecated
shortened footnotes
Learn how and when to remove this message
mathematics
compact
moduli space
Max Noether
Guido Castelnuovo
Federigo Enriques
1914
1949
Kunihiko Kodaira
1964
1966
1968a
1968b
David Mumford
1969
Enrico Bombieri
1976
1977

global spherical shell conjecture
Mumford 1969
1976

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.