Knowledge (XXG)

FFC Cambridge process

Source 📝

20: 270:
is important because this molten salt can dissolve and transport the "O" ions to the anode to be discharged. The anode reaction depends on the material of the anode. Depending on the system it is possible to produce either CO or
464: 336:
evolution at the anode becomes more favourable. In addition, when compared to a carbon anode, more energy is required to achieve the same reduced phase at the cathode. Inert anodes suffer from stability issues.
79:. (The name FFC derives from the first letters of the last names of the inventors). The intellectual property relating to the technology has been acquired by Metalysis, (Sheffield, UK). 137:
reduction" (or, more generally, an example of metallothermic reduction). For example, if the cathode was primarily made from TiO then calciothermic reduction would appear as:
428: 332:, the discharge of the O ions leads to the evolution of oxygen gas. However the use of an inert anode has disadvantages. Firstly, when the concentration of CaO is low, Cl 103:
The electrocalciothermic reduction mechanism may be represented by the following sequence of reactions, where "M" represents a metal to be reduced (typically titanium).
87:
The process typically takes place between 900 and 1100 °C, with an anode (typically carbon) and a cathode (the oxide being reduced) in a solution of molten CaCl
91:. Depending on the nature of the oxide it will exist at a particular potential relative to the anode, which is dependent on the quantity of CaO present in CaCl 591: 147:
Whilst the cathode reaction can be written as above it is in fact a gradual removal of oxygen from the oxide. For example, it has been shown that TiO
229:
Reaction (2b) describes the production of Ca metal from Ca ions within the salt, at the cathode. The Ca would then proceed to reduce the cathode.
478:
Fray, D. J.; Chen, G. Z.; Farthing, T. W. (2000). "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride".
533:
R. Bhagat; M. Jackson; D. Inman; R. Dashwood (2008). "Production of Ti-Mo Alloys from Mixed Oxide Precursors via the FFC Cambridge Process".
718: 708: 713: 657:
X. Ge; X. Wang; S. Seetharaman (2009). "Copper extraction from copper ore by electro-reduction in molten CaCl
620:
Il Park; Takashi Abiko; Toru H. Okabe (February–April 2005). "Production of titanium powder directly from TiO
76: 134: 50:
of titanium oxide in a calcium chloride solution was first described in a 1904 German patent, and in 1954
47: 637: 600: 561: 535: 487: 232:
The net result of reactions (1) and (2) is simply the reduction of the oxide into metal plus oxygen:
511: 503: 57: 670: 645: 608: 569: 543: 495: 403: 31: 641: 604: 491: 443: 702: 557:"Production of Ti-W Alloys from Mixed Oxide Precursors via the FFC Cambridge Process" 515: 674: 459: 445:
Industrial Electrometallurgy, Including Electrolytic and Electrothermal Processes
423: 68: 61: 60:
for the production of metals like titanium by reduction of the metal oxide by a
649: 612: 408: 391: 151:
does not simply reduce to Ti. It, in fact, reduces through the lower oxides (Ti
52: 688: 72: 507: 462:, Marcus, Olson Carl, "Production of metals", issued 1958-07-29 35: 581:
Ryosuke O. Suzuki (February–April 2005). "Calciothermic reduction of TiO
573: 547: 499: 133:
When this reaction takes place on its own, it is referred to as the "
328:
However, if an inert anode is used, such as that of high density SnO
19: 556: 38:(Ti) from titanium oxide by electrolysis in molten calcium salts. 18: 46:
A process for electrochemical production of titanium through the
693: 392:"Recent Progress in Titanium Extraction and Recycling" 555:
R. Bhagat; M. Jackson; D. Inman; R. Dashwood (2009).
16:
Metal and metalloid synthesis process by electrolysis
628:
through an electronically mediated reaction (EMR)".
75:, and Thomas Farthing between 1996 and 1997 at the 585:and in situ electrolysis of CaO in the molten CaCl 170:The calcium oxide produced is then electrolyzed: 64:reducing agent in a specific gravity apparatus. 8: 390:Takeda, O.; Ouchi, T.; Okabe, T. H. (2020). 385: 383: 67:The FFC Cambridge process was developed by 630:Journal of Physics and Chemistry of Solids 592:Journal of Physics and Chemistry of Solids 407: 379: 7: 689:YouTube video:Metalysis FFC process 448:. D. Van Nostrand co. p. 137. 275:or a mixture at the carbon anode: 14: 426:, "Publication of DE150557C" 675:10.1016/j.electacta.2009.03.015 442:Rideal, Eric Keightley (1919). 1: 735: 650:10.1016/j.jpcs.2004.06.052 613:10.1016/j.jpcs.2004.06.041 409:10.1007/s11663-020-01898-6 99:Cathode reaction mechanism 262:Anode reaction mechanism 396:Metall. Mater. Trans. B 77:University of Cambridge 694:Metalysis Ltd. website 266:The use of molten CaCl 23: 34:method for producing 28:FFC Cambridge process 22: 562:J. Electrochem. Soc. 536:J. Electrochem. Soc. 142:TiO + Ca → Ti + CaO 53:U.S. patent 2845386A 663:Electrochimica Acta 642:2005JPCS...66..410P 605:2005JPCS...66..461S 492:2000Natur.407..361C 167:, TiO etc.) to Ti. 719:Titanium processes 709:Chemical processes 24: 669:(18): 4397–4402. 574:10.1149/1.2999340 548:10.1149/1.2904454 58:Carl Marcus Olson 726: 714:Electrochemistry 678: 653: 636:(2–4): 410–413. 616: 599:(2–4): 461–465. 577: 551: 520: 519: 500:10.1038/35030069 475: 469: 468: 467: 463: 456: 450: 449: 439: 433: 432: 431: 427: 420: 414: 413: 411: 402:(4): 1315–1328. 387: 364: 363: 362: 361: 354: 353: 324: 323: 322: 321: 314: 313: 306:C + O → CO + 2 302: 301: 300: 299: 292: 291: 257: 248: 247: 225: 199: 180: 179:CaO → x Ca + x O 143: 129: 119: 118: 55: 734: 733: 729: 728: 727: 725: 724: 723: 699: 698: 685: 660: 656: 627: 623: 619: 588: 584: 580: 554: 532: 529: 527:Further reading 524: 523: 486:(6802): 361–4. 477: 476: 472: 465: 458: 457: 453: 441: 440: 436: 429: 422: 421: 417: 389: 388: 381: 376: 371: 360: 358: 357: 356: 352: 350: 349: 348: 347: 345: 341: 335: 331: 320: 318: 317: 316: 312: 310: 309: 308: 307: 305: 298: 296: 295: 294: 290: 288: 287: 286: 285: 283: 279: 274: 269: 264: 256: 246: 241: 240: 239: 237: 219: 208: 186: 175: 166: 162: 158: 154: 150: 141: 117: 112: 111: 110: 108: 101: 94: 90: 85: 56:was awarded to 51: 44: 32:electrochemical 17: 12: 11: 5: 732: 730: 722: 721: 716: 711: 701: 700: 697: 696: 691: 684: 683:External links 681: 680: 679: 658: 654: 625: 621: 617: 586: 582: 578: 552: 528: 525: 522: 521: 470: 451: 434: 415: 378: 377: 375: 372: 370: 367: 366: 365: 359: 351: 343: 333: 329: 326: 325: 319: 311: 303: 297: 289: 281: 272: 267: 263: 260: 259: 258: 254: 242: 227: 226: 217: 201: 200: 182: 181: 164: 160: 156: 152: 148: 145: 144: 131: 130: 113: 100: 97: 92: 88: 84: 81: 43: 40: 15: 13: 10: 9: 6: 4: 3: 2: 731: 720: 717: 715: 712: 710: 707: 706: 704: 695: 692: 690: 687: 686: 682: 676: 672: 668: 664: 655: 651: 647: 643: 639: 635: 631: 618: 614: 610: 606: 602: 598: 594: 593: 579: 575: 571: 567: 564: 563: 558: 553: 549: 545: 542:(6): E63–69. 541: 538: 537: 531: 530: 526: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 474: 471: 461: 455: 452: 447: 446: 438: 435: 425: 419: 416: 410: 405: 401: 397: 393: 386: 384: 380: 373: 368: 340: 339: 338: 304: 278: 277: 276: 261: 252: 245: 235: 234: 233: 230: 223: 215: 211: 206: 205: 204: 197: 193: 189: 184: 183: 178: 173: 172: 171: 168: 140: 139: 138: 136: 135:calciothermic 127: 123: 116: 106: 105: 104: 98: 96: 82: 80: 78: 74: 70: 65: 63: 59: 54: 49: 41: 39: 37: 33: 29: 21: 666: 662: 633: 629: 596: 590: 565: 560: 539: 534: 483: 479: 473: 454: 444: 437: 418: 399: 395: 327: 280:C + 2O → CO 265: 250: 243: 231: 228: 221: 213: 209: 202: 195: 191: 187: 176: 169: 146: 132: 125: 121: 114: 102: 86: 66: 45: 27: 25: 568:(1): E1–7. 69:George Chen 62:molten salt 703:Categories 460:US2845386A 374:References 73:Derek Fray 516:205008890 424:DE150557C 124:Ca → M + 48:reduction 661:–NaCl". 508:11014188 369:See also 36:Titanium 638:Bibcode 624:in CaCl 601:Bibcode 488:Bibcode 236:(3) 207:(2c) 185:(2b) 174:(2a) 107:(1) 83:Process 42:History 514:  506:  480:Nature 466:  430:  342:2O → O 249:→ M + 190:Ca + 2 30:is an 512:S2CID 504:PMID 346:+ 4 253:/2 O 216:/2 O 212:O → 203:and 194:e → 159:, Ti 26:The 671:doi 646:doi 609:doi 589:". 570:doi 566:156 544:doi 540:155 496:doi 484:407 404:doi 284:+4 220:+ 2 128:CaO 705:: 667:54 665:. 644:. 634:66 632:. 607:. 597:66 595:. 559:. 510:. 502:. 494:. 482:. 400:51 398:. 394:. 382:^ 271:CO 238:MO 198:Ca 120:+ 109:MO 95:. 71:, 677:. 673:: 659:2 652:. 648:: 640:: 626:2 622:2 615:. 611:: 603:: 587:2 583:2 576:. 572:: 550:. 546:: 518:. 498:: 490:: 412:. 406:: 355:e 344:2 334:2 330:2 315:e 293:e 282:2 273:2 268:2 255:2 251:x 244:x 224:e 222:x 218:2 214:x 210:x 196:x 192:x 188:x 177:x 165:3 163:O 161:2 157:5 155:O 153:3 149:2 126:x 122:x 115:x 93:2 89:2

Index


electrochemical
Titanium
reduction
U.S. patent 2845386A
Carl Marcus Olson
molten salt
George Chen
Derek Fray
University of Cambridge
calciothermic


"Recent Progress in Titanium Extraction and Recycling"
doi
10.1007/s11663-020-01898-6
DE150557C
Industrial Electrometallurgy, Including Electrolytic and Electrothermal Processes
US2845386A
Bibcode
2000Natur.407..361C
doi
10.1038/35030069
PMID
11014188
S2CID
205008890
J. Electrochem. Soc.
doi
10.1149/1.2904454

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.