Knowledge (XXG)

Error catastrophe

Source πŸ“

880: 569: 71:
among the population and can confer advantages such as helping to subvert the ability of a host's immune system to recognise it in a subsequent infection. The more mutations the virus makes during replication, the more likely it is to avoid recognition by the immune system and the more diverse its
76:
for an explanation of the selective advantages of this). However, mutations are not, as a general rule, beneficial, and if it accumulates too many harmful mutations, it may lose some of its biological features which have evolved to its advantage, including its ability to reproduce at all.
1492:
will allow). Drugs have been created to increase the mutation rate of the viruses in order to push them over the critical boundary so that they lose self-identity. However, given the criticism of the basic assumption of the mathematical model, this approach is problematic.
875:{\displaystyle {\begin{matrix}{\frac {\partial z}{\partial t}}&=&{\frac {{\dot {x}}y-x{\dot {y}}}{y^{2}}}\\&&\\&=&{\frac {a(1-Q)xy-x(aQx+by)}{y^{2}}}\\&&\\&=&a(1-Q)z-(aQz^{2}+bz)\\&&\\&=&z(a(1-Q)-aQz-b)\\\end{matrix}}} 1374:
To avoid error catastrophe, the amount of information lost through mutation must be less than the amount gained through natural selection. This fact can be used to arrive at essentially the same equations as the more common differential presentation.
431: 554: 37:
The term is most widely used to refer to mutation accumulation to the point of inviability of the organism or virus, where it cannot produce enough viable offspring to maintain a population. This use of Eigen's term was adopted by
1093: 1307: 1203: 236: 965: 294:
be the probability of a member of the second group returning to the first (via an unlikely and very specific mutation). The equations governing the development of the populations are:
22:
refers to the cumulative loss of genetic information in a lineage of organisms due to high mutation rates. The mutation rate above which error catastrophe occurs is called the
1435: 300: 1342: 450: 91:
Consider a virus which has a genetic identity modeled by a string of ones and zeros (e.g. 11010001011101....). Suppose that the string has fixed length
991: 1222: 1791:
Pariente, N; Sierra, S; Airaksinen, A (2005). "Action of mutagenic agents and antiviral inhibitors on foot-and-mouth disease virus".
1116: 159: 241:
At this point, we make a mathematical idealisation: we pick the fittest strain (the one with the greatest reproduction rate
82:
how many mutations can occur during each replication before the population of viruses begins to lose the ability to survive?
1612:"Mutagenesis by human immunodeficiency virus reverse transcriptase: incorporation of O6-methyldeoxyguanosine triphosphate" 1916: 900: 1529: 1504:: in general, large genomes are required for accurate replication (high replication rates are achieved by the help of 60:
Error catastrophe is predicted in certain mathematical models of evolution and has also been observed empirically.
1773: 270:); and we then group the remaining strains into a single group. Let the concentrations of the two groups be 57:
would amplify the errors until the cell was inviable. This theory has not received empirical support.
1611: 95:
and that during replication the virus copies each digit one by one, making a mistake with probability
1715: 1568: 1559:
Eigen M (October 1971). "Selforganization of matter and the evolution of biological macromolecules".
1512:
to persist. Which comes first and how does it happen? An illustration of the difficulty involved is
1468:
or less. This corresponds to half the offspring surviving; namely the half with the correct genome.
1400: 459: 426:{\displaystyle {\begin{cases}{\dot {x}}=&a(1-Q)x+bRy\\{\dot {y}}=&aQx+b(1-R)y\\\end{cases}}} 309: 1539: 1363: 54: 1911: 1592: 1777: 1501: 1870: 1808: 1743: 1677: 1631: 1584: 1534: 1362:
billion (10) base units long. This means that the replication mechanism for human DNA must be
1657: 1318: 1860: 1852: 1800: 1733: 1723: 1669: 1623: 1576: 1497: 39: 549:{\displaystyle {\begin{cases}{\dot {x}}=&a(1-Q)x\\{\dot {y}}=&aQx+by\\\end{cases}}} 53:
in a theory for cellular aging, in which errors in the translation of proteins involved in
1761: 23: 1719: 1572: 1394:
is the negative log of probability. Therefore, a genome can only survive unchanged when
1865: 1840: 1766: 1891: 1738: 1703: 1627: 1905: 979:
under what parameter values does the original population persist (continue to exist)?
27: 1596: 1350:
which replicate close to the error threshold have a genome size of order 10 (10000)
1804: 73: 68: 50: 31: 1704:"The maintenance of the accuracy of protein synthesis and its relevance to ageing" 1856: 1481: 1391: 1347: 1896: 1351: 1390:, determines the amount of information contributed by natural selectionβ€” and 102:
Due to the mutations resulting from erroneous replication, there exist up to
1673: 1874: 1812: 1747: 1681: 1658:"Perspective-Lethal Mutagenesis of HIV by Mutagenic Ribonucleoside Analogs" 1728: 1635: 1588: 1580: 1505: 42:
and colleagues to describe the strategy of lethal mutagenesis to cure
1616:
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
64: 1484:
operate very close to the critical mutation rate (i.e. the largest
1088:{\displaystyle z(\infty )>0\iff a(1-Q)-b>0\iff (1-Q)>b/a.} 1477: 1098:
This result is more popularly expressed in terms of the ratio of
981:
The population persists if and only if the steady state value of
1302:{\displaystyle L\ln {(1-q)}\approx -Lq>\ln {(1-s)}\approx -s} 1355: 43: 1208:
Taking a logarithm on both sides and approximating for small
1378:
The information lost can be quantified as the genome length
542: 419: 49:
There was an earlier use of the term introduced in 1963 by
1198:{\displaystyle z(\infty )>0\iff (1-Q)=(1-q)^{L}>1-s} 1520:
is 0.99 - a very small string length in terms of genes.
231:{\displaystyle {\dot {x}}_{j}=\sum _{i}a_{i}Q_{ij}x_{i}} 67:) during replication. The resulting mutations increase 574: 1610:
Hizi, A; Kamath-Loeb, AS; Rose, KD; Loeb, LA (1997).
1448:
is a genome with one bit which always mutates. Since
1403: 1321: 1225: 1119: 994: 903: 572: 453: 303: 248:) and assume that it is unique (i.e. that the chosen 162: 1508:), but a large genome requires a high accuracy rate 106:
distinct strains derived from the parent virus. Let
282:
be the probability of a virus in the first group (
1765: 1429: 1336: 1301: 1197: 1087: 959: 874: 548: 425: 230: 960:{\displaystyle z(\infty )={\frac {a(1-Q)-b}{aQ}}} 436:We are particularly interested in the case where 63:Like every organism, viruses "make mistakes" (or 16:Loss of genetic information due to mutation rates 1366:more accurate than for the RNA of RNA viruses. 970:(which is deduced by setting the derivative of 30:in his mathematical evolutionary theory of the 8: 286:) mutating to a member of the second group ( 135:denote the probability of a virus of strain 1841:"Examining The Theory of Error Catastrophe" 985:is strictly positive. i.e. if and only if: 890:achieves a steady concentration over time, 46:by using mutagenic ribonucleoside analogs. 1440:For example, the very simple genome where 1142: 1138: 1052: 1048: 1017: 1013: 1897:Examining the theory of error catastrophe 1864: 1737: 1727: 1422: 1402: 1320: 1273: 1235: 1224: 1177: 1118: 1074: 993: 919: 902: 790: 730: 668: 645: 629: 628: 608: 607: 604: 577: 573: 571: 505: 504: 463: 462: 454: 452: 367: 366: 313: 312: 304: 302: 222: 209: 199: 189: 176: 165: 164: 161: 146:Then the rate of change of concentration 1892:Error catastrophe and antiviral strategy 440:is very large, so we may safely neglect 1551: 1452:is then 1, it follows that S has to be 72:population will be (see the article on 1370:Information-theory based presentation 7: 1662:AIDS Research and Human Retroviruses 113:denote the concentration of strain 99:independently of all other digits. 1126: 1001: 910: 588: 580: 14: 1382:times the replication error rate 124:denote the rate at which strain 1386:. The probability of survival, 974:with respect to time to zero). 1805:10.1016/j.virusres.2004.11.008 1656:Loeb, LA; Mullins, JI (2000). 1430:{\displaystyle Lq<-\ln {S}} 1286: 1274: 1248: 1236: 1174: 1161: 1155: 1143: 1139: 1129: 1123: 1065: 1053: 1049: 1033: 1021: 1014: 1004: 998: 937: 925: 913: 907: 865: 844: 832: 826: 805: 777: 768: 756: 722: 701: 686: 674: 494: 482: 410: 398: 344: 332: 1: 1768:Evolutionary Biology of Aging 1628:10.1016/S0027-5107(96)00217-5 1110:, then the condition becomes 977:So the important question is 26:. Both terms were coined by 1857:10.1128/JVI.80.1.20-26.2006 1312:reducing the condition to: 1933: 1708:Proc. Natl. Acad. Sci. USA 1106:of individual digits: set 1702:Orgel, Leslie E. (1963). 1839:Summers; Litwin (2006). 1500:mystery for biologists, 1496:The result introduces a 894:settles down to satisfy 274:with reproduction rates 87:Basic mathematical model 1774:Oxford University Press 1674:10.1089/088922200309539 1561:Die Naturwissenschaften 1337:{\displaystyle Lq<s} 1431: 1338: 1303: 1199: 1089: 961: 876: 550: 444:and instead consider: 427: 232: 1729:10.1073/pnas.49.4.517 1476:Some viruses such as 1432: 1339: 1304: 1200: 1090: 962: 877: 551: 428: 233: 80:The question arises: 1401: 1319: 1223: 1117: 992: 901: 570: 451: 301: 278:, respectively; let 160: 128:reproduces; and let 1917:Population genetics 1845:Journal of Virology 1720:1963PNAS...49..517O 1573:1971NW.....58..465E 1540:Mutational meltdown 1516:can only be 100 if 1364:orders of magnitude 1102:and the error rate 139:mutating to strain 55:protein translation 1581:10.1007/BF00623322 1427: 1334: 1299: 1195: 1085: 957: 872: 870: 546: 541: 423: 418: 228: 194: 1827:The Organic Codes 1535:Extinction vortex 955: 736: 651: 637: 616: 595: 513: 471: 375: 321: 185: 173: 20:Error catastrophe 1924: 1879: 1878: 1868: 1836: 1830: 1823: 1817: 1816: 1788: 1782: 1781: 1772:. New York, NY: 1771: 1758: 1752: 1751: 1741: 1731: 1699: 1693: 1692: 1690: 1688: 1653: 1647: 1646: 1644: 1642: 1607: 1601: 1600: 1556: 1467: 1465: 1464: 1461: 1458: 1436: 1434: 1433: 1428: 1426: 1343: 1341: 1340: 1335: 1308: 1306: 1305: 1300: 1289: 1251: 1204: 1202: 1201: 1196: 1182: 1181: 1094: 1092: 1091: 1086: 1078: 966: 964: 963: 958: 956: 954: 946: 920: 881: 879: 878: 873: 871: 816: 813: 812: 811: 795: 794: 746: 743: 742: 741: 737: 735: 734: 725: 669: 661: 658: 657: 656: 652: 650: 649: 640: 639: 638: 630: 618: 617: 609: 605: 596: 594: 586: 578: 555: 553: 552: 547: 545: 544: 515: 514: 506: 473: 472: 464: 432: 430: 429: 424: 422: 421: 377: 376: 368: 323: 322: 314: 237: 235: 234: 229: 227: 226: 217: 216: 204: 203: 193: 181: 180: 175: 174: 166: 1932: 1931: 1927: 1926: 1925: 1923: 1922: 1921: 1902: 1901: 1888: 1883: 1882: 1838: 1837: 1833: 1824: 1820: 1790: 1789: 1785: 1762:Michael R. Rose 1760: 1759: 1755: 1701: 1700: 1696: 1686: 1684: 1655: 1654: 1650: 1640: 1638: 1609: 1608: 1604: 1567:(10): 465–523. 1558: 1557: 1553: 1548: 1530:Error threshold 1526: 1502:Eigen's paradox 1474: 1462: 1459: 1456: 1455: 1453: 1399: 1398: 1372: 1317: 1316: 1221: 1220: 1173: 1115: 1114: 990: 989: 947: 921: 899: 898: 869: 868: 821: 814: 809: 808: 786: 751: 744: 739: 738: 726: 670: 666: 659: 654: 653: 641: 606: 602: 597: 587: 579: 568: 567: 540: 539: 519: 501: 500: 477: 455: 449: 448: 417: 416: 381: 363: 362: 327: 305: 299: 298: 264: 260: 253: 246: 218: 205: 195: 163: 158: 157: 151: 133: 122: 111: 89: 24:error threshold 17: 12: 11: 5: 1930: 1928: 1920: 1919: 1914: 1904: 1903: 1900: 1899: 1894: 1887: 1886:External links 1884: 1881: 1880: 1831: 1818: 1783: 1753: 1714:(4): 517–521. 1694: 1648: 1602: 1550: 1549: 1547: 1544: 1543: 1542: 1537: 1532: 1525: 1522: 1473: 1470: 1438: 1437: 1425: 1421: 1418: 1415: 1412: 1409: 1406: 1371: 1368: 1345: 1344: 1333: 1330: 1327: 1324: 1310: 1309: 1298: 1295: 1292: 1288: 1285: 1282: 1279: 1276: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1250: 1247: 1244: 1241: 1238: 1234: 1231: 1228: 1206: 1205: 1194: 1191: 1188: 1185: 1180: 1176: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1141: 1137: 1134: 1131: 1128: 1125: 1122: 1096: 1095: 1084: 1081: 1077: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1051: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1016: 1012: 1009: 1006: 1003: 1000: 997: 968: 967: 953: 950: 945: 942: 939: 936: 933: 930: 927: 924: 918: 915: 912: 909: 906: 884: 883: 867: 864: 861: 858: 855: 852: 849: 846: 843: 840: 837: 834: 831: 828: 825: 822: 820: 817: 815: 810: 807: 804: 801: 798: 793: 789: 785: 782: 779: 776: 773: 770: 767: 764: 761: 758: 755: 752: 750: 747: 745: 740: 733: 729: 724: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 691: 688: 685: 682: 679: 676: 673: 667: 665: 662: 660: 655: 648: 644: 636: 633: 627: 624: 621: 615: 612: 603: 601: 598: 593: 590: 585: 582: 576: 575: 557: 556: 543: 538: 535: 532: 529: 526: 523: 520: 518: 512: 509: 503: 502: 499: 496: 493: 490: 487: 484: 481: 478: 476: 470: 467: 461: 460: 458: 434: 433: 420: 415: 412: 409: 406: 403: 400: 397: 394: 391: 388: 385: 382: 380: 374: 371: 365: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 326: 320: 317: 311: 310: 308: 262: 258: 251: 244: 239: 238: 225: 221: 215: 212: 208: 202: 198: 192: 188: 184: 179: 172: 169: 149: 131: 120: 109: 88: 85: 15: 13: 10: 9: 6: 4: 3: 2: 1929: 1918: 1915: 1913: 1910: 1909: 1907: 1898: 1895: 1893: 1890: 1889: 1885: 1876: 1872: 1867: 1862: 1858: 1854: 1850: 1846: 1842: 1835: 1832: 1828: 1825:M. Barbieri, 1822: 1819: 1814: 1810: 1806: 1802: 1799:(2): 183–93. 1798: 1794: 1787: 1784: 1779: 1775: 1770: 1769: 1763: 1757: 1754: 1749: 1745: 1740: 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1695: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1652: 1649: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1606: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1555: 1552: 1545: 1541: 1538: 1536: 1533: 1531: 1528: 1527: 1523: 1521: 1519: 1515: 1511: 1507: 1503: 1499: 1494: 1491: 1487: 1483: 1479: 1471: 1469: 1451: 1447: 1443: 1423: 1419: 1416: 1413: 1410: 1407: 1404: 1397: 1396: 1395: 1393: 1389: 1385: 1381: 1376: 1369: 1367: 1365: 1361: 1357: 1353: 1349: 1331: 1328: 1325: 1322: 1315: 1314: 1313: 1296: 1293: 1290: 1283: 1280: 1277: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1245: 1242: 1239: 1232: 1229: 1226: 1219: 1218: 1217: 1215: 1211: 1192: 1189: 1186: 1183: 1178: 1170: 1167: 1164: 1158: 1152: 1149: 1146: 1135: 1132: 1120: 1113: 1112: 1111: 1109: 1105: 1101: 1082: 1079: 1075: 1071: 1068: 1062: 1059: 1056: 1045: 1042: 1039: 1036: 1030: 1027: 1024: 1018: 1010: 1007: 995: 988: 987: 986: 984: 980: 975: 973: 951: 948: 943: 940: 934: 931: 928: 922: 916: 904: 897: 896: 895: 893: 889: 862: 859: 856: 853: 850: 847: 841: 838: 835: 829: 823: 818: 802: 799: 796: 791: 787: 783: 780: 774: 771: 765: 762: 759: 753: 748: 731: 727: 719: 716: 713: 710: 707: 704: 698: 695: 692: 689: 683: 680: 677: 671: 663: 646: 642: 634: 631: 625: 622: 619: 613: 610: 599: 591: 583: 566: 565: 564: 562: 559:Then setting 536: 533: 530: 527: 524: 521: 516: 510: 507: 497: 491: 488: 485: 479: 474: 468: 465: 456: 447: 446: 445: 443: 439: 413: 407: 404: 401: 395: 392: 389: 386: 383: 378: 372: 369: 359: 356: 353: 350: 347: 341: 338: 335: 329: 324: 318: 315: 306: 297: 296: 295: 293: 289: 285: 281: 277: 273: 269: 265: 254: 247: 223: 219: 213: 210: 206: 200: 196: 190: 186: 182: 177: 170: 167: 156: 155: 154: 152: 144: 142: 138: 134: 127: 123: 116: 112: 105: 100: 98: 94: 86: 84: 83: 78: 75: 70: 66: 61: 58: 56: 52: 47: 45: 41: 40:Lawrence Loeb 35: 33: 29: 28:Manfred Eigen 25: 21: 1851:(1): 20–26. 1848: 1844: 1834: 1826: 1821: 1796: 1792: 1786: 1767: 1756: 1711: 1707: 1697: 1685:. Retrieved 1665: 1661: 1651: 1639:. Retrieved 1622:(1): 41–50. 1619: 1615: 1605: 1564: 1560: 1554: 1517: 1513: 1509: 1495: 1489: 1485: 1475: 1472:Applications 1449: 1445: 1441: 1439: 1387: 1383: 1379: 1377: 1373: 1359: 1346: 1311: 1213: 1209: 1207: 1107: 1103: 1099: 1097: 982: 978: 976: 971: 969: 891: 887: 885: 560: 558: 441: 437: 435: 291: 287: 283: 279: 275: 271: 267: 256: 249: 242: 240: 153:is given by 147: 145: 140: 136: 129: 125: 118: 114: 107: 103: 101: 96: 92: 90: 81: 79: 74:biodiversity 69:biodiversity 62: 59: 51:Leslie Orgel 48: 36: 32:quasispecies 19: 18: 1776:. pp.  1482:hepatitis C 1392:information 1348:RNA viruses 1108:b/a = (1-s) 1906:Categories 1668:(1): 1–3. 1546:References 1352:base pairs 290:) and let 255:satisfies 1912:Pathology 1793:Virus Res 1687:3 October 1641:3 October 1420:⁡ 1414:− 1358:is about 1354:. Human 1294:− 1291:≈ 1281:− 1271:⁡ 1256:− 1253:≈ 1243:− 1233:⁡ 1216:one gets 1190:− 1168:− 1150:− 1140:⟺ 1127:∞ 1060:− 1050:⟺ 1037:− 1028:− 1015:⟺ 1002:∞ 941:− 932:− 911:∞ 886:Assuming 860:− 848:− 839:− 775:− 763:− 696:− 681:− 635:˙ 623:− 614:˙ 589:∂ 581:∂ 511:˙ 489:− 469:˙ 405:− 373:˙ 339:− 319:˙ 187:∑ 171:˙ 1875:16352527 1829:, p. 140 1813:15649564 1764:(1991). 1748:13940312 1682:10628810 1597:38296619 1524:See also 1498:Catch-22 563:we have 266:for all 1866:1317512 1778:147–152 1716:Bibcode 1636:9067414 1589:4942363 1569:Bibcode 1506:enzymes 1466:⁠ 1454:⁠ 561:z = x/y 1873:  1863:  1811:  1746:  1739:299893 1736:  1680:  1634:  1595:  1587:  276:a>b 261:> a 117:; let 65:mutate 1593:S2CID 1488:that 1478:polio 1446:q = 1 1442:L = 1 272:x , y 268:i β‰  j 1871:PMID 1809:PMID 1744:PMID 1689:2021 1678:PMID 1643:2021 1632:PMID 1585:PMID 1444:and 1411:< 1329:< 1265:> 1212:and 1184:> 1133:> 1069:> 1043:> 1008:> 1861:PMC 1853:doi 1801:doi 1797:107 1734:PMC 1724:doi 1670:doi 1624:doi 1620:374 1577:doi 1480:or 1360:3.3 1356:DNA 1100:a:b 44:HIV 1908:: 1869:. 1859:. 1849:80 1847:. 1843:. 1807:. 1795:. 1742:. 1732:. 1722:. 1712:49 1710:. 1706:. 1676:. 1666:16 1664:. 1660:. 1630:. 1618:. 1614:. 1591:. 1583:. 1575:. 1565:58 1563:. 1518:q' 1450:Lq 1417:ln 1268:ln 1230:ln 143:. 132:ij 34:. 1877:. 1855:: 1815:. 1803:: 1780:. 1750:. 1726:: 1718:: 1691:. 1672:: 1645:. 1626:: 1599:. 1579:: 1571:: 1514:L 1510:q 1490:L 1486:q 1463:2 1460:/ 1457:1 1424:S 1408:q 1405:L 1388:S 1384:q 1380:L 1332:s 1326:q 1323:L 1297:s 1287:) 1284:s 1278:1 1275:( 1262:q 1259:L 1249:) 1246:q 1240:1 1237:( 1227:L 1214:s 1210:q 1193:s 1187:1 1179:L 1175:) 1171:q 1165:1 1162:( 1159:= 1156:) 1153:Q 1147:1 1144:( 1136:0 1130:) 1124:( 1121:z 1104:q 1083:. 1080:a 1076:/ 1072:b 1066:) 1063:Q 1057:1 1054:( 1046:0 1040:b 1034:) 1031:Q 1025:1 1022:( 1019:a 1011:0 1005:) 999:( 996:z 983:z 972:z 952:Q 949:a 944:b 938:) 935:Q 929:1 926:( 923:a 917:= 914:) 908:( 905:z 892:z 888:z 882:. 866:) 863:b 857:z 854:Q 851:a 845:) 842:Q 836:1 833:( 830:a 827:( 824:z 819:= 806:) 803:z 800:b 797:+ 792:2 788:z 784:Q 781:a 778:( 772:z 769:) 766:Q 760:1 757:( 754:a 749:= 732:2 728:y 723:) 720:y 717:b 714:+ 711:x 708:Q 705:a 702:( 699:x 693:y 690:x 687:) 684:Q 678:1 675:( 672:a 664:= 647:2 643:y 632:y 626:x 620:y 611:x 600:= 592:t 584:z 537:y 534:b 531:+ 528:x 525:Q 522:a 517:= 508:y 498:x 495:) 492:Q 486:1 483:( 480:a 475:= 466:x 457:{ 442:R 438:L 414:y 411:) 408:R 402:1 399:( 396:b 393:+ 390:x 387:Q 384:a 379:= 370:y 360:y 357:R 354:b 351:+ 348:x 345:) 342:Q 336:1 333:( 330:a 325:= 316:x 307:{ 292:R 288:y 284:x 280:Q 263:i 259:j 257:a 252:j 250:a 245:j 243:a 224:i 220:x 214:j 211:i 207:Q 201:i 197:a 191:i 183:= 178:j 168:x 150:j 148:x 141:j 137:i 130:Q 126:i 121:i 119:a 115:i 110:i 108:x 104:2 97:q 93:L

Index

error threshold
Manfred Eigen
quasispecies
Lawrence Loeb
HIV
Leslie Orgel
protein translation
mutate
biodiversity
biodiversity
RNA viruses
base pairs
DNA
orders of magnitude
information
polio
hepatitis C
Catch-22
Eigen's paradox
enzymes
Error threshold
Extinction vortex
Mutational meltdown
Bibcode
1971NW.....58..465E
doi
10.1007/BF00623322
PMID
4942363
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑