Knowledge

Equations for a falling body

Source đź“ť

25: 225: 1722: 201:. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which has a low mass but offers a large resistance to the air. (In the absence of an atmosphere all objects fall at the same rate, as astronaut 302:
49 m/s (9.8 m/s Ă— 5 s) due to air resistance). Air resistance induces a drag force on any body that falls through any atmosphere other than a perfect vacuum, and this drag force increases with velocity until it equals the gravitational force, leaving the object to fall at a constant
2094: 1805:
Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the
2290:
causes the acceleration measured on the rotating surface of the Earth to differ from the acceleration that is measured for a free-falling body: the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north-south axis of the Earth,
1781:
The first equation shows that, after one second, an object will have fallen a distance of 1/2 Ă— 9.8 Ă— 1 = 4.9 m. After two seconds it will have fallen 1/2 Ă— 9.8 Ă— 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell
228:
An initially stationary object which is allowed to fall freely under gravity falls a distance proportional to the square of the elapsed time. This image, spanning half a second, was captured with a stroboscopic flash at 20 flashes per second. During the first 0.05 s the ball drops one unit of
301:
In all cases, the body is assumed to start from rest, and air resistance is neglected. Generally, in Earth's atmosphere, all results below will therefore be quite inaccurate after only 5 seconds of fall (at which time an object's velocity will be a little less than the vacuum value of
318:
negligibly varies with height during the fall (that is, they assume constant acceleration). The last equation is more accurate where significant changes in fractional distance from the centre of the planet during the fall cause significant changes in
1829:
diving down on its prey. The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or dropped from a tower—according to a 1920 U.S. Army Ordnance study.
174:
is reasonable for objects falling to Earth over the relatively short vertical distances of our everyday experience, but is not valid for greater distances involved in calculating more distant effects, such as spacecraft trajectories.
1956: 1713: 2277: 1475: 412: 1213: 540: 759: 1093: 654: 1892: 978: 1758: 464: 2138: 309:
Terminal velocity depends on atmospheric drag, the coefficient of drag for the object, the (instantaneous) velocity of the object, and the area presented to the airflow.
864: 1513: 1251: 1131: 1016: 901: 797: 1617: 1591: 1565: 1539: 1407: 1381: 1355: 1329: 1303: 1277: 1157: 1042: 927: 823: 711: 685: 603: 577: 2220: 2194: 2168: 190:
to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. He measured elapsed time with a
2089:{\displaystyle t={\frac {{\frac {\pi }{2}}-\arcsin {\Big (}{\sqrt {\frac {x}{r}}}{\Big )}+{\sqrt {{\frac {x}{r}}\ (1-{\frac {x}{r}})}}}{\sqrt {2\mu }}}\,r^{3/2}} 42: 246:, which might be thought of as "metres per second, per second"; or 32.18 ft/s as "feet per second per second") approximately. A coherent set of units for 216:
for example. Nevertheless, they are usually accurate enough for dense and compact objects falling over heights not exceeding the tallest man-made structures.
2144:
of the two bodies. This equation should be used whenever there is a significant difference in the gravitational acceleration during the fall. Note that when
1624: 2410: 197:
The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a
2398:(Report) (1999 ed.). U.S. Department of Commerce Technology Administration and National Institute of Standards and Technology. pp. 188–190. 1825:). In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), which is almost the terminal velocity of the 147: 89: 61: 2225: 1725:
Measured fall time of a small steel sphere falling from various heights. The data is in good agreement with the predicted fall time of
108: 68: 2141: 75: 1414: 46: 1925:
Removing the simplifying assumption of uniform gravitational acceleration provides more accurate results. We find from the
271: 333: 57: 1164: 468:
and equation for universal gravitation (r+d= distance of object above the ground from the center of mass of planet):
1806:
body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50
474: 718: 234: 243: 2412:
Newton's Gravity: An Introductory Guide to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics
1049: 610: 1846: 934: 35: 1901: 82: 2363: 229:
distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on.
1791: 1728: 2314: 418: 1810:% of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 2460: 2329: 2301: 2102: 830: 1485: 1223: 1103: 988: 873: 769: 2335: 2287: 1926: 303: 198: 2465: 2455: 2419: 2307: 1826: 1596: 1570: 1544: 1518: 1386: 1360: 1334: 1308: 1282: 1256: 1136: 1021: 906: 802: 690: 664: 582: 556: 2359: 1834: 213: 183: 2199: 2173: 2147: 2355: 187: 1708:{\displaystyle \ v_{i}={\sqrt {2GM{\Big (}{\frac {1}{r}}-{\frac {1}{r+d}}{\Big )}}}\ } 2449: 2409:
MacDougal, D.W. (2012). "Chapter 2 - Galileo's Great Discovery: How Things Fall".
1821:
Higher speeds can be attained if the skydiver pulls in his or her limbs (see also
1305:, with the combined radius of the planet and altitude of the falling object being 2423: 1383:
at the surface of Earth, but assumes a small distance of fall, so the change in
202: 191: 132: 24: 1922:
is the radius from the falling object to the center of the astronomical body.
1822: 128: 212:
The equations also ignore the rotation of the Earth, failing to describe the
2319: 328:
The following equations start from the general equations of linear motion:
186:
was the first to demonstrate and then formulate these equations. He used a
2388: 224: 123: 194:, using an "extremely accurate balance" to measure the amount of water. 2324: 1786:
000 m to Earth, then the results of both equations differ by only 0.08
1721: 205:
demonstrated by dropping a hammer and a feather on the surface of the
2311:(the earliest modern investigations of the motion of falling bodies) 1720: 223: 139: 135: 2272:{\displaystyle t={\frac {\pi }{2}}{\sqrt {\frac {r^{3}}{2\mu }}}} 2291:
corresponding to staying stationary in that frame of reference.
1837:, and for short distances of fall at other than "ground" level, 206: 325:. This equation occurs in many applications of basic physics. 18: 2440: 312:
Apart from the last formula, these formulas also assume that
2396:
National Institute of Standards and Technology Monograph 155
1950:, measured from the centers of the two bodies, is given by: 2389:
From Sundials to Clocks: Understanding Time and Frequency
1470:{\displaystyle \ v_{i}={\sqrt {\frac {2GMd}{r^{2}}}}\ } 2228: 2202: 2176: 2150: 2105: 1959: 1849: 1798:
164 km, then the difference changes to almost 64
1731: 1627: 1599: 1573: 1547: 1521: 1488: 1417: 1389: 1363: 1337: 1311: 1285: 1259: 1226: 1167: 1139: 1106: 1052: 1024: 991: 937: 909: 876: 833: 805: 772: 721: 693: 667: 613: 585: 559: 477: 421: 336: 407:{\displaystyle d(t)=d_{0}+v_{0}t+{1 \over 2}at^{2}} 49:. Unsourced material may be challenged and removed. 2271: 2214: 2188: 2162: 2132: 2088: 1886: 1752: 1707: 1611: 1585: 1559: 1533: 1507: 1469: 1401: 1375: 1349: 1323: 1297: 1271: 1245: 1208:{\displaystyle \ v_{a}={\frac {\sqrt {2gd}}{2}}\ } 1207: 1151: 1125: 1087: 1036: 1010: 972: 921: 895: 858: 817: 791: 753: 705: 679: 648: 597: 571: 534: 458: 406: 142:-bound conditions. Assuming constant acceleration 2009: 1990: 1695: 1657: 1515:of a falling object that has travelled distance 1253:of a falling object that has travelled distance 1133:of a falling object that has travelled distance 903:of a falling object that has travelled distance 1331:, this equation is used for larger radii where 166:by the Earth’s gravitational field of strength 16:Mathematical description of a body in free fall 535:{\displaystyle F=G{{mM} \over {(r+d)^{2}}}=mg} 2418:. New York: Springer Science+Business Media. 2332:, the foundation of the law of falling bodies 754:{\displaystyle \ t=\ {\sqrt {\frac {2d}{g}}}} 280:is measured in metres per second squared, so 8: 1018:of an object that has been falling for time 2283:Acceleration relative to the rotating Earth 1938:taken for an object to fall from a height 1843:in the above equations may be replaced by 2252: 2245: 2235: 2227: 2201: 2175: 2149: 2104: 2076: 2072: 2067: 2041: 2019: 2017: 2008: 2007: 1995: 1989: 1988: 1969: 1966: 1958: 1876: 1850: 1848: 1740: 1732: 1730: 1694: 1693: 1675: 1662: 1656: 1655: 1644: 1635: 1626: 1598: 1572: 1546: 1520: 1496: 1487: 1455: 1434: 1425: 1416: 1388: 1362: 1336: 1310: 1284: 1258: 1234: 1225: 1184: 1175: 1166: 1138: 1114: 1105: 1069: 1060: 1051: 1023: 999: 990: 954: 945: 936: 908: 884: 875: 841: 832: 804: 780: 771: 734: 720: 692: 666: 640: 623: 612: 584: 558: 514: 497: 489: 487: 476: 441: 420: 398: 381: 369: 356: 335: 109:Learn how and when to remove this message 1927:formula for radial elliptic trajectories 1088:{\displaystyle \ v_{a}={\frac {1}{2}}gt} 649:{\displaystyle \ d={\frac {1}{2}}gt^{2}} 579:travelled by an object falling for time 549: 2387:Jespersen, James; Fitz-Randolph, Jane. 2379: 2347: 1887:{\displaystyle {\frac {G(M+m)}{r^{2}}}} 973:{\displaystyle \ v_{i}={\sqrt {2gd}}\ } 799:of a falling object after elapsed time 1910:is the mass of the astronomical body, 1916:is the mass of the falling body, and 1593:(used for large fall distances where 687:taken for an object to fall distance 148:Newton's law of universal gravitation 7: 1835:astronomical bodies other than Earth 47:adding citations to reliable sources 233:Near the surface of the Earth, the 2279:, which is the time to collision. 1409:is small and relatively constant: 14: 2441:Falling body equations calculator 2142:standard gravitational parameters 131:of objects subject to a constant 23: 2358:, for a comprehensive study of 1772:is the acceleration of gravity. 162:is the force exerted on a mass 34:needs additional citations for 2127: 2115: 2051: 2032: 1868: 1856: 1753:{\displaystyle {\sqrt {2h/g}}} 511: 498: 431: 425: 346: 340: 58:"Equations for a falling body" 1: 459:{\displaystyle v(t)=v_{0}+at} 242: = 9.807 m/s ( 1790:%; however, if it fell from 286:must be measured in metres, 2424:10.1007/978-1-4614-5444-1_2 2133:{\displaystyle \mu =G(M+m)} 1619:can change significantly): 235:acceleration due to gravity 2482: 859:{\displaystyle \ v_{i}=gt} 1814:%, 15 seconds to reach 99 1508:{\displaystyle \ v_{i}\ } 1357:is smaller than standard 1246:{\displaystyle \ v_{i}\ } 1126:{\displaystyle \ v_{a}\ } 1011:{\displaystyle \ v_{a}\ } 896:{\displaystyle \ v_{i}\ } 792:{\displaystyle \ v_{i}\ } 244:metres per second squared 2196:, as expected; and when 146:due to Earth’s gravity, 1482:Instantaneous velocity 1220:Instantaneous velocity 870:Instantaneous velocity 766:Instantaneous velocity 270:is essential. Assuming 2273: 2216: 2190: 2164: 2134: 2090: 1902:gravitational constant 1888: 1773: 1754: 1709: 1613: 1587: 1561: 1541:on a planet with mass 1535: 1509: 1471: 1403: 1377: 1351: 1325: 1299: 1279:on a planet with mass 1273: 1247: 1209: 1159:(averaged over time): 1153: 1127: 1089: 1044:(averaged over time): 1038: 1012: 974: 923: 897: 860: 819: 793: 755: 707: 681: 650: 599: 573: 536: 460: 408: 298:in metres per second. 230: 2364:Scientific Revolution 2274: 2217: 2191: 2165: 2135: 2091: 1889: 1755: 1724: 1710: 1614: 1612:{\displaystyle \ g\ } 1588: 1586:{\displaystyle \ r\ } 1562: 1560:{\displaystyle \ M\ } 1536: 1534:{\displaystyle \ d\ } 1510: 1472: 1404: 1402:{\displaystyle \ g\ } 1378: 1376:{\displaystyle \ g\ } 1352: 1350:{\displaystyle \ g\ } 1326: 1324:{\displaystyle \ r\ } 1300: 1298:{\displaystyle \ M\ } 1274: 1272:{\displaystyle \ d\ } 1248: 1210: 1154: 1152:{\displaystyle \ d\ } 1128: 1090: 1039: 1037:{\displaystyle \ t\ } 1013: 975: 924: 922:{\displaystyle \ d\ } 898: 861: 820: 818:{\displaystyle \ t\ } 794: 756: 708: 706:{\displaystyle \ d\ } 682: 680:{\displaystyle \ t\ } 651: 600: 598:{\displaystyle \ t\ } 574: 572:{\displaystyle \ d\ } 537: 461: 409: 227: 170:. Assuming constant 2226: 2200: 2174: 2170:this equation gives 2148: 2103: 1957: 1847: 1792:geosynchronous orbit 1729: 1625: 1597: 1571: 1545: 1519: 1486: 1415: 1387: 1361: 1335: 1309: 1283: 1257: 1224: 1165: 1137: 1104: 1050: 1022: 989: 935: 907: 874: 831: 803: 770: 719: 691: 665: 611: 583: 557: 475: 419: 334: 43:improve this article 2362:and his times, the 2315:Equations of motion 2215:{\displaystyle x=0} 2189:{\displaystyle t=0} 2163:{\displaystyle x=r} 2330:Mean speed theorem 2302:De motu antiquiora 2269: 2212: 2186: 2160: 2140:is the sum of the 2130: 2086: 1884: 1774: 1766:is the height and 1750: 1705: 1609: 1583: 1557: 1531: 1505: 1467: 1399: 1373: 1347: 1321: 1295: 1269: 1243: 1205: 1149: 1123: 1085: 1034: 1008: 970: 919: 893: 856: 815: 789: 751: 703: 677: 646: 595: 569: 532: 456: 404: 231: 2354:See the works of 2336:Radial trajectory 2288:Centripetal force 2267: 2266: 2243: 2065: 2064: 2054: 2049: 2031: 2027: 2005: 2004: 1977: 1882: 1748: 1719: 1718: 1704: 1700: 1691: 1670: 1630: 1608: 1602: 1582: 1576: 1556: 1550: 1530: 1524: 1504: 1491: 1466: 1462: 1461: 1420: 1398: 1392: 1372: 1366: 1346: 1340: 1320: 1314: 1294: 1288: 1268: 1262: 1242: 1229: 1204: 1200: 1196: 1170: 1148: 1142: 1122: 1109: 1100:Average velocity 1077: 1055: 1033: 1027: 1007: 994: 985:Average velocity 969: 965: 940: 918: 912: 892: 879: 836: 814: 808: 788: 775: 749: 748: 733: 724: 702: 696: 676: 670: 631: 616: 594: 588: 568: 562: 521: 389: 304:terminal velocity 199:terminal velocity 119: 118: 111: 93: 2473: 2428: 2427: 2417: 2406: 2400: 2399: 2393: 2384: 2367: 2352: 2308:Two New Sciences 2278: 2276: 2275: 2270: 2268: 2265: 2257: 2256: 2247: 2246: 2244: 2236: 2221: 2219: 2218: 2213: 2195: 2193: 2192: 2187: 2169: 2167: 2166: 2161: 2139: 2137: 2136: 2131: 2095: 2093: 2092: 2087: 2085: 2084: 2080: 2066: 2057: 2056: 2055: 2050: 2042: 2029: 2028: 2020: 2018: 2013: 2012: 2006: 1997: 1996: 1994: 1993: 1978: 1970: 1967: 1949: 1943: 1937: 1921: 1915: 1909: 1899: 1893: 1891: 1890: 1885: 1883: 1881: 1880: 1871: 1851: 1842: 1827:peregrine falcon 1817: 1813: 1809: 1801: 1797: 1789: 1785: 1771: 1765: 1759: 1757: 1756: 1751: 1749: 1744: 1733: 1714: 1712: 1711: 1706: 1702: 1701: 1699: 1698: 1692: 1690: 1676: 1671: 1663: 1661: 1660: 1645: 1640: 1639: 1628: 1618: 1616: 1615: 1610: 1606: 1600: 1592: 1590: 1589: 1584: 1580: 1574: 1566: 1564: 1563: 1558: 1554: 1548: 1540: 1538: 1537: 1532: 1528: 1522: 1514: 1512: 1511: 1506: 1502: 1501: 1500: 1489: 1476: 1474: 1473: 1468: 1464: 1463: 1460: 1459: 1450: 1436: 1435: 1430: 1429: 1418: 1408: 1406: 1405: 1400: 1396: 1390: 1382: 1380: 1379: 1374: 1370: 1364: 1356: 1354: 1353: 1348: 1344: 1338: 1330: 1328: 1327: 1322: 1318: 1312: 1304: 1302: 1301: 1296: 1292: 1286: 1278: 1276: 1275: 1270: 1266: 1260: 1252: 1250: 1249: 1244: 1240: 1239: 1238: 1227: 1214: 1212: 1211: 1206: 1202: 1201: 1186: 1185: 1180: 1179: 1168: 1158: 1156: 1155: 1150: 1146: 1140: 1132: 1130: 1129: 1124: 1120: 1119: 1118: 1107: 1094: 1092: 1091: 1086: 1078: 1070: 1065: 1064: 1053: 1043: 1041: 1040: 1035: 1031: 1025: 1017: 1015: 1014: 1009: 1005: 1004: 1003: 992: 979: 977: 976: 971: 967: 966: 955: 950: 949: 938: 928: 926: 925: 920: 916: 910: 902: 900: 899: 894: 890: 889: 888: 877: 865: 863: 862: 857: 846: 845: 834: 824: 822: 821: 816: 812: 806: 798: 796: 795: 790: 786: 785: 784: 773: 760: 758: 757: 752: 750: 744: 736: 735: 731: 722: 712: 710: 709: 704: 700: 694: 686: 684: 683: 678: 674: 668: 655: 653: 652: 647: 645: 644: 632: 624: 614: 604: 602: 601: 596: 592: 586: 578: 576: 575: 570: 566: 560: 550: 541: 539: 538: 533: 522: 520: 519: 518: 496: 488: 465: 463: 462: 457: 446: 445: 413: 411: 410: 405: 403: 402: 390: 382: 374: 373: 361: 360: 324: 317: 297: 291: 285: 279: 269: 263: 257: 251: 241: 114: 107: 103: 100: 94: 92: 51: 27: 19: 2481: 2480: 2476: 2475: 2474: 2472: 2471: 2470: 2446: 2445: 2437: 2432: 2431: 2415: 2408: 2407: 2403: 2391: 2386: 2385: 2381: 2376: 2371: 2370: 2353: 2349: 2344: 2297: 2285: 2258: 2248: 2224: 2223: 2198: 2197: 2172: 2171: 2146: 2145: 2101: 2100: 2068: 1968: 1955: 1954: 1945: 1939: 1933: 1917: 1911: 1905: 1895: 1872: 1852: 1845: 1844: 1838: 1815: 1811: 1807: 1799: 1795: 1787: 1783: 1779: 1767: 1761: 1727: 1726: 1715: 1680: 1631: 1623: 1622: 1595: 1594: 1569: 1568: 1543: 1542: 1517: 1516: 1492: 1484: 1483: 1477: 1451: 1437: 1421: 1413: 1412: 1385: 1384: 1359: 1358: 1333: 1332: 1307: 1306: 1281: 1280: 1255: 1254: 1230: 1222: 1221: 1215: 1171: 1163: 1162: 1135: 1134: 1110: 1102: 1101: 1095: 1056: 1048: 1047: 1020: 1019: 995: 987: 986: 980: 941: 933: 932: 905: 904: 880: 872: 871: 837: 829: 828: 801: 800: 776: 768: 767: 761: 737: 717: 716: 689: 688: 663: 662: 656: 636: 609: 608: 581: 580: 555: 554: 548: 510: 473: 472: 437: 417: 416: 394: 365: 352: 332: 331: 320: 313: 293: 292:in seconds and 287: 281: 275: 265: 259: 253: 247: 237: 222: 214:Coriolis effect 181: 127:describing the 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2479: 2477: 2469: 2468: 2463: 2458: 2448: 2447: 2444: 2443: 2436: 2435:External links 2433: 2430: 2429: 2401: 2378: 2377: 2375: 2372: 2369: 2368: 2356:Stillman Drake 2346: 2345: 2343: 2340: 2339: 2338: 2333: 2327: 2322: 2317: 2312: 2296: 2293: 2284: 2281: 2264: 2261: 2255: 2251: 2242: 2239: 2234: 2231: 2211: 2208: 2205: 2185: 2182: 2179: 2159: 2156: 2153: 2129: 2126: 2123: 2120: 2117: 2114: 2111: 2108: 2097: 2096: 2083: 2079: 2075: 2071: 2063: 2060: 2053: 2048: 2045: 2040: 2037: 2034: 2026: 2023: 2016: 2011: 2003: 2000: 1992: 1987: 1984: 1981: 1976: 1973: 1965: 1962: 1879: 1875: 1870: 1867: 1864: 1861: 1858: 1855: 1778: 1775: 1747: 1743: 1739: 1736: 1717: 1716: 1697: 1689: 1686: 1683: 1679: 1674: 1669: 1666: 1659: 1654: 1651: 1648: 1643: 1638: 1634: 1620: 1605: 1579: 1553: 1527: 1499: 1495: 1479: 1478: 1458: 1454: 1449: 1446: 1443: 1440: 1433: 1428: 1424: 1410: 1395: 1369: 1343: 1317: 1291: 1265: 1237: 1233: 1217: 1216: 1199: 1195: 1192: 1189: 1183: 1178: 1174: 1160: 1145: 1117: 1113: 1097: 1096: 1084: 1081: 1076: 1073: 1068: 1063: 1059: 1045: 1030: 1002: 998: 982: 981: 964: 961: 958: 953: 948: 944: 930: 915: 887: 883: 867: 866: 855: 852: 849: 844: 840: 826: 811: 783: 779: 763: 762: 747: 743: 740: 730: 727: 714: 699: 673: 658: 657: 643: 639: 635: 630: 627: 622: 619: 606: 591: 565: 547: 544: 543: 542: 531: 528: 525: 517: 513: 509: 506: 503: 500: 495: 492: 486: 483: 480: 455: 452: 449: 444: 440: 436: 433: 430: 427: 424: 401: 397: 393: 388: 385: 380: 377: 372: 368: 364: 359: 355: 351: 348: 345: 342: 339: 221: 218: 180: 177: 150:simplifies to 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2478: 2467: 2464: 2462: 2459: 2457: 2454: 2453: 2451: 2442: 2439: 2438: 2434: 2425: 2421: 2414: 2413: 2405: 2402: 2397: 2390: 2383: 2380: 2373: 2365: 2361: 2357: 2351: 2348: 2341: 2337: 2334: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2310: 2309: 2304: 2303: 2299: 2298: 2294: 2292: 2289: 2282: 2280: 2262: 2259: 2253: 2249: 2240: 2237: 2232: 2229: 2209: 2206: 2203: 2183: 2180: 2177: 2157: 2154: 2151: 2143: 2124: 2121: 2118: 2112: 2109: 2106: 2081: 2077: 2073: 2069: 2061: 2058: 2046: 2043: 2038: 2035: 2024: 2021: 2014: 2001: 1998: 1985: 1982: 1979: 1974: 1971: 1963: 1960: 1953: 1952: 1951: 1948: 1942: 1936: 1930: 1928: 1923: 1920: 1914: 1908: 1903: 1898: 1877: 1873: 1865: 1862: 1859: 1853: 1841: 1836: 1831: 1828: 1824: 1819: 1818:% and so on. 1803: 1794:, which is 42 1793: 1776: 1770: 1764: 1745: 1741: 1737: 1734: 1723: 1687: 1684: 1681: 1677: 1672: 1667: 1664: 1652: 1649: 1646: 1641: 1636: 1632: 1621: 1603: 1577: 1551: 1525: 1497: 1493: 1481: 1480: 1456: 1452: 1447: 1444: 1441: 1438: 1431: 1426: 1422: 1411: 1393: 1367: 1341: 1315: 1289: 1263: 1235: 1231: 1219: 1218: 1197: 1193: 1190: 1187: 1181: 1176: 1172: 1161: 1143: 1115: 1111: 1099: 1098: 1082: 1079: 1074: 1071: 1066: 1061: 1057: 1046: 1028: 1000: 996: 984: 983: 962: 959: 956: 951: 946: 942: 931: 913: 885: 881: 869: 868: 853: 850: 847: 842: 838: 827: 809: 781: 777: 765: 764: 745: 741: 738: 728: 725: 715: 697: 671: 660: 659: 641: 637: 633: 628: 625: 620: 617: 607: 589: 563: 552: 551: 545: 529: 526: 523: 515: 507: 504: 501: 493: 490: 484: 481: 478: 471: 470: 469: 466: 453: 450: 447: 442: 438: 434: 428: 422: 414: 399: 395: 391: 386: 383: 378: 375: 370: 366: 362: 357: 353: 349: 343: 337: 329: 326: 323: 316: 310: 307: 305: 299: 296: 290: 284: 278: 273: 268: 262: 256: 250: 245: 240: 236: 226: 219: 217: 215: 210: 208: 204: 200: 195: 193: 189: 185: 178: 176: 173: 169: 165: 161: 157: 153: 149: 145: 141: 138:under normal 137: 134: 133:gravitational 130: 126: 125: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 2411: 2404: 2395: 2382: 2350: 2306: 2300: 2286: 2098: 1946: 1944:to a height 1940: 1934: 1931: 1924: 1918: 1912: 1906: 1896: 1839: 1832: 1820: 1804: 1780: 1768: 1762: 467: 415: 330: 327: 321: 314: 311: 308: 300: 294: 288: 282: 276: 266: 260: 254: 248: 238: 232: 211: 196: 182: 171: 167: 163: 159: 155: 151: 143: 129:trajectories 122: 120: 105: 99:October 2017 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1567:and radius 203:David Scott 192:water clock 2450:Categories 2374:References 1823:freeflying 69:newspapers 2461:Equations 2320:Free fall 2263:μ 2238:π 2222:it gives 2107:μ 2062:μ 2039:− 1986:⁡ 1980:− 1972:π 1932:The time 1673:− 553:Distance 546:Equations 124:equations 121:A set of 2295:See also 1760:, where 272:SI units 220:Overview 158:, where 2466:Falling 2456:Gravity 2360:Galileo 2325:Gravity 1900:is the 1816:  1812:  1808:  1800:  1796:  1788:  1784:  1777:Example 184:Galileo 179:History 83:scholar 2099:where 2030:  1983:arcsin 1894:where 1703:  1629:  1607:  1601:  1581:  1575:  1555:  1549:  1529:  1523:  1503:  1490:  1465:  1419:  1397:  1391:  1371:  1365:  1345:  1339:  1319:  1313:  1293:  1287:  1267:  1261:  1241:  1228:  1203:  1169:  1147:  1141:  1121:  1108:  1054:  1032:  1026:  1006:  993:  968:  939:  917:  911:  891:  878:  835:  813:  807:  787:  774:  732:  723:  701:  695:  675:  669:  615:  593:  587:  567:  561:  85:  78:  71:  64:  56:  2416:(PDF) 2392:(PDF) 2342:Notes 661:Time 140:Earth 136:force 90:JSTOR 76:books 2305:and 1833:For 264:and 207:Moon 188:ramp 62:news 2420:doi 1802:%. 209:.) 45:by 2452:: 2394:. 1929:: 1904:, 1782:10 929:: 825:: 713:: 605:: 306:. 274:, 258:, 252:, 156:mg 154:= 2426:. 2422:: 2366:. 2260:2 2254:3 2250:r 2241:2 2233:= 2230:t 2210:0 2207:= 2204:x 2184:0 2181:= 2178:t 2158:r 2155:= 2152:x 2128:) 2125:m 2122:+ 2119:M 2116:( 2113:G 2110:= 2082:2 2078:/ 2074:3 2070:r 2059:2 2052:) 2047:r 2044:x 2036:1 2033:( 2025:r 2022:x 2015:+ 2010:) 2002:r 1999:x 1991:( 1975:2 1964:= 1961:t 1947:x 1941:r 1935:t 1919:r 1913:m 1907:M 1897:G 1878:2 1874:r 1869:) 1866:m 1863:+ 1860:M 1857:( 1854:G 1840:g 1769:g 1763:h 1746:g 1742:/ 1738:h 1735:2 1696:) 1688:d 1685:+ 1682:r 1678:1 1668:r 1665:1 1658:( 1653:M 1650:G 1647:2 1642:= 1637:i 1633:v 1604:g 1578:r 1552:M 1526:d 1498:i 1494:v 1457:2 1453:r 1448:d 1445:M 1442:G 1439:2 1432:= 1427:i 1423:v 1394:g 1368:g 1342:g 1316:r 1290:M 1264:d 1236:i 1232:v 1198:2 1194:d 1191:g 1188:2 1182:= 1177:a 1173:v 1144:d 1116:a 1112:v 1083:t 1080:g 1075:2 1072:1 1067:= 1062:a 1058:v 1029:t 1001:a 997:v 963:d 960:g 957:2 952:= 947:i 943:v 914:d 886:i 882:v 854:t 851:g 848:= 843:i 839:v 810:t 782:i 778:v 746:g 742:d 739:2 729:= 726:t 698:d 672:t 642:2 638:t 634:g 629:2 626:1 621:= 618:d 590:t 564:d 530:g 527:m 524:= 516:2 512:) 508:d 505:+ 502:r 499:( 494:M 491:m 485:G 482:= 479:F 454:t 451:a 448:+ 443:0 439:v 435:= 432:) 429:t 426:( 423:v 400:2 396:t 392:a 387:2 384:1 379:+ 376:t 371:0 367:v 363:+ 358:0 354:d 350:= 347:) 344:t 341:( 338:d 322:g 315:g 295:v 289:t 283:d 277:g 267:v 261:t 255:d 249:g 239:g 172:g 168:g 164:m 160:F 152:F 144:g 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Equations for a falling body"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
equations
trajectories
gravitational
force
Earth
Newton's law of universal gravitation
Galileo
ramp
water clock
terminal velocity
David Scott
Moon
Coriolis effect

acceleration due to gravity
metres per second squared
SI units
terminal velocity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑