Knowledge (XXG)

Equivalent potential temperature

Source đź“ť

2088: 2011: 211:
Air at the top of a mountain is usually colder than the air in the valley below, but the arrangement is not unstable: if a parcel of air from the valley were somehow lifted up to the top of the mountain, when it arrived it would be even colder than the air already there, due to adiabatic cooling; it
869:
A number of approximate formulations are used for calculating equivalent potential temperature, since it is not easy to compute integrations along motion of the parcel. Bolton (1980) gives review of such procedures with estimates of error. His best approximation formula is used when accuracy is
212:
would be heavier than the ambient air, and would sink back toward its original position. Similarly, if a parcel of cold mountain-top air were to make the trip down to the valley, it would arrive warmer and lighter than the valley air, and would float back up the mountain.
198:
To understand this, consider dry convection in the atmosphere, where the vertical variation in pressure is substantial and adiabatic temperature change is important: As a parcel of air moves upward, the ambient pressure drops, causing the parcel to expand. Some of the
531: 1101: 257:, and thus accelerate further upward, a runaway condition (instability) even if potential temperature increases with height. The sufficient condition for an air column to be absolutely stable, even with respect to saturated convective motions, is that the 223:—the temperature the air would have if it were brought adiabatically to a reference pressure. The air around the mountain is stable because the air at the top, due to its lower pressure, has a higher potential temperature than the warmer air below. 1834: 1221: 207:
required to expand against the atmospheric pressure, so the temperature of the parcel drops, even though it has not lost any heat. Conversely, a sinking parcel is compressed and becomes warmer even though no heat is added.
2122:) have demonstrated that the air masses involved originated from high Arctic at an altitude of 300 to 400 hPa the previous week, went down toward the surface as they moved to the Tropics, then moved back up along the 2137:, equivalent potential temperature is also a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height, 2244: 2188: 1611: 274: 245:
to the surrounding air, partially offsetting the adiabatic cooling. A saturated parcel of air therefore cools less than a dry one would as it rises (its temperature changes with height at the
985: 991: 1445: 55: 2006:{\displaystyle \theta _{e}=T_{e}\left({\frac {p_{0}}{p}}\right)^{\kappa _{d}}\approx \left(T+{\frac {L_{v}}{c_{pd}}}r\right)\left({\frac {p_{0}}{p}}\right)^{\frac {R_{d}}{c_{pd}}}} 2510: 1732: 1660: 1385: 1254: 96: 1795: 720: 2076: 2044: 1826: 1763: 1687: 1316: 1287: 859: 800: 773: 684: 657: 606: 1107: 1467: 1358: 1336: 826: 740: 628: 577: 557: 2253:
is likely. Situations in which the equivalent potential temperature decreases with height, indicating instability in saturated air, are quite common.
2382: 2503: 1801:
Further more simplified formula is used (in, for example, Stull 1988 §13.1 p. 546) for simplicity, if it is desirable to avoid computing
2652: 2949: 2199: 2143: 2672: 2496: 2394: 2305: 2298: 2119: 2107: 2096: 1473:
A little more theoretical formula is commonly used in literature like Holton (1972) when theoretical explanation is important:
237: 1479: 2867: 2435: 526:{\displaystyle \theta _{e}=T\left({\frac {p_{0}}{p}}\right)^{R_{d}/(c_{pd}+r_{t}c)}H^{-r_{v}R_{v}/(c_{pd}+r_{t}c)}\exp \left} 162:) which is thus the observed condition almost all the time. The condition for stability of an incompressible fluid is that 2667: 2614: 876: 2928: 2087: 242: 57:, is a quantity that is conserved during changes to an air parcel's pressure (that is, during vertical motions in the 215:
So cool air lying on top of warm air can be stable, as long as the temperature decrease with height is less than the
2862: 2619: 2103: 1096:{\displaystyle \theta _{L}=T\left({\frac {p_{0}}{p-e}}\right)^{\kappa _{d}}\left({\frac {T}{T_{L}}}\right)^{0.28r}} 246: 2954: 2842: 2776: 2604: 1257: 232: 2476: 2449: 1469:
is mixing ratio of water vapor mass per mass (sometimes value is given in and that should be divided by 1000).
2709: 2561: 250: 1392: 25: 2910: 2832: 2699: 2764: 2724: 2677: 2662: 2644: 2454: 2250: 2047: 743: 159: 2811: 2704: 2694: 2657: 2272: 2134: 1447:
is the ratio of the specific gas constant to the specific heat of dry air at constant pressure (0.2854),
220: 190: 155: 66: 58: 2890: 2857: 2759: 2754: 2719: 2463: 216: 123: 2193:
and vertical motions are suppressed. If the equivalent potential temperature decreases with height,
2852: 2837: 2277: 2267: 2127: 1694: 1622: 2624: 2123: 1363: 1232: 74: 2340: 2905: 2801: 2689: 2531: 2431: 2301: 2294: 2111: 829: 179: 2130:. The back trajectories were evaluated using the constant equivalent potential temperatures. 1216:{\displaystyle T_{L}={\frac {1}{{\frac {1}{T_{d}-56}}+{\frac {\log _{e}(T/T_{d})}{800}}}}+56} 2471: 1770: 695: 2054: 2022: 1804: 1741: 1665: 1294: 1265: 837: 778: 751: 662: 635: 584: 2556: 200: 154:) can lower the center of gravity, and thus will occur spontaneously, rapidly producing a 2467: 2847: 1452: 1343: 1321: 811: 725: 613: 562: 542: 204: 2943: 2629: 2488: 2806: 2781: 2714: 2591: 803: 687: 241:). If the parcel of air continues to rise, water vapor condenses and releases its 231:
A rising parcel of air containing water vapor, if it rises far enough, reaches its
175: 69:, which remains constant only for unsaturated vertical motions (pressure changes). 182:, the density of the fluid at a fixed reference pressure. For an ideal gas (see 150:
lying above less dense fluid would be dynamically unstable: overturning motions (
2895: 2734: 2634: 2262: 1735: 862: 115: 107: 99: 2900: 2872: 2786: 2581: 2566: 2546: 2378: 151: 65:
during that pressure change. It is therefore more conserved than the ordinary
2742: 2571: 2551: 2536: 127: 111: 2920: 2882: 2796: 2541: 2115: 2092: 259:
equivalent potential temperature must increase monotonically with height.
254: 184: 119: 103: 102:
a parcel of air would reach if all the water vapor in the parcel were to
62: 2791: 144: 219:; the dynamically important quantity is not the temperature, but the 2106:
for characterisation of air masses. For instance, in a study of the
1797:
is specific heat of dry air at constant pressure (1005.7 J/(kg·K)).
2599: 2388: 2293:, published by Butterworth-Heinemann, January 1, 1989, 304 pages. 2086: 147: 2576: 2492: 2239:{\displaystyle {\frac {\partial \theta _{e}}{\partial z}}<0} 2183:{\displaystyle {\frac {\partial \theta _{e}}{\partial z}}>0} 227:
Effects of water condensation: equivalent potential temperature
178:
like air, the criterion for dynamic stability instead involves
2609: 1765:(2406 kJ/kg {at 40 Â°C} to 2501 kJ/kg {at 0 Â°C}), and 2095:
between December 31, 1997, and January 1998 which caused the
2477:
10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2
268:
The definition of the equivalent potential temperature is:
2450:"The 1998 Ice Storm, Analysis of a Planetary-Scale Event" 1606:{\displaystyle \theta _{e}\approx \theta _{L}\exp \left} 2202: 2146: 2057: 2025: 1837: 1807: 1773: 1744: 1697: 1689:, the temperature at the saturation level of the air, 1668: 1625: 1482: 1455: 1395: 1366: 1346: 1324: 1297: 1268: 1235: 1110: 994: 879: 840: 814: 781: 754: 728: 698: 665: 638: 616: 587: 565: 545: 277: 188:), the stability criterion for an air column is that 77: 28: 2249:
the atmosphere is unstable to vertical motions, and
170:
Stability of compressible air: potential temperature
2919: 2881: 2733: 2643: 2590: 2524: 2448:Gyakum, John R.; Roebber, Paul J. (December 2001). 2366:
The Computation of Equivalent Potential Temperature
2462:(12). American Meteorological Society: 2983–2997. 2238: 2182: 2070: 2038: 2005: 1820: 1789: 1757: 1726: 1681: 1662:is saturated mixing ratio of water at temperature 1654: 1605: 1461: 1439: 1379: 1352: 1330: 1310: 1281: 1248: 1215: 1095: 979: 853: 820: 794: 767: 734: 714: 678: 651: 622: 608:is a reference pressure that is taken as 1000 hPa, 600: 571: 551: 525: 90: 49: 2078:= specific gas constant for air (287.04 J/(kg·K)) 980:{\displaystyle \theta _{e}=\theta _{L}\exp \left} 114:to a standard reference pressure, usually 1000 253:). Such a saturated parcel of air can achieve 2504: 2428:An Introduction to Boundary Layer Meteorology 746:of dry air and of liquid water, respectively, 690:of dry air and of water vapour, respectively, 235:: it becomes saturated with water vapor (see 8: 2653:Convective available potential energy (CAPE) 2291:Short Course in Cloud Physics, Third Edition 164:density decreases monotonically with height 134:Its use in estimating atmospheric stability 2511: 2497: 2489: 2368:. Mon. Wea. Rev., Vol. 108, pp.1046-1053. 2475: 2213: 2203: 2201: 2157: 2147: 2145: 2062: 2056: 2030: 2024: 1991: 1981: 1975: 1960: 1954: 1930: 1920: 1914: 1892: 1887: 1872: 1866: 1855: 1842: 1836: 1812: 1806: 1778: 1772: 1749: 1743: 1715: 1702: 1696: 1673: 1667: 1643: 1630: 1624: 1590: 1577: 1562: 1549: 1536: 1523: 1516: 1500: 1487: 1481: 1454: 1428: 1419: 1413: 1400: 1394: 1371: 1365: 1345: 1323: 1302: 1296: 1273: 1267: 1240: 1234: 1189: 1180: 1165: 1158: 1140: 1130: 1124: 1115: 1109: 1084: 1072: 1063: 1050: 1045: 1022: 1016: 999: 993: 928: 919: 897: 884: 878: 845: 839: 813: 786: 780: 759: 753: 727: 703: 697: 670: 664: 643: 637: 615: 592: 586: 564: 544: 501: 485: 470: 460: 453: 429: 413: 401: 395: 385: 377: 359: 343: 331: 325: 320: 305: 299: 282: 276: 82: 76: 37: 27: 2415:An Introduction to Dynamical Meteorology 1440:{\displaystyle \kappa _{d}=R_{d}/c_{pd}} 50:{\displaystyle \left(\theta _{e}\right)} 2317: 1360:is the water vapor pressure (to obtain 1256:is (dry) potential temperature at the 559:is the temperature of air at pressure 143:Like a ball balanced on top of a hill, 1289:is (approximated) temperature at LCL, 203:of the parcel is used up in doing the 1318:is dew point temperature at pressure 802:are the total water and water vapour 7: 2615:Convective condensation level (CCL) 2417:. Academic Press, 1972, 319 pages. 193:increases monotonically with height 2821:Equivalent potential temperature ( 2341:"Equivalent potential temperature" 2221: 2206: 2165: 2150: 14: 2673:Conditional symmetric instability 2519:Meteorological data and variables 2395:World Meteorological Organisation 2347:. American Meteorological Society 2120:University of Wisconsin-Milwaukee 139:Stability of incompressible fluid 2620:Lifting condensation level (LCL) 2108:North American Ice Storm of 1998 2097:North American Ice Storm of 1998 17:Equivalent potential temperature 2605:Cloud condensation nuclei (CCN) 2868:Wet-bulb potential temperature 2710:Level of free convection (LFC) 1738:of evaporation at temperature 1721: 1708: 1649: 1636: 1568: 1555: 1542: 1529: 1195: 1174: 510: 478: 438: 406: 368: 336: 1: 2911:Pressure-gradient force (PGF) 2833:Sea surface temperature (SST) 2668:Convective momentum transport 630:is the pressure at the point, 110:, and the parcel was brought 2725:Bulk Richardson number (BRN) 1727:{\displaystyle L_{v}(T_{L})} 1655:{\displaystyle r_{s}(T_{L})} 249:, which is smaller than the 122:) which is roughly equal to 2929:Maximum potential intensity 2695:Free convective layer (FCL) 2658:Convective inhibition (CIN) 2430:, Kluwer, 1988, 666 pages, 2383:"Data processing procedure" 2345:AMS Glossary of Meteorology 1380:{\displaystyle \theta _{L}} 1249:{\displaystyle \theta _{L}} 238:Clausius–Clapeyron relation 91:{\displaystyle \theta _{e}} 2971: 2950:Atmospheric thermodynamics 2863:Wet-bulb globe temperature 2720:Maximum parcel level (MPL) 2329:. Oxford University Press. 865:of vapourisation of water. 247:moist adiabatic lapse rate 19:, commonly referred to as 2843:Thermodynamic temperature 2777:Forest fire weather index 2289:M K Yau and R.R. Rogers, 1258:lifted condensation level 233:lifted condensation level 2765:Equivalent temperature ( 2678:Convective temperature ( 2562:Surface weather analysis 2325:Emmanuel, Kerry (1994). 744:specific heat capacities 251:dry adiabatic lapse rate 2812:Potential temperature ( 2557:Surface solar radiation 61:), even if water vapor 2802:Relative humidity (RH) 2690:Equilibrium level (EL) 2663:Convective instability 2455:Monthly Weather Review 2327:Atmospheric Convection 2240: 2184: 2099: 2072: 2048:equivalent temperature 2040: 2007: 1822: 1791: 1790:{\displaystyle c_{pd}} 1759: 1728: 1683: 1656: 1607: 1463: 1441: 1381: 1354: 1332: 1312: 1283: 1250: 1217: 1097: 981: 855: 822: 796: 769: 736: 716: 715:{\displaystyle c_{pd}} 688:specific gas constants 680: 653: 624: 602: 573: 553: 527: 160:stratification (water) 92: 51: 2273:Potential temperature 2241: 2185: 2110:, professors Gyakum ( 2091:Back trajectories of 2090: 2073: 2071:{\displaystyle R_{d}} 2041: 2039:{\displaystyle T_{e}} 2008: 1823: 1821:{\displaystyle T_{L}} 1792: 1760: 1758:{\displaystyle T_{L}} 1729: 1684: 1682:{\displaystyle T_{L}} 1657: 1608: 1464: 1442: 1382: 1355: 1333: 1313: 1311:{\displaystyle T_{d}} 1284: 1282:{\displaystyle T_{L}} 1251: 1218: 1098: 982: 856: 854:{\displaystyle L_{v}} 823: 797: 795:{\displaystyle r_{v}} 770: 768:{\displaystyle r_{t}} 737: 717: 681: 679:{\displaystyle R_{v}} 654: 652:{\displaystyle R_{d}} 625: 603: 601:{\displaystyle p_{0}} 574: 554: 528: 221:potential temperature 191:potential temperature 156:stable stratification 93: 67:potential temperature 52: 2891:Atmospheric pressure 2858:Wet-bulb temperature 2760:Dry-bulb temperature 2755:Dew point depression 2200: 2144: 2102:This applies on the 2055: 2023: 1835: 1805: 1771: 1742: 1695: 1666: 1623: 1480: 1453: 1393: 1364: 1344: 1322: 1295: 1266: 1233: 1108: 992: 877: 838: 812: 779: 752: 726: 696: 663: 636: 614: 585: 563: 543: 275: 217:adiabatic lapse rate 124:atmospheric pressure 75: 26: 2853:Virtual temperature 2838:Temperature anomaly 2532:Adiabatic processes 2468:2001MWRv..129.2983G 2278:Weather forecasting 2268:Moist static energy 2128:St. Lawrence Valley 2625:Precipitable water 2236: 2180: 2124:Mississippi Valley 2100: 2068: 2036: 2003: 1818: 1787: 1755: 1724: 1679: 1652: 1603: 1459: 1437: 1377: 1350: 1328: 1308: 1279: 1246: 1213: 1093: 977: 851: 818: 792: 765: 732: 712: 676: 649: 620: 598: 569: 549: 523: 88: 47: 2937: 2936: 2906:Pressure gradient 2715:Lifted index (LI) 2228: 2172: 2112:McGill University 2000: 1969: 1939: 1881: 1597: 1462:{\displaystyle r} 1353:{\displaystyle e} 1331:{\displaystyle p} 1205: 1202: 1153: 1078: 1039: 934: 830:relative humidity 821:{\displaystyle H} 735:{\displaystyle c} 623:{\displaystyle p} 572:{\displaystyle p} 552:{\displaystyle T} 517: 314: 180:potential density 2962: 2955:Equivalent units 2513: 2506: 2499: 2490: 2483: 2481: 2479: 2445: 2439: 2424: 2418: 2411: 2405: 2404: 2402: 2401: 2375: 2369: 2364:D Bolton, 1980: 2362: 2356: 2355: 2353: 2352: 2337: 2331: 2330: 2322: 2245: 2243: 2242: 2237: 2229: 2227: 2219: 2218: 2217: 2204: 2189: 2187: 2186: 2181: 2173: 2171: 2163: 2162: 2161: 2148: 2077: 2075: 2074: 2069: 2067: 2066: 2045: 2043: 2042: 2037: 2035: 2034: 2012: 2010: 2009: 2004: 2002: 2001: 1999: 1998: 1986: 1985: 1976: 1974: 1970: 1965: 1964: 1955: 1948: 1944: 1940: 1938: 1937: 1925: 1924: 1915: 1899: 1898: 1897: 1896: 1886: 1882: 1877: 1876: 1867: 1860: 1859: 1847: 1846: 1827: 1825: 1824: 1819: 1817: 1816: 1796: 1794: 1793: 1788: 1786: 1785: 1764: 1762: 1761: 1756: 1754: 1753: 1733: 1731: 1730: 1725: 1720: 1719: 1707: 1706: 1688: 1686: 1685: 1680: 1678: 1677: 1661: 1659: 1658: 1653: 1648: 1647: 1635: 1634: 1612: 1610: 1609: 1604: 1602: 1598: 1596: 1595: 1594: 1585: 1584: 1571: 1567: 1566: 1554: 1553: 1541: 1540: 1528: 1527: 1517: 1505: 1504: 1492: 1491: 1468: 1466: 1465: 1460: 1446: 1444: 1443: 1438: 1436: 1435: 1423: 1418: 1417: 1405: 1404: 1386: 1384: 1383: 1378: 1376: 1375: 1359: 1357: 1356: 1351: 1337: 1335: 1334: 1329: 1317: 1315: 1314: 1309: 1307: 1306: 1288: 1286: 1285: 1280: 1278: 1277: 1255: 1253: 1252: 1247: 1245: 1244: 1222: 1220: 1219: 1214: 1206: 1204: 1203: 1198: 1194: 1193: 1184: 1170: 1169: 1159: 1154: 1152: 1145: 1144: 1131: 1125: 1120: 1119: 1102: 1100: 1099: 1094: 1092: 1091: 1083: 1079: 1077: 1076: 1064: 1057: 1056: 1055: 1054: 1044: 1040: 1038: 1027: 1026: 1017: 1004: 1003: 986: 984: 983: 978: 976: 972: 971: 967: 946: 942: 935: 933: 932: 920: 902: 901: 889: 888: 860: 858: 857: 852: 850: 849: 827: 825: 824: 819: 801: 799: 798: 793: 791: 790: 774: 772: 771: 766: 764: 763: 741: 739: 738: 733: 721: 719: 718: 713: 711: 710: 685: 683: 682: 677: 675: 674: 658: 656: 655: 650: 648: 647: 629: 627: 626: 621: 607: 605: 604: 599: 597: 596: 578: 576: 575: 570: 558: 556: 555: 550: 532: 530: 529: 524: 522: 518: 516: 506: 505: 493: 492: 476: 475: 474: 465: 464: 454: 442: 441: 434: 433: 421: 420: 405: 400: 399: 390: 389: 372: 371: 364: 363: 351: 350: 335: 330: 329: 319: 315: 310: 309: 300: 287: 286: 106:, releasing its 97: 95: 94: 89: 87: 86: 56: 54: 53: 48: 46: 42: 41: 2970: 2969: 2965: 2964: 2963: 2961: 2960: 2959: 2940: 2939: 2938: 2933: 2915: 2877: 2827: 2771: 2749: 2729: 2684: 2639: 2586: 2520: 2517: 2487: 2486: 2447: 2446: 2442: 2425: 2421: 2412: 2408: 2399: 2397: 2377: 2376: 2372: 2363: 2359: 2350: 2348: 2339: 2338: 2334: 2324: 2323: 2319: 2314: 2286: 2259: 2220: 2209: 2205: 2198: 2197: 2164: 2153: 2149: 2142: 2141: 2118:) and Roebber ( 2085: 2058: 2053: 2052: 2026: 2021: 2020: 1987: 1977: 1956: 1950: 1949: 1926: 1916: 1907: 1903: 1888: 1868: 1862: 1861: 1851: 1838: 1833: 1832: 1808: 1803: 1802: 1774: 1769: 1768: 1745: 1740: 1739: 1711: 1698: 1693: 1692: 1669: 1664: 1663: 1639: 1626: 1621: 1620: 1586: 1573: 1572: 1558: 1545: 1532: 1519: 1518: 1512: 1496: 1483: 1478: 1477: 1451: 1450: 1424: 1409: 1396: 1391: 1390: 1367: 1362: 1361: 1342: 1341: 1320: 1319: 1298: 1293: 1292: 1269: 1264: 1263: 1236: 1231: 1230: 1185: 1161: 1160: 1136: 1135: 1129: 1111: 1106: 1105: 1068: 1059: 1058: 1046: 1028: 1018: 1012: 1011: 995: 990: 989: 954: 950: 924: 918: 914: 913: 909: 893: 880: 875: 874: 841: 836: 835: 810: 809: 806:, respectively, 782: 777: 776: 755: 750: 749: 724: 723: 699: 694: 693: 666: 661: 660: 639: 634: 633: 612: 611: 588: 583: 582: 561: 560: 541: 540: 497: 481: 477: 466: 456: 455: 449: 425: 409: 391: 381: 373: 355: 339: 321: 301: 295: 294: 278: 273: 272: 266: 229: 201:internal energy 172: 141: 136: 78: 73: 72: 33: 29: 24: 23: 12: 11: 5: 2968: 2966: 2958: 2957: 2952: 2942: 2941: 2935: 2934: 2932: 2931: 2925: 2923: 2917: 2916: 2914: 2913: 2908: 2903: 2898: 2893: 2887: 2885: 2879: 2878: 2876: 2875: 2870: 2865: 2860: 2855: 2850: 2848:Vapor pressure 2845: 2840: 2835: 2830: 2825: 2818: 2809: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2762: 2757: 2752: 2747: 2739: 2737: 2731: 2730: 2728: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2682: 2675: 2670: 2665: 2660: 2655: 2649: 2647: 2641: 2640: 2638: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2596: 2594: 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2539: 2534: 2528: 2526: 2522: 2521: 2518: 2516: 2515: 2508: 2501: 2493: 2485: 2484: 2440: 2419: 2406: 2370: 2357: 2332: 2316: 2315: 2313: 2310: 2309: 2308: 2285: 2282: 2281: 2280: 2275: 2270: 2265: 2258: 2255: 2247: 2246: 2235: 2232: 2226: 2223: 2216: 2212: 2208: 2191: 2190: 2179: 2176: 2170: 2167: 2160: 2156: 2152: 2104:synoptic scale 2084: 2081: 2080: 2079: 2065: 2061: 2050: 2033: 2029: 2014: 2013: 1997: 1994: 1990: 1984: 1980: 1973: 1968: 1963: 1959: 1953: 1947: 1943: 1936: 1933: 1929: 1923: 1919: 1913: 1910: 1906: 1902: 1895: 1891: 1885: 1880: 1875: 1871: 1865: 1858: 1854: 1850: 1845: 1841: 1815: 1811: 1799: 1798: 1784: 1781: 1777: 1766: 1752: 1748: 1723: 1718: 1714: 1710: 1705: 1701: 1690: 1676: 1672: 1651: 1646: 1642: 1638: 1633: 1629: 1614: 1613: 1601: 1593: 1589: 1583: 1580: 1576: 1570: 1565: 1561: 1557: 1552: 1548: 1544: 1539: 1535: 1531: 1526: 1522: 1515: 1511: 1508: 1503: 1499: 1495: 1490: 1486: 1471: 1470: 1458: 1448: 1434: 1431: 1427: 1422: 1416: 1412: 1408: 1403: 1399: 1388: 1374: 1370: 1349: 1339: 1327: 1305: 1301: 1290: 1276: 1272: 1261: 1243: 1239: 1224: 1223: 1212: 1209: 1201: 1197: 1192: 1188: 1183: 1179: 1176: 1173: 1168: 1164: 1157: 1151: 1148: 1143: 1139: 1134: 1128: 1123: 1118: 1114: 1103: 1090: 1087: 1082: 1075: 1071: 1067: 1062: 1053: 1049: 1043: 1037: 1034: 1031: 1025: 1021: 1015: 1010: 1007: 1002: 998: 987: 975: 970: 966: 963: 960: 957: 953: 949: 945: 941: 938: 931: 927: 923: 917: 912: 908: 905: 900: 896: 892: 887: 883: 867: 866: 848: 844: 833: 817: 807: 789: 785: 762: 758: 747: 731: 709: 706: 702: 691: 673: 669: 646: 642: 631: 619: 609: 595: 591: 580: 568: 548: 534: 533: 521: 515: 512: 509: 504: 500: 496: 491: 488: 484: 480: 473: 469: 463: 459: 452: 448: 445: 440: 437: 432: 428: 424: 419: 416: 412: 408: 404: 398: 394: 388: 384: 380: 376: 370: 367: 362: 358: 354: 349: 346: 342: 338: 334: 328: 324: 318: 313: 308: 304: 298: 293: 290: 285: 281: 265: 262: 228: 225: 174:If a fluid is 171: 168: 140: 137: 135: 132: 85: 81: 45: 40: 36: 32: 13: 10: 9: 6: 4: 3: 2: 2967: 2956: 2953: 2951: 2948: 2947: 2945: 2930: 2927: 2926: 2924: 2922: 2918: 2912: 2909: 2907: 2904: 2902: 2901:Barotropicity 2899: 2897: 2894: 2892: 2889: 2888: 2886: 2884: 2880: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2824: 2819: 2817: 2815: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2768: 2763: 2761: 2758: 2756: 2753: 2751: 2746: 2741: 2740: 2738: 2736: 2732: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2681: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2650: 2648: 2646: 2642: 2636: 2633: 2631: 2630:Precipitation 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2597: 2595: 2593: 2589: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2529: 2527: 2523: 2514: 2509: 2507: 2502: 2500: 2495: 2494: 2491: 2478: 2473: 2469: 2465: 2461: 2457: 2456: 2451: 2444: 2441: 2437: 2433: 2429: 2423: 2420: 2416: 2410: 2407: 2396: 2392: 2390: 2384: 2380: 2374: 2371: 2367: 2361: 2358: 2346: 2342: 2336: 2333: 2328: 2321: 2318: 2311: 2307: 2306:0-7506-3215-1 2303: 2300: 2299:9780750632157 2296: 2292: 2288: 2287: 2283: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2260: 2256: 2254: 2252: 2233: 2230: 2224: 2214: 2210: 2196: 2195: 2194: 2177: 2174: 2168: 2158: 2154: 2140: 2139: 2138: 2136: 2131: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2094: 2089: 2082: 2063: 2059: 2051: 2049: 2031: 2027: 2019: 2018: 2017: 1995: 1992: 1988: 1982: 1978: 1971: 1966: 1961: 1957: 1951: 1945: 1941: 1934: 1931: 1927: 1921: 1917: 1911: 1908: 1904: 1900: 1893: 1889: 1883: 1878: 1873: 1869: 1863: 1856: 1852: 1848: 1843: 1839: 1831: 1830: 1829: 1813: 1809: 1782: 1779: 1775: 1767: 1750: 1746: 1737: 1716: 1712: 1703: 1699: 1691: 1674: 1670: 1644: 1640: 1631: 1627: 1619: 1618: 1617: 1599: 1591: 1587: 1581: 1578: 1574: 1563: 1559: 1550: 1546: 1537: 1533: 1524: 1520: 1513: 1509: 1506: 1501: 1497: 1493: 1488: 1484: 1476: 1475: 1474: 1456: 1449: 1432: 1429: 1425: 1420: 1414: 1410: 1406: 1401: 1397: 1389: 1387:for dry air), 1372: 1368: 1347: 1340: 1325: 1303: 1299: 1291: 1274: 1270: 1262: 1259: 1241: 1237: 1229: 1228: 1227: 1210: 1207: 1199: 1190: 1186: 1181: 1177: 1171: 1166: 1162: 1155: 1149: 1146: 1141: 1137: 1132: 1126: 1121: 1116: 1112: 1104: 1088: 1085: 1080: 1073: 1069: 1065: 1060: 1051: 1047: 1041: 1035: 1032: 1029: 1023: 1019: 1013: 1008: 1005: 1000: 996: 988: 973: 968: 964: 961: 958: 955: 951: 947: 943: 939: 936: 929: 925: 921: 915: 910: 906: 903: 898: 894: 890: 885: 881: 873: 872: 871: 864: 846: 842: 834: 831: 815: 808: 805: 804:mixing ratios 787: 783: 760: 756: 748: 745: 729: 707: 704: 700: 692: 689: 671: 667: 644: 640: 632: 617: 610: 593: 589: 581: 566: 546: 539: 538: 537: 519: 513: 507: 502: 498: 494: 489: 486: 482: 471: 467: 461: 457: 450: 446: 443: 435: 430: 426: 422: 417: 414: 410: 402: 396: 392: 386: 382: 378: 374: 365: 360: 356: 352: 347: 344: 340: 332: 326: 322: 316: 311: 306: 302: 296: 291: 288: 283: 279: 271: 270: 269: 263: 261: 260: 256: 252: 248: 244: 240: 239: 234: 226: 224: 222: 218: 213: 209: 206: 202: 196: 194: 192: 187: 186: 181: 177: 169: 167: 165: 161: 157: 153: 149: 146: 138: 133: 131: 129: 125: 121: 117: 113: 112:adiabatically 109: 105: 101: 83: 79: 70: 68: 64: 60: 43: 38: 34: 30: 22: 18: 2822: 2820: 2813: 2807:Mixing ratio 2782:Haines Index 2766: 2744: 2679: 2592:Condensation 2459: 2453: 2443: 2427: 2422: 2414: 2413:J R Holton, 2409: 2398:. Retrieved 2386: 2373: 2365: 2360: 2349:. Retrieved 2344: 2335: 2326: 2320: 2290: 2284:Bibliography 2248: 2192: 2132: 2101: 2015: 1800: 1615: 1472: 1225: 868: 535: 267: 258: 236: 230: 214: 210: 197: 189: 183: 176:compressible 173: 163: 142: 71: 20: 16: 15: 2896:Baroclinity 2743:Dew point ( 2735:Temperature 2635:Water vapor 2426:R B Stull, 2263:Meteorology 2126:toward the 1736:latent heat 863:latent heat 243:latent heat 108:latent heat 100:temperature 2944:Categories 2873:Wind chill 2787:Heat index 2645:Convection 2582:Wind shear 2567:Visibility 2547:Lapse rate 2436:9027727694 2400:2009-08-02 2391:Evaluation 2379:Met Office 2351:2020-11-03 2312:References 2251:convection 2093:air masses 158:(see also 152:convection 59:atmosphere 2572:Vorticity 2552:Lightning 2537:Advection 2222:∂ 2211:θ 2207:∂ 2166:∂ 2155:θ 2151:∂ 2135:mesoscale 1901:≈ 1890:κ 1840:θ 1510:⁡ 1498:θ 1494:≈ 1485:θ 1398:κ 1369:θ 1238:θ 1172:⁡ 1147:− 1048:κ 1033:− 997:θ 937:− 907:⁡ 895:θ 882:θ 447:⁡ 379:− 280:θ 128:sea level 80:θ 63:condenses 35:θ 2921:Velocity 2883:Pressure 2797:Humidity 2700:Helicity 2542:Buoyancy 2257:See also 2116:Montreal 870:needed: 742:are the 686:are the 255:buoyancy 185:gas laws 104:condense 2792:Humidex 2705:K Index 2525:General 2464:Bibcode 2133:In the 2016:Where: 1616:Where: 1226:Where: 861:is the 828:is the 536:Where: 264:Formula 98:is the 21:theta-e 2434:  2304:  2297:  1260:(LCL), 145:denser 118:(1000 2600:Cloud 2389:AMDAR 2083:Usage 962:0.448 148:fluid 2577:Wind 2432:ISBN 2302:ISBN 2295:ISBN 2231:< 2175:> 1086:0.28 940:1.78 922:3036 775:and 722:and 659:and 205:work 120:mbar 2610:Fog 2472:doi 2460:129 1734:is 1507:exp 1200:800 1163:log 904:exp 444:exp 126:at 116:hPa 2946:: 2470:. 2458:. 2452:. 2393:. 2387:E- 2385:. 2381:. 2343:. 2114:, 2046:= 1828:: 1211:56 1150:56 195:. 166:. 130:. 2828:) 2826:e 2823:θ 2816:) 2814:θ 2772:) 2770:e 2767:T 2750:) 2748:d 2745:T 2685:) 2683:c 2680:T 2512:e 2505:t 2498:v 2482:. 2480:. 2474:: 2466:: 2438:. 2403:. 2354:. 2234:0 2225:z 2215:e 2178:0 2169:z 2159:e 2064:d 2060:R 2032:e 2028:T 1996:d 1993:p 1989:c 1983:d 1979:R 1972:) 1967:p 1962:0 1958:p 1952:( 1946:) 1942:r 1935:d 1932:p 1928:c 1922:v 1918:L 1912:+ 1909:T 1905:( 1894:d 1884:) 1879:p 1874:0 1870:p 1864:( 1857:e 1853:T 1849:= 1844:e 1814:L 1810:T 1783:d 1780:p 1776:c 1751:L 1747:T 1722:) 1717:L 1713:T 1709:( 1704:v 1700:L 1675:L 1671:T 1650:) 1645:L 1641:T 1637:( 1632:s 1628:r 1600:] 1592:L 1588:T 1582:d 1579:p 1575:c 1569:) 1564:L 1560:T 1556:( 1551:v 1547:L 1543:) 1538:L 1534:T 1530:( 1525:s 1521:r 1514:[ 1502:L 1489:e 1457:r 1433:d 1430:p 1426:c 1421:/ 1415:d 1411:R 1407:= 1402:d 1373:L 1348:e 1338:, 1326:p 1304:d 1300:T 1275:L 1271:T 1242:L 1208:+ 1196:) 1191:d 1187:T 1182:/ 1178:T 1175:( 1167:e 1156:+ 1142:d 1138:T 1133:1 1127:1 1122:= 1117:L 1113:T 1089:r 1081:) 1074:L 1070:T 1066:T 1061:( 1052:d 1042:) 1036:e 1030:p 1024:0 1020:p 1014:( 1009:T 1006:= 1001:L 974:] 969:) 965:r 959:+ 956:1 952:( 948:r 944:) 930:L 926:T 916:( 911:[ 899:L 891:= 886:e 847:v 843:L 832:, 816:H 788:v 784:r 761:t 757:r 730:c 708:d 705:p 701:c 672:v 668:R 645:d 641:R 618:p 594:0 590:p 579:, 567:p 547:T 520:] 514:T 511:) 508:c 503:t 499:r 495:+ 490:d 487:p 483:c 479:( 472:v 468:r 462:v 458:L 451:[ 439:) 436:c 431:t 427:r 423:+ 418:d 415:p 411:c 407:( 403:/ 397:v 393:R 387:v 383:r 375:H 369:) 366:c 361:t 357:r 353:+ 348:d 345:p 341:c 337:( 333:/ 327:d 323:R 317:) 312:p 307:0 303:p 297:( 292:T 289:= 284:e 84:e 44:) 39:e 31:(

Index

atmosphere
condenses
potential temperature
temperature
condense
latent heat
adiabatically
hPa
mbar
atmospheric pressure
sea level
denser
fluid
convection
stable stratification
stratification (water)
compressible
potential density
gas laws
potential temperature
internal energy
work
adiabatic lapse rate
potential temperature
lifted condensation level
Clausius–Clapeyron relation
latent heat
moist adiabatic lapse rate
dry adiabatic lapse rate
buoyancy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑