Knowledge (XXG)

Functional renormalization group

Source đź“ť

1525:, functional renormalization does not make a strict distinction between renormalizable and nonrenormalizable couplings. All running couplings that are allowed by symmetries of the problem are generated during the FRG flow. However, the nonrenormalizable couplings approach partial fixed points very quickly during the evolution towards the infrared, and thus the flow effectively collapses on a hypersurface of the dimension given by the number of renormalizable couplings. Taking the nonrenormalizable couplings into account allows to study nonuniversal features that are sensitive to the concrete choice of the microscopic action 43:. This technique allows to interpolate smoothly between the known microscopic laws and the complicated macroscopic phenomena in physical systems. In this sense, it bridges the transition from simplicity of microphysics to complexity of macrophysics. Figuratively speaking, FRG acts as a microscope with a variable resolution. One starts with a high-resolution picture of the known microphysical laws and subsequently decreases the resolution to obtain a coarse-grained picture of macroscopic collective phenomena. The method is nonperturbative, meaning that it does not rely on an expansion in a small 2555: 2796: 2300: 1454:
estimate is nontrivial in functional renormalization. One way to estimate the error in FRG is to improve the truncation in successive steps, i.e. to enlarge the sub-theory space by including more and more running couplings. The difference in the flows for different truncations gives a good estimate of the error. Alternatively, one can use different regulator functions
1585:. While the microscopic theory is defined in terms of two-component nonrelativistic fermions, at low energies a composite (particle-particle) dimer becomes an additional degree of freedom, and it is advisable to include it explicitly in the model. The low-energy composite degrees of freedom can be introduced in the description by the method of partial bosonization ( 2309: 1201: 2564: 2097: 1517:
of the liquid–gas phase transition in water and the ferromagnetic phase transition in magnets are the same. In the renormalization group language, different systems from the same universality class flow to the same (partially) stable infrared fixed point. In this way macrophysics becomes independent
1435:
is performed, which is then truncated at finite order leading to a finite system of ordinary differential equations. Different systematic expansion schemes (such as the derivative expansion, vertex expansion, etc.) were developed. The choice of the suitable scheme should be physically motivated and
1453:
The Wetterich flow equation is an exact equation. However, in practice, the functional differential equation must be truncated, i.e. it must be projected to functions of a few variables or even onto some finite-dimensional sub-theory space. As in every nonperturbative method, the question of error
2550:{\displaystyle {\partial _{\Lambda }}{{\mathcal {W}}_{\Lambda }}=-{\Delta _{{{\dot {D}}_{\Lambda }}+{{\dot {G}}_{0,\Lambda }}}}{{\mathcal {W}}_{\Lambda }}+{e^{-\Delta _{D_{\Lambda }}^{12}}}\Delta _{{\dot {G}}_{0,\Lambda }}^{12}{\mathcal {W}}_{\Lambda }^{(1)}{\mathcal {W}}_{\Lambda }^{(2)}} 1572:
of the Polchinski functional equation, derived by Joseph Polchinski in 1984. The concept of the effective average action, used in FRG, is, however, more intuitive than the flowing bare action in the Polchinski equation. In addition, the FRG method proved to be more suitable for practical
2791:{\displaystyle \Delta _{{\dot {G}}_{0,\Lambda }}^{12}{\mathcal {V}}_{\Lambda }^{(1)}{\mathcal {V}}_{\Lambda }^{(2)}={\frac {1}{2}}\left({{\frac {\delta {{V}_{\Lambda }}(\psi )}{\delta \psi }},{{\dot {G}}_{0,\Lambda }}{\frac {\delta {{V}_{\Lambda }}(\psi )}{\delta \psi }}}\right)} 604: 1481:
in a given (fixed) truncation and determine the difference of the RG flows in the infrared for the respective regulator choices. If bosonization is used, one can check the insensitivity of final results with respect to different bosonization
2295:{\displaystyle {\frac {\partial }{\partial \Lambda }}{{V}_{\Lambda }}(\psi )=-{{\dot {\Delta }}_{G_{0,\Lambda }}}{{V}_{\Lambda }}(\psi )+\Delta _{{\dot {G}}_{0,\Lambda }}^{12}{\mathcal {V}}_{\Lambda }^{(1)}{\mathcal {V}}_{\Lambda }^{(2)}} 734:
from the left-hand-side and the right-hand-side respectively, due to the tensor structure of the equation. This feature is often shown simplified by the second derivative of the effective action. The functional differential equation for
1609:. In FRG a more efficient way to incorporate macroscopic degrees of freedom was introduced, which is known as flowing bosonization or rebosonization. With the help of a scale-dependent field transformation, this allows to perform the 1576:
Typically, low-energy physics of strongly interacting systems is described by macroscopic degrees of freedom (i.e. particle excitations) which are very different from microscopic high-energy degrees of freedom. For instance,
1443:
Note however, that due to multiple choices regarding (prefactor-)conventions and the concrete definition of the effective action, one can find other (equivalent) versions of the Wetterich equation in the literature.
2066: 1997: 1798: 465: 1040: 799: 916: 164:. Interesting physics, as propagators and effective couplings for interactions, can be straightforwardly extracted from it. In a generic interacting field theory the effective action 1195: 1581:
is a field theory of interacting quarks and gluons. At low energies, however, proper degrees of freedom are baryons and mesons. Another example is the BEC/BCS crossover problem in
1376: 705: 943:
denotes a supertrace which sums over momenta, frequencies, internal indices, and fields (taking bosons with a plus and fermions with a minus sign). The exact flow equation for
325: 641: 941: 1433: 1253: 1097: 968: 760: 732: 458: 405: 378: 236: 1156: 845: 431: 35:(RG) concept which is used in quantum and statistical field theory, especially when dealing with strongly interacting systems. The method combines functional methods of 1130: 2090: 1607: 1563: 202: 182: 158: 130: 84: 2947:
In gauge quantum field theory, FRG was used, for instance, to investigate the chiral phase transition and infrared properties of QCD and its large-flavor extensions.
1507: 874: 1827: 1479: 1403: 1311: 1280: 1067: 352: 287: 2844: 2942: 2916: 2890: 1337: 2864: 1892: 1869: 1631: 1543: 1226: 819: 661: 256: 110: 1513:. Universality manifests itself in the observation that some very distinct physical systems have the same critical behavior. For instance, to good accuracy, 2072:
and excludes from the interaction all possible terms, formed by a convolution of source fields with respective Green function D. Introducing some cutoff
3462:
M. Reuter and F. Saueressig; Frank Saueressig (2007). "Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity".
1485:
In FRG, as in all RG methods, a lot of insight about a physical system can be gained from the topology of RG flows. Specifically, identification of
1610: 1586: 3410: 3363: 3006: 2005: 3501: 3240:
J. Berges; N. Tetradis; C. Wetterich (2002), "Non-perturbative renormalization flow in quantum field theory and statistical mechanics",
1489:
of the renormalization group evolution is of great importance. Near fixed points the flow of running couplings effectively stops and RG
1899: 3220: 1650: 1510: 599:{\displaystyle k\,\partial _{k}\Gamma _{k}={\frac {1}{2}}{\text{STr}}\,k\,\partial _{k}R_{k}\,(\Gamma _{k}^{(1,1)}+R_{k})^{-1},} 3491: 3486: 977: 1509:-functions approach zero. The presence of (partially) stable infrared fixed points is closely connected to the concept of 3496: 1408:
In most cases of interest the Wetterich equation can only be solved approximately. Usually some type of expansion of
1132:
allowed by the symmetries of the problem. As schematically shown in the figure, at the microscopic ultraviolet scale
1486: 2951: 2810: 1582: 765: 259: 3430:
Salmhofer, Manfred; Honerkamp, Carsten (2001), "Fermionic renormalization group flows: Technique and theory",
882: 1436:
depends on a given problem. The expansions do not necessarily involve a small parameter (like an interaction
1099:
can be illustrated in the theory space, which is a multi-dimensional space of all possible running couplings
1569: 1161: 112:
and depends on the fields of a given theory. It includes all quantum and thermal fluctuations. Variation of
1643: 1342: 3173: 1578: 666: 2986: 1283: 205: 32: 292: 3439: 3307: 3259: 3165: 3125: 3089: 3043: 60: 36: 3178: 2958:
or frustrated magnetic systems), repulsive Bose gas, BEC/BCS crossover for two-component Fermi gas,
848: 1522: 1255:
evolves in the theory space according to the functional flow equation. The choice of the regulator
971: 619: 613: 20: 2965:
Application of FRG to gravity provided arguments in favor of nonperturbative renormalizability of
924: 47:. Mathematically, FRG is based on an exact functional differential equation for a scale-dependent 3463: 3416: 3388: 3369: 3341: 3323: 3297: 3275: 3249: 3191: 3155: 3105: 3079: 3059: 3033: 2996: 1514: 1411: 1231: 1075: 946: 738: 710: 609: 436: 383: 357: 214: 1135: 824: 410: 1204:
Renormalization group flow in the theory space of all possible couplings allowed by symmetries.
1102: 3406: 3359: 3216: 2970: 2814: 2075: 1592: 1548: 1437: 87: 44: 40: 187: 167: 143: 115: 69: 3447: 3398: 3351: 3315: 3267: 3183: 3133: 3097: 3051: 3001: 2976:
In mathematical physics FRG was used to prove renormalizability of different field theories.
1492: 877: 853: 90: 64: 48: 1805: 1457: 1381: 1289: 1258: 1045: 330: 265: 2991: 2966: 2820: 1642:
Contrary to the flow equation for the effective action, this scheme is formulated for the
161: 137: 2921: 2895: 2869: 1316: 3443: 3311: 3263: 3169: 3129: 3093: 3047: 3336:
H.Gies (2006). "Introduction to the functional RG and applications to gauge theories".
2849: 1877: 1832: 1616: 1528: 1211: 804: 646: 241: 95: 3271: 238:
often called average action or flowing action. The dependence on the RG sliding scale
3480: 3383:
B. Delamotte (2007). "An introduction to the nonperturbative renormalization group".
3288:
J. Polonyi, Janos (2003), "Lectures on the functional renormalization group method",
3279: 3195: 3137: 3063: 3055: 2955: 3420: 3373: 3327: 3109: 3070:
Morris, T. R. (1994), "The Exact renormalization group and approximate solutions",
2959: 2069: 1802:
which generates n-particle interaction vertices, amputated by the bare propagators
3402: 3385:
Renormalization Group and Effective Field Theory Approaches to Many-Body Systems
3355: 3338:
Renormalization Group and Effective Field Theory Approaches to Many-Body Systems
1042:
is the full inverse field propagator modified by the presence of the regulator
974:, where multi-loop diagrams must be included. The second functional derivative 380:
by giving them a large mass, while high momentum modes are not affected. Thus,
3101: 3024:
Wetterich, C. (1993), "Exact evolution equation for the effective potential",
184:, however, is difficult to obtain. FRG provides a practical tool to calculate 3146:
Reuter, M. (1998), "Nonperturbative evolution equation for quantum gravity",
3187: 1871:
is the "standard" generating functional for the n-particle Green functions.
133: 211:
The central object in FRG is a scale-dependent effective action functional
1874:
The Wick ordering of effective interaction with respect to Green function
1589:). This transformation, however, is done once and for all at the UV scale 970:
has a one-loop structure. This is an important simplification compared to
3393: 1200: 3346: 3319: 3302: 3254: 3160: 3084: 2954:, the method proved to be successful to treat lattice models (e.g. the 1638:
Functional renormalization-group for Wick-ordered effective interaction
1313:
correspond to the different paths in the figure. At the infrared scale
3452: 3116:
Polchinski, J. (1984), "Renormalization and Effective Lagrangians",
3038: 2061:{\displaystyle \Delta =D\delta ^{2}/(\delta \eta \delta \eta ^{+})} 1405:, and all trajectories meet at the same point in the theory space. 3468: 2068:
is the Laplacian in the field space. This operation is similar to
1199: 1282:
is not unique, which introduces some scheme dependence into the
2805:
The method was applied to numerous problems in physics, e.g.:
1992:{\displaystyle {\mathcal {W}}=\exp(-\Delta _{D}){\mathcal {V}}} 407:
includes all quantum and statistical fluctuations with momenta
1793:{\displaystyle {\mathcal {V}}=-\ln Z-\eta G_{0}^{-1}\eta ^{+}} 3340:. Lecture Notes in Physics. Vol. 852. pp. 287–348. 2892:
and the Berezinskii–Kosterlitz–Thouless phase transition for
160:
is the generating functional of the one-particle irreducible
3387:. Lecture Notes in Physics. Vol. 852. pp. 49–132. 2633: 2608: 2525: 2500: 2411: 2329: 2270: 2245: 1962: 1905: 1656: 1518:
of the microscopic details of the particular physical model.
1440:) and thus they are, in general, of nonperturbative nature. 821:
describes the physics at the microscopic ultraviolet scale
3211:
Kopietz, Peter; Bartosch, Lorenz; SchĂĽtz, Florian (2010).
1286:
flow. For this reason, different choices of the regulator
132:
yields exact quantum field equations, for example for
2924: 2898: 2872: 2852: 2823: 2567: 2312: 2100: 2078: 2008: 1902: 1880: 1835: 1808: 1653: 1619: 1595: 1551: 1531: 1495: 1460: 1414: 1384: 1345: 1319: 1292: 1261: 1234: 1214: 1164: 1138: 1105: 1078: 1048: 1035:{\displaystyle \Gamma _{k}^{(2)}=\Gamma _{k}^{(1,1)}} 980: 949: 927: 885: 856: 827: 807: 768: 741: 713: 669: 649: 622: 468: 439: 413: 386: 360: 333: 295: 268: 244: 217: 190: 170: 146: 118: 98: 72: 3213:
Introduction to the Functional Renormalization Group
2846:-symmetric scalar theories in different dimensions 2962:, disordered systems and nonequilibrium phenomena. 2936: 2910: 2884: 2858: 2838: 2790: 2549: 2294: 2084: 2060: 1991: 1886: 1863: 1821: 1792: 1625: 1601: 1557: 1537: 1501: 1473: 1427: 1397: 1370: 1331: 1305: 1274: 1247: 1220: 1189: 1150: 1124: 1091: 1061: 1034: 962: 935: 910: 868: 839: 813: 793: 754: 726: 699: 655: 643:denotes a derivative with respect to the RG scale 635: 598: 452: 425: 399: 372: 346: 319: 281: 250: 230: 196: 176: 152: 124: 104: 78: 39:with the intuitive renormalization group idea of 1568:The Wetterich equation can be obtained from the 762:must be supplemented with the initial condition 1378:is recovered for every choice of the cut-off 8: 2304:takes the form of the Wick-ordered equation 1119: 1106: 663:at fixed values of the fields. Furthermore, 2969:in four spacetime dimensions, known as the 16:Implementation of the renormalization group 55:The flow equation for the effective action 3467: 3451: 3392: 3345: 3301: 3253: 3177: 3159: 3083: 3037: 2923: 2897: 2871: 2851: 2822: 2756: 2751: 2749: 2743: 2730: 2719: 2718: 2716: 2686: 2681: 2679: 2673: 2672: 2658: 2643: 2638: 2632: 2631: 2618: 2613: 2607: 2606: 2599: 2586: 2575: 2574: 2572: 2566: 2535: 2530: 2524: 2523: 2510: 2505: 2499: 2498: 2491: 2478: 2467: 2466: 2464: 2451: 2444: 2439: 2431: 2426: 2416: 2410: 2409: 2407: 2391: 2380: 2379: 2377: 2367: 2356: 2355: 2353: 2352: 2347: 2334: 2328: 2327: 2325: 2318: 2313: 2311: 2280: 2275: 2269: 2268: 2255: 2250: 2244: 2243: 2236: 2223: 2212: 2211: 2209: 2186: 2181: 2179: 2164: 2159: 2148: 2147: 2145: 2123: 2118: 2116: 2101: 2099: 2077: 2049: 2028: 2022: 2007: 1980: 1961: 1960: 1951: 1923: 1904: 1903: 1901: 1879: 1852: 1834: 1813: 1807: 1784: 1771: 1766: 1747: 1734: 1729: 1710: 1705: 1674: 1655: 1654: 1652: 1618: 1594: 1550: 1530: 1494: 1465: 1459: 1419: 1413: 1389: 1383: 1350: 1344: 1318: 1297: 1291: 1266: 1260: 1239: 1233: 1213: 1169: 1163: 1137: 1113: 1104: 1083: 1077: 1053: 1047: 1014: 1009: 990: 985: 979: 954: 948: 928: 926: 896: 884: 855: 826: 806: 794:{\displaystyle \Gamma _{k\to \Lambda }=S} 773: 767: 746: 740: 718: 712: 679: 674: 668: 648: 627: 621: 584: 574: 549: 544: 536: 530: 520: 515: 511: 506: 496: 487: 477: 472: 467: 460:obeys the exact functional flow equation 444: 438: 412: 391: 385: 359: 338: 332: 305: 300: 294: 273: 267: 243: 222: 216: 189: 169: 145: 117: 97: 71: 911:{\displaystyle \Gamma =\Gamma _{k\to 0}} 3203: 1072:The renormalization group evolution of 1190:{\displaystyle \Gamma _{k=\Lambda }=S} 1158:one starts with the initial condition 1448:Aspects of functional renormalization 1371:{\displaystyle \Gamma _{k=0}=\Gamma } 1339:, however, the full effective action 707:denotes the functional derivative of 7: 3007:Asymptotic safety in quantum gravity 2813:, FRG provided a unified picture of 140:of superconductors. Mathematically, 2866:, including critical exponents for 1611:Hubbard–Stratonovich transformation 1587:Hubbard–Stratonovich transformation 700:{\displaystyle \Gamma _{k}^{(1,1)}} 2757: 2737: 2687: 2639: 2614: 2593: 2569: 2531: 2506: 2485: 2461: 2445: 2436: 2417: 2398: 2368: 2349: 2335: 2319: 2315: 2276: 2251: 2230: 2206: 2187: 2171: 2150: 2124: 2110: 2107: 2103: 2079: 2009: 1948: 1596: 1552: 1545:and the finite ultraviolet cutoff 1416: 1365: 1347: 1236: 1176: 1166: 1145: 1080: 1006: 982: 951: 893: 886: 834: 780: 770: 743: 715: 671: 624: 541: 517: 484: 474: 441: 388: 354:decouples slow modes with momenta 327:. Roughly speaking, the regulator 297: 219: 191: 171: 147: 119: 73: 14: 320:{\displaystyle \Gamma _{k}^{(2)}} 25:functional renormalization group 1228:is lowered, the flowing action 801:, where the "classical action" 289:to the full inverse propagator 2833: 2827: 2769: 2763: 2699: 2693: 2650: 2644: 2625: 2619: 2542: 2536: 2517: 2511: 2287: 2281: 2262: 2256: 2199: 2193: 2136: 2130: 2055: 2033: 1986: 1967: 1957: 1941: 1929: 1910: 1858: 1839: 1753: 1698: 1680: 1661: 1613:continuously at all RG scales 1027: 1015: 997: 991: 900: 860: 777: 692: 680: 581: 562: 550: 537: 312: 306: 31:) is an implementation of the 1: 3272:10.1016/S0370-1573(01)00098-9 636:{\displaystyle \partial _{k}} 3138:10.1016/0550-3213(84)90287-6 3056:10.1016/0370-2693(93)90726-X 936:{\displaystyle {\text{STr}}} 3403:10.1007/978-3-642-27320-9_2 3356:10.1007/978-3-642-27320-9_6 1428:{\displaystyle \Gamma _{k}} 1248:{\displaystyle \Gamma _{k}} 1092:{\displaystyle \Gamma _{k}} 963:{\displaystyle \Gamma _{k}} 755:{\displaystyle \Gamma _{k}} 727:{\displaystyle \Gamma _{k}} 453:{\displaystyle \Gamma _{k}} 400:{\displaystyle \Gamma _{k}} 373:{\displaystyle q\lesssim k} 231:{\displaystyle \Gamma _{k}} 3518: 3502:Fixed points (mathematics) 1151:{\displaystyle k=\Lambda } 840:{\displaystyle k=\Lambda } 426:{\displaystyle q\gtrsim k} 258:is introduced by adding a 3102:10.1142/S0217751X94000972 2092:the Polchinskii equation 1125:{\displaystyle \{c_{n}\}} 2952:condensed matter physics 2811:statistical field theory 2085:{\displaystyle \Lambda } 1602:{\displaystyle \Lambda } 1583:condensed matter physics 1558:{\displaystyle \Lambda } 3188:10.1103/PhysRevD.57.971 1570:Legendre transformation 197:{\displaystyle \Gamma } 177:{\displaystyle \Gamma } 153:{\displaystyle \Gamma } 125:{\displaystyle \Gamma } 79:{\displaystyle \Gamma } 2938: 2912: 2886: 2860: 2840: 2792: 2551: 2296: 2086: 2062: 1993: 1888: 1865: 1823: 1794: 1627: 1603: 1579:quantum chromodynamics 1559: 1539: 1503: 1502:{\displaystyle \beta } 1475: 1429: 1399: 1372: 1333: 1307: 1276: 1249: 1222: 1205: 1191: 1152: 1126: 1093: 1063: 1036: 964: 937: 912: 870: 869:{\displaystyle k\to 0} 847:. Importantly, in the 841: 815: 795: 756: 728: 701: 657: 637: 600: 454: 427: 401: 374: 348: 321: 283: 252: 232: 198: 178: 154: 126: 106: 86:is an analogue of the 80: 3492:Renormalization group 3487:Statistical mechanics 2987:Renormalization group 2939: 2913: 2887: 2861: 2841: 2793: 2552: 2297: 2087: 2063: 1994: 1889: 1866: 1824: 1822:{\displaystyle G_{0}} 1795: 1644:effective interaction 1628: 1604: 1560: 1540: 1504: 1476: 1474:{\displaystyle R_{k}} 1430: 1400: 1398:{\displaystyle R_{k}} 1373: 1334: 1308: 1306:{\displaystyle R_{k}} 1284:renormalization group 1277: 1275:{\displaystyle R_{k}} 1250: 1223: 1208:As the sliding scale 1203: 1192: 1153: 1127: 1094: 1064: 1062:{\displaystyle R_{k}} 1037: 965: 938: 913: 871: 842: 816: 796: 757: 729: 702: 658: 638: 601: 455: 433:. The flowing action 428: 402: 375: 349: 347:{\displaystyle R_{k}} 322: 284: 282:{\displaystyle R_{k}} 253: 233: 206:renormalization group 199: 179: 155: 127: 107: 81: 33:renormalization group 3072:Int. J. Mod. Phys. A 2922: 2896: 2870: 2850: 2839:{\displaystyle O(N)} 2821: 2817:in classical linear 2565: 2310: 2098: 2076: 2006: 1900: 1878: 1833: 1806: 1651: 1617: 1593: 1549: 1529: 1493: 1458: 1412: 1382: 1343: 1317: 1290: 1259: 1232: 1212: 1162: 1136: 1103: 1076: 1046: 978: 947: 925: 918:is obtained. In the 883: 854: 825: 805: 766: 739: 711: 667: 647: 620: 466: 437: 411: 384: 358: 331: 293: 266: 242: 215: 188: 168: 144: 116: 96: 70: 61:quantum field theory 37:quantum field theory 3444:2001PThPh.105....1S 3312:2003CEJPh...1....1P 3290:Cent. Eur. J. Phys. 3264:2002PhR...363..223B 3170:1998PhRvD..57..971R 3130:1984NuPhB.231..269P 3094:1994IJMPA...9.2411M 3048:1993PhLB..301...90W 2937:{\displaystyle N=2} 2911:{\displaystyle d=2} 2885:{\displaystyle d=3} 2654: 2629: 2604: 2546: 2521: 2496: 2456: 2291: 2266: 2241: 1779: 1742: 1718: 1523:perturbation theory 1332:{\displaystyle k=0} 1031: 1001: 972:perturbation theory 696: 566: 316: 21:theoretical physics 3497:Scaling symmetries 3432:Prog. Theor. Phys. 3320:10.2478/BF02475552 2997:Critical phenomena 2934: 2908: 2882: 2856: 2836: 2788: 2630: 2605: 2568: 2547: 2522: 2497: 2460: 2435: 2292: 2267: 2242: 2205: 2082: 2058: 1989: 1894:can be defined by 1884: 1861: 1819: 1790: 1762: 1725: 1701: 1623: 1599: 1555: 1535: 1515:critical exponents 1499: 1471: 1425: 1395: 1368: 1329: 1303: 1272: 1245: 1218: 1206: 1187: 1148: 1122: 1089: 1059: 1032: 1005: 981: 960: 933: 920:Wetterich equation 908: 866: 837: 811: 791: 752: 724: 697: 670: 653: 633: 610:Christof Wetterich 596: 540: 450: 423: 397: 370: 344: 317: 296: 279: 262:(infrared cutoff) 248: 228: 194: 174: 150: 122: 102: 76: 3453:10.1143/PTP.105.1 3412:978-3-642-27319-3 3365:978-3-642-27319-3 3234:Pedagogic reviews 3078:(14): 2411–2449, 2971:asymptotic safety 2859:{\displaystyle d} 2815:phase transitions 2781: 2727: 2711: 2666: 2583: 2475: 2388: 2364: 2220: 2156: 2114: 1887:{\displaystyle D} 1864:{\displaystyle Z} 1626:{\displaystyle k} 1538:{\displaystyle S} 1438:coupling constant 1221:{\displaystyle k} 931: 814:{\displaystyle S} 656:{\displaystyle k} 509: 504: 251:{\displaystyle k} 105:{\displaystyle S} 91:action functional 45:coupling constant 41:Kenneth G. Wilson 3509: 3473: 3471: 3456: 3455: 3424: 3396: 3394:cond-mat/0702365 3377: 3349: 3330: 3305: 3282: 3257: 3248:(4–6): 223–386, 3227: 3226: 3208: 3198: 3181: 3163: 3140: 3112: 3087: 3066: 3041: 3002:Scale invariance 2943: 2941: 2940: 2935: 2917: 2915: 2914: 2909: 2891: 2889: 2888: 2883: 2865: 2863: 2862: 2857: 2845: 2843: 2842: 2837: 2797: 2795: 2794: 2789: 2787: 2783: 2782: 2780: 2772: 2762: 2761: 2760: 2755: 2744: 2742: 2741: 2740: 2729: 2728: 2720: 2712: 2710: 2702: 2692: 2691: 2690: 2685: 2674: 2667: 2659: 2653: 2642: 2637: 2636: 2628: 2617: 2612: 2611: 2603: 2598: 2597: 2596: 2585: 2584: 2576: 2556: 2554: 2553: 2548: 2545: 2534: 2529: 2528: 2520: 2509: 2504: 2503: 2495: 2490: 2489: 2488: 2477: 2476: 2468: 2459: 2458: 2457: 2455: 2450: 2449: 2448: 2422: 2421: 2420: 2415: 2414: 2406: 2405: 2404: 2403: 2402: 2401: 2390: 2389: 2381: 2373: 2372: 2371: 2366: 2365: 2357: 2340: 2339: 2338: 2333: 2332: 2324: 2323: 2322: 2301: 2299: 2298: 2293: 2290: 2279: 2274: 2273: 2265: 2254: 2249: 2248: 2240: 2235: 2234: 2233: 2222: 2221: 2213: 2192: 2191: 2190: 2185: 2178: 2177: 2176: 2175: 2174: 2158: 2157: 2149: 2129: 2128: 2127: 2122: 2115: 2113: 2102: 2091: 2089: 2088: 2083: 2067: 2065: 2064: 2059: 2054: 2053: 2032: 2027: 2026: 1998: 1996: 1995: 1990: 1985: 1984: 1966: 1965: 1956: 1955: 1928: 1927: 1909: 1908: 1893: 1891: 1890: 1885: 1870: 1868: 1867: 1862: 1857: 1856: 1828: 1826: 1825: 1820: 1818: 1817: 1799: 1797: 1796: 1791: 1789: 1788: 1778: 1770: 1752: 1751: 1741: 1733: 1717: 1709: 1679: 1678: 1660: 1659: 1632: 1630: 1629: 1624: 1608: 1606: 1605: 1600: 1564: 1562: 1561: 1556: 1544: 1542: 1541: 1536: 1521:Compared to the 1508: 1506: 1505: 1500: 1480: 1478: 1477: 1472: 1470: 1469: 1434: 1432: 1431: 1426: 1424: 1423: 1404: 1402: 1401: 1396: 1394: 1393: 1377: 1375: 1374: 1369: 1361: 1360: 1338: 1336: 1335: 1330: 1312: 1310: 1309: 1304: 1302: 1301: 1281: 1279: 1278: 1273: 1271: 1270: 1254: 1252: 1251: 1246: 1244: 1243: 1227: 1225: 1224: 1219: 1196: 1194: 1193: 1188: 1180: 1179: 1157: 1155: 1154: 1149: 1131: 1129: 1128: 1123: 1118: 1117: 1098: 1096: 1095: 1090: 1088: 1087: 1068: 1066: 1065: 1060: 1058: 1057: 1041: 1039: 1038: 1033: 1030: 1013: 1000: 989: 969: 967: 966: 961: 959: 958: 942: 940: 939: 934: 932: 929: 917: 915: 914: 909: 907: 906: 878:effective action 875: 873: 872: 867: 846: 844: 843: 838: 820: 818: 817: 812: 800: 798: 797: 792: 784: 783: 761: 759: 758: 753: 751: 750: 733: 731: 730: 725: 723: 722: 706: 704: 703: 698: 695: 678: 662: 660: 659: 654: 642: 640: 639: 634: 632: 631: 605: 603: 602: 597: 592: 591: 579: 578: 565: 548: 535: 534: 525: 524: 510: 507: 505: 497: 492: 491: 482: 481: 459: 457: 456: 451: 449: 448: 432: 430: 429: 424: 406: 404: 403: 398: 396: 395: 379: 377: 376: 371: 353: 351: 350: 345: 343: 342: 326: 324: 323: 318: 315: 304: 288: 286: 285: 280: 278: 277: 257: 255: 254: 249: 237: 235: 234: 229: 227: 226: 203: 201: 200: 195: 183: 181: 180: 175: 162:Feynman diagrams 159: 157: 156: 151: 131: 129: 128: 123: 111: 109: 108: 103: 85: 83: 82: 77: 65:effective action 49:effective action 3517: 3516: 3512: 3511: 3510: 3508: 3507: 3506: 3477: 3476: 3461: 3429: 3413: 3382: 3366: 3335: 3287: 3239: 3236: 3231: 3230: 3223: 3210: 3209: 3205: 3179:10.1.1.263.3439 3145: 3115: 3069: 3023: 3020: 3015: 2992:Renormalization 2983: 2967:quantum gravity 2920: 2919: 2894: 2893: 2868: 2867: 2848: 2847: 2819: 2818: 2803: 2773: 2750: 2745: 2717: 2703: 2680: 2675: 2668: 2573: 2563: 2562: 2465: 2440: 2427: 2408: 2378: 2354: 2348: 2326: 2314: 2308: 2307: 2210: 2180: 2160: 2146: 2117: 2106: 2096: 2095: 2074: 2073: 2045: 2018: 2004: 2003: 1976: 1947: 1919: 1898: 1897: 1876: 1875: 1848: 1831: 1830: 1809: 1804: 1803: 1780: 1743: 1670: 1649: 1648: 1640: 1615: 1614: 1591: 1590: 1547: 1546: 1527: 1526: 1491: 1490: 1461: 1456: 1455: 1450: 1415: 1410: 1409: 1385: 1380: 1379: 1346: 1341: 1340: 1315: 1314: 1293: 1288: 1287: 1262: 1257: 1256: 1235: 1230: 1229: 1210: 1209: 1165: 1160: 1159: 1134: 1133: 1109: 1101: 1100: 1079: 1074: 1073: 1049: 1044: 1043: 976: 975: 950: 945: 944: 923: 922: 892: 881: 880: 852: 851: 823: 822: 803: 802: 769: 764: 763: 742: 737: 736: 714: 709: 708: 665: 664: 645: 644: 623: 618: 617: 580: 570: 526: 516: 483: 473: 464: 463: 440: 435: 434: 409: 408: 387: 382: 381: 356: 355: 334: 329: 328: 291: 290: 269: 264: 263: 240: 239: 218: 213: 212: 186: 185: 166: 165: 142: 141: 138:electrodynamics 114: 113: 94: 93: 68: 67: 57: 17: 12: 11: 5: 3515: 3513: 3505: 3504: 3499: 3494: 3489: 3479: 3478: 3475: 3474: 3458: 3457: 3426: 3425: 3411: 3379: 3378: 3364: 3347:hep-ph/0611146 3332: 3331: 3303:hep-th/0110026 3284: 3283: 3255:hep-ph/0005122 3235: 3232: 3229: 3228: 3221: 3202: 3201: 3200: 3199: 3161:hep-th/9605030 3154:(2): 971–985, 3142: 3141: 3113: 3085:hep-ph/9308265 3067: 3019: 3016: 3014: 3011: 3010: 3009: 3004: 2999: 2994: 2989: 2982: 2979: 2978: 2977: 2974: 2963: 2948: 2945: 2933: 2930: 2927: 2907: 2904: 2901: 2881: 2878: 2875: 2855: 2835: 2832: 2829: 2826: 2802: 2799: 2786: 2779: 2776: 2771: 2768: 2765: 2759: 2754: 2748: 2739: 2736: 2733: 2726: 2723: 2715: 2709: 2706: 2701: 2698: 2695: 2689: 2684: 2678: 2671: 2665: 2662: 2657: 2652: 2649: 2646: 2641: 2635: 2627: 2624: 2621: 2616: 2610: 2602: 2595: 2592: 2589: 2582: 2579: 2571: 2544: 2541: 2538: 2533: 2527: 2519: 2516: 2513: 2508: 2502: 2494: 2487: 2484: 2481: 2474: 2471: 2463: 2454: 2447: 2443: 2438: 2434: 2430: 2425: 2419: 2413: 2400: 2397: 2394: 2387: 2384: 2376: 2370: 2363: 2360: 2351: 2346: 2343: 2337: 2331: 2321: 2317: 2289: 2286: 2283: 2278: 2272: 2264: 2261: 2258: 2253: 2247: 2239: 2232: 2229: 2226: 2219: 2216: 2208: 2204: 2201: 2198: 2195: 2189: 2184: 2173: 2170: 2167: 2163: 2155: 2152: 2144: 2141: 2138: 2135: 2132: 2126: 2121: 2112: 2109: 2105: 2081: 2057: 2052: 2048: 2044: 2041: 2038: 2035: 2031: 2025: 2021: 2017: 2014: 2011: 1988: 1983: 1979: 1975: 1972: 1969: 1964: 1959: 1954: 1950: 1946: 1943: 1940: 1937: 1934: 1931: 1926: 1922: 1918: 1915: 1912: 1907: 1883: 1860: 1855: 1851: 1847: 1844: 1841: 1838: 1816: 1812: 1787: 1783: 1777: 1774: 1769: 1765: 1761: 1758: 1755: 1750: 1746: 1740: 1737: 1732: 1728: 1724: 1721: 1716: 1713: 1708: 1704: 1700: 1697: 1694: 1691: 1688: 1685: 1682: 1677: 1673: 1669: 1666: 1663: 1658: 1639: 1636: 1635: 1634: 1622: 1598: 1574: 1566: 1554: 1534: 1519: 1498: 1483: 1468: 1464: 1449: 1446: 1422: 1418: 1392: 1388: 1367: 1364: 1359: 1356: 1353: 1349: 1328: 1325: 1322: 1300: 1296: 1269: 1265: 1242: 1238: 1217: 1186: 1183: 1178: 1175: 1172: 1168: 1147: 1144: 1141: 1121: 1116: 1112: 1108: 1086: 1082: 1056: 1052: 1029: 1026: 1023: 1020: 1017: 1012: 1008: 1004: 999: 996: 993: 988: 984: 957: 953: 905: 902: 899: 895: 891: 888: 865: 862: 859: 849:infrared limit 836: 833: 830: 810: 790: 787: 782: 779: 776: 772: 749: 745: 721: 717: 694: 691: 688: 685: 682: 677: 673: 652: 630: 626: 616:in 1993. Here 595: 590: 587: 583: 577: 573: 569: 564: 561: 558: 555: 552: 547: 543: 539: 533: 529: 523: 519: 514: 503: 500: 495: 490: 486: 480: 476: 471: 447: 443: 422: 419: 416: 394: 390: 369: 366: 363: 341: 337: 314: 311: 308: 303: 299: 276: 272: 247: 225: 221: 204:employing the 193: 173: 149: 121: 101: 75: 56: 53: 15: 13: 10: 9: 6: 4: 3: 2: 3514: 3503: 3500: 3498: 3495: 3493: 3490: 3488: 3485: 3484: 3482: 3470: 3465: 3460: 3459: 3454: 3449: 3445: 3441: 3437: 3433: 3428: 3427: 3422: 3418: 3414: 3408: 3404: 3400: 3395: 3390: 3386: 3381: 3380: 3375: 3371: 3367: 3361: 3357: 3353: 3348: 3343: 3339: 3334: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3304: 3299: 3295: 3291: 3286: 3285: 3281: 3277: 3273: 3269: 3265: 3261: 3256: 3251: 3247: 3243: 3238: 3237: 3233: 3224: 3222:9783642050947 3218: 3214: 3207: 3204: 3197: 3193: 3189: 3185: 3180: 3175: 3171: 3167: 3162: 3157: 3153: 3149: 3144: 3143: 3139: 3135: 3131: 3127: 3123: 3119: 3118:Nucl. Phys. B 3114: 3111: 3107: 3103: 3099: 3095: 3091: 3086: 3081: 3077: 3073: 3068: 3065: 3061: 3057: 3053: 3049: 3045: 3040: 3035: 3031: 3027: 3026:Phys. Lett. B 3022: 3021: 3017: 3012: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2984: 2980: 2975: 2972: 2968: 2964: 2961: 2957: 2956:Hubbard model 2953: 2949: 2946: 2931: 2928: 2925: 2905: 2902: 2899: 2879: 2876: 2873: 2853: 2830: 2824: 2816: 2812: 2808: 2807: 2806: 2800: 2798: 2784: 2777: 2774: 2766: 2752: 2746: 2734: 2731: 2724: 2721: 2713: 2707: 2704: 2696: 2682: 2676: 2669: 2663: 2660: 2655: 2647: 2622: 2600: 2590: 2587: 2580: 2577: 2560: 2557: 2539: 2514: 2492: 2482: 2479: 2472: 2469: 2452: 2441: 2432: 2428: 2423: 2395: 2392: 2385: 2382: 2374: 2361: 2358: 2344: 2341: 2305: 2302: 2284: 2259: 2237: 2227: 2224: 2217: 2214: 2202: 2196: 2182: 2168: 2165: 2161: 2153: 2142: 2139: 2133: 2119: 2093: 2071: 2050: 2046: 2042: 2039: 2036: 2029: 2023: 2019: 2015: 2012: 2000: 1981: 1977: 1973: 1970: 1952: 1944: 1938: 1935: 1932: 1924: 1920: 1916: 1913: 1895: 1881: 1872: 1853: 1849: 1845: 1842: 1836: 1814: 1810: 1800: 1785: 1781: 1775: 1772: 1767: 1763: 1759: 1756: 1748: 1744: 1738: 1735: 1730: 1726: 1722: 1719: 1714: 1711: 1706: 1702: 1695: 1692: 1689: 1686: 1683: 1675: 1671: 1667: 1664: 1646: 1645: 1637: 1620: 1612: 1588: 1584: 1580: 1575: 1573:calculations. 1571: 1567: 1532: 1524: 1520: 1516: 1512: 1496: 1488: 1484: 1466: 1462: 1452: 1451: 1447: 1445: 1441: 1439: 1420: 1406: 1390: 1386: 1362: 1357: 1354: 1351: 1326: 1323: 1320: 1298: 1294: 1285: 1267: 1263: 1240: 1215: 1202: 1198: 1184: 1181: 1173: 1170: 1142: 1139: 1114: 1110: 1084: 1070: 1054: 1050: 1024: 1021: 1018: 1010: 1002: 994: 986: 973: 955: 921: 903: 897: 889: 879: 863: 857: 850: 831: 828: 808: 788: 785: 774: 747: 719: 689: 686: 683: 675: 650: 628: 615: 614:Tim R. Morris 611: 606: 593: 588: 585: 575: 571: 567: 559: 556: 553: 545: 531: 527: 521: 512: 501: 498: 493: 488: 478: 469: 461: 445: 420: 417: 414: 392: 367: 364: 361: 339: 335: 309: 301: 274: 270: 261: 245: 223: 209: 207: 163: 139: 135: 99: 92: 89: 66: 62: 54: 52: 50: 46: 42: 38: 34: 30: 26: 22: 3435: 3431: 3384: 3337: 3293: 3289: 3245: 3241: 3215:. Springer. 3212: 3206: 3151: 3148:Phys. Rev. D 3147: 3121: 3117: 3075: 3071: 3029: 3025: 2960:Kondo effect 2804: 2801:Applications 2561: 2558: 2306: 2303: 2094: 2070:Normal order 2001: 1896: 1873: 1801: 1647: 1641: 1511:universality 1487:fixed points 1442: 1407: 1207: 1071: 919: 607: 462: 210: 58: 28: 24: 18: 3296:(1): 1–71, 1482:procedures. 608:derived by 3481:Categories 3242:Phys. Rep. 3124:(2): 269, 3039:1710.05815 3013:References 3469:0708.1317 3280:119033356 3196:119454616 3174:CiteSeerX 3064:119536989 3032:(1): 90, 2973:scenario. 2778:ψ 2775:δ 2767:ψ 2758:Λ 2747:δ 2738:Λ 2725:˙ 2708:ψ 2705:δ 2697:ψ 2688:Λ 2677:δ 2640:Λ 2615:Λ 2594:Λ 2581:˙ 2570:Δ 2532:Λ 2507:Λ 2486:Λ 2473:˙ 2462:Δ 2446:Λ 2437:Δ 2433:− 2418:Λ 2399:Λ 2386:˙ 2369:Λ 2362:˙ 2350:Δ 2345:− 2336:Λ 2320:Λ 2316:∂ 2277:Λ 2252:Λ 2231:Λ 2218:˙ 2207:Δ 2197:ψ 2188:Λ 2172:Λ 2154:˙ 2151:Δ 2143:− 2134:ψ 2125:Λ 2111:Λ 2108:∂ 2104:∂ 2080:Λ 2047:η 2043:δ 2040:η 2037:δ 2020:δ 2010:Δ 1978:η 1971:η 1949:Δ 1945:− 1939:⁡ 1921:η 1914:η 1850:η 1843:η 1782:η 1773:− 1760:η 1757:− 1745:η 1736:− 1720:η 1712:− 1693:⁡ 1687:− 1672:η 1665:η 1597:Λ 1553:Λ 1497:β 1417:Γ 1366:Γ 1348:Γ 1237:Γ 1177:Λ 1167:Γ 1146:Λ 1081:Γ 1007:Γ 983:Γ 952:Γ 901:→ 894:Γ 887:Γ 876:the full 861:→ 835:Λ 781:Λ 778:→ 771:Γ 744:Γ 716:Γ 672:Γ 625:∂ 586:− 542:Γ 518:∂ 485:Γ 475:∂ 442:Γ 418:≳ 389:Γ 365:≲ 298:Γ 260:regulator 220:Γ 208:concept. 192:Γ 172:Γ 148:Γ 134:cosmology 120:Γ 88:classical 74:Γ 3438:(1): 1, 3421:34308305 3374:15127186 3328:53407529 3110:15749927 2981:See also 3440:Bibcode 3308:Bibcode 3260:Bibcode 3166:Bibcode 3126:Bibcode 3090:Bibcode 3044:Bibcode 136:or the 3419:  3409:  3372:  3362:  3326:  3278:  3219:  3194:  3176:  3108:  3062:  3018:Papers 2559:where 2002:where 63:, the 3464:arXiv 3417:S2CID 3389:arXiv 3370:S2CID 3342:arXiv 3324:S2CID 3298:arXiv 3276:S2CID 3250:arXiv 3192:S2CID 3156:arXiv 3106:S2CID 3080:arXiv 3060:S2CID 3034:arXiv 3407:ISBN 3360:ISBN 3217:ISBN 612:and 3448:doi 3436:105 3399:doi 3352:doi 3316:doi 3268:doi 3246:363 3184:doi 3134:doi 3122:231 3098:doi 3052:doi 3030:301 2950:In 2809:In 1936:exp 930:STr 508:STr 59:In 29:FRG 19:In 3483:: 3446:, 3434:, 3415:. 3405:. 3397:. 3368:. 3358:. 3350:. 3322:, 3314:, 3306:, 3292:, 3274:, 3266:, 3258:, 3244:, 3190:, 3182:, 3172:, 3164:, 3152:57 3150:, 3132:, 3120:, 3104:, 3096:, 3088:, 3074:, 3058:, 3050:, 3042:, 3028:, 2918:, 2601:12 2493:12 2453:12 2238:12 1999:. 1829:; 1690:ln 1197:. 1069:. 51:. 23:, 3472:. 3466:: 3450:: 3442:: 3423:. 3401:: 3391:: 3376:. 3354:: 3344:: 3318:: 3310:: 3300:: 3294:1 3270:: 3262:: 3252:: 3225:. 3186:: 3168:: 3158:: 3136:: 3128:: 3100:: 3092:: 3082:: 3076:A 3054:: 3046:: 3036:: 2944:. 2932:2 2929:= 2926:N 2906:2 2903:= 2900:d 2880:3 2877:= 2874:d 2854:d 2834:) 2831:N 2828:( 2825:O 2785:) 2770:) 2764:( 2753:V 2735:, 2732:0 2722:G 2714:, 2700:) 2694:( 2683:V 2670:( 2664:2 2661:1 2656:= 2651:) 2648:2 2645:( 2634:V 2626:) 2623:1 2620:( 2609:V 2591:, 2588:0 2578:G 2543:) 2540:2 2537:( 2526:W 2518:) 2515:1 2512:( 2501:W 2483:, 2480:0 2470:G 2442:D 2429:e 2424:+ 2412:W 2396:, 2393:0 2383:G 2375:+ 2359:D 2342:= 2330:W 2288:) 2285:2 2282:( 2271:V 2263:) 2260:1 2257:( 2246:V 2228:, 2225:0 2215:G 2203:+ 2200:) 2194:( 2183:V 2169:, 2166:0 2162:G 2140:= 2137:) 2131:( 2120:V 2056:) 2051:+ 2034:( 2030:/ 2024:2 2016:D 2013:= 1987:] 1982:+ 1974:, 1968:[ 1963:V 1958:) 1953:D 1942:( 1933:= 1930:] 1925:+ 1917:, 1911:[ 1906:W 1882:D 1859:] 1854:+ 1846:, 1840:[ 1837:Z 1815:0 1811:G 1786:+ 1776:1 1768:0 1764:G 1754:] 1749:+ 1739:1 1731:0 1727:G 1723:, 1715:1 1707:0 1703:G 1699:[ 1696:Z 1684:= 1681:] 1676:+ 1668:, 1662:[ 1657:V 1633:. 1621:k 1565:. 1533:S 1467:k 1463:R 1421:k 1391:k 1387:R 1363:= 1358:0 1355:= 1352:k 1327:0 1324:= 1321:k 1299:k 1295:R 1268:k 1264:R 1241:k 1216:k 1185:S 1182:= 1174:= 1171:k 1143:= 1140:k 1120:} 1115:n 1111:c 1107:{ 1085:k 1055:k 1051:R 1028:) 1025:1 1022:, 1019:1 1016:( 1011:k 1003:= 998:) 995:2 992:( 987:k 956:k 904:0 898:k 890:= 864:0 858:k 832:= 829:k 809:S 789:S 786:= 775:k 748:k 720:k 693:) 690:1 687:, 684:1 681:( 676:k 651:k 629:k 594:, 589:1 582:) 576:k 572:R 568:+ 563:) 560:1 557:, 554:1 551:( 546:k 538:( 532:k 528:R 522:k 513:k 502:2 499:1 494:= 489:k 479:k 470:k 446:k 421:k 415:q 393:k 368:k 362:q 340:k 336:R 313:) 310:2 307:( 302:k 275:k 271:R 246:k 224:k 100:S 27:(

Index

theoretical physics
renormalization group
quantum field theory
Kenneth G. Wilson
coupling constant
effective action
quantum field theory
effective action
classical
action functional
cosmology
electrodynamics
Feynman diagrams
renormalization group
regulator
Christof Wetterich
Tim R. Morris
infrared limit
effective action
perturbation theory

renormalization group
coupling constant
fixed points
universality
critical exponents
perturbation theory
Legendre transformation
quantum chromodynamics
condensed matter physics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑