Knowledge (XXG)

Fixed-field alternating gradient accelerator

Source 📝

178:, working with Symon, filed a patent for the spiral-sector FFA accelerator at around the same time as Symon's Radial Sector patent. A very small spiral sector machine was built in 1957, and a 50 MeV radial sector machine was operated in 1961. This last machine was based on Ohkawa's patent, filed in 1957, for a symmetrical machine able to simultaneously accelerate identical particles in both clockwise and counterclockwise beams. This was one of the first 117: 224: 1155: 194: 1076: 216: 812:
In the 1990s, researchers at the KEK particle physics laboratory near Tokyo began developing the FFA concept, culminating in a 150 MeV machine in 2003. A non-scaling machine, dubbed PAMELA, to accelerate both protons and carbon nuclei for cancer therapy has been designed. Meanwhile, an ADSR operating
347:
The MURA machines were scaling FFA synchrotrons meaning that orbits of any momentum are photographic enlargements of those of any other momentum. In such machines the betatron frequencies are constant, thus no resonances, that could lead to beam loss, are crossed. A machine is scaling if the median
69:
required to bend the beam increases with particle energy, as the particles accelerate, either their paths will increase in size, or the magnetic field must be increased over time to hold the particles in a constant size orbit. Fixed-field machines, such as cyclotrons and FFAs, use the former approach
73:
In order to keep particles confined to a beam, some type of focusing is required. Small variations in the shape of the magnetic field, while maintaining the same overall field direction, are known as weak focusing. Strong, or alternating gradient focusing, involves magnetic fields which alternately
709:
in the late 1950s while thinking about how to increase the beam luminosity in the collision regions of the 2-way colliding beam FFA they were working on. This idea had immediate applications in designing better focusing magnets for conventional accelerators, but was not applied to FFA design until
77:
FFAs use fixed magnetic fields which include changes in field direction around the circumference of the ring. This means that the beam will change radius over the course of acceleration, as in a cyclotron, but will remain more tightly focused, as in a synchrotron. FFAs therefore combine relatively
1178: 713:
If acceleration is fast enough, the particles can pass through the betatron resonances before they have time to build up to a damaging amplitude. In that case the dipole field can be linear with radius, making the magnets smaller and simpler to construct. A proof-of-principle
730:
Vertical Orbit Excursion FFAs (VFFAs) are a special type of FFA arranged so that higher energy orbits occur above (or below) lower energy orbits, rather than radially outward. This is accomplished with skew-focusing fields that push particles with higher beam
296:, the required length of the FFA magnets scales roughly as the inverse square of the magnetic field. In 1994, a coil shape which provided the required field with no iron was derived. This magnet design was continued by S. Martin 447: 697:
an FFA magnet is much smaller than that for a cyclotron of the same energy. The disadvantage is that these machines are highly nonlinear. These and other relationships are developed in the paper by Frank Cole.
331:
The magnetic fields needed for an FFA are quite complex. The computation for the magnets used on the Michigan FFA Mark Ib, a radial sector 500 keV machine from 1956, were done by Frank Cole at the
344:. This was at the limit of what could be reasonably done without computers; the more complex magnet geometries of spiral sector and non-scaling FFAs require sophisticated computer modeling. 738:
The major advantage offered by a VFFA design over a FFA design is that the path-length is held constant between particles with different energies and therefore relativistic particles travel
323:. This was the first non-scaling FFA accelerator. Non-scaling FFAs are often advantageous to scaling FFAs because large and heavy magnets are avoided and the beam is much better controlled. 207:
With the shutdown of MURA which began 1963 and ended 1967, the FFA concept was not in use on an existing accelerator design and thus was not actively discussed for some time.
219:
ASPUN ring (scaling FFA). The first ANL design ASPUN was a spiral machine designed to increase momentum threefold with a modest spiral as compared with the MURA machines.
695: 259: 1765: 665: 546: 800:
Because of their quasi-continuous beam and the resulting minimal acceleration intervals for high energies, FFAs have also gained interest as possible parts of future
769:
for cancer, as proton sources for high intensity neutron production, for non-invasive security inspections of closed cargo containers, for the rapid acceleration of
612: 1453: 99:
The revival in FFA research has been particularly strong in Japan with the construction of several rings. This resurgence has been prompted in part by advances in
120:
The Michigan Mark I FFA accelerator. This 400KeV electron accelerator was the first operational FFA accelerator. The large rectangular part on the right is the
742:. Isochronicity of the revolution period enables continuous beam operation, therefore offering the same advantage in power that isochronous cyclotrons have over 634: 590: 568: 201: 169: 157: 204:
designed 10 GeV and 12.5 GeV proton FFAs that were not funded. Two scaled down designs, one for 720 MeV and one for a 500 MeV injector, were published.
813:
at 100 MeV was demonstrated in Japan in March 2009 at the Kyoto University Critical Assembly (KUCA), achieving "sustainable nuclear reactions" with the
81:
The initial concept of the FFA was developed in the 1950s, but was not actively explored beyond a few test machines until the mid-1980s, for usage in
774: 74:
point in opposite directions. The use of alternating gradient focusing allows for more tightly focused beams and smaller accelerator cavities.
354: 1410: 1347: 1902:"Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy" 1795: 250:
Conferences exploring this possibility were held at Jülich Research Centre, starting from 1984. There have also been numerous annual
1408:
Meads, P.; Wüstefeld, G. (October 1985). "An FFA Compressor and Accelerator Ring Studied for the German Spallation Neutron Source".
1325: 1203: 168:. Symon's patent, filed in early 1956, uses the terms "FFAG accelerator" and "FFAG synchrotron". Ohkawa worked with Symon and the 1457: 789:. Such ADSRs would be inherently safe, having no danger of accidental exponential runaway, and relatively little production of 975: 753:
The major disadvantages include the fact that VFFAs requires unusual magnet designs and currently VFFA designs have only been
1946: 1560: 263: 231:
In the early 1980s, it was suggested by Phil Meads that an FFA was suitable and advantageous as a proton accelerator for an
1810:
Typical Designs of High Energy FFA Accelerators, International Conference on High Energy Accelerators, CERN-1959, pp 82-88.
187: 830: 732: 236: 1013:, Technical Report MURA-LWJ/KMT-5 (MURA-104), April 3, 1956; contains photos, scale drawings and design calculations. 1033: 1779: 244: 1028:
Jones, L. W. (1991). "Kent M. Terwilliger; graduate school at Berkeley and early years at Michigan, 1949–1959".
1283:
Snowdon, S.; Christian, R.; Rowe, E.; Curtis, C.; Meier, H. (1985). "Design Study of a 500 MeV FFA Injector".
293: 161: 750:, but this is not a strong limitation in accelerators with rapid ramp rates typically used in FFA designs. 747: 1364: 333: 149: 1471: 722:) (Electron Machine with Many Applications) has been successfully operated at Daresbury Laboratory, UK,. 145: 337: 1741: 182:, although this feature was not used when it was put to practical use as the injector for the Tantalus 137: 1169: 1138: 1063: 702: 1913: 1872: 1832: 1699: 1652: 1531: 1419: 1356: 1313: 1257: 1142: 916: 754: 316: 43: 1369: 778: 281:
The first proton FFA was successfully construction in 2000, initiating a boom of FFA activities in
251: 1637: 128:
The idea of fixed-field alternating-gradient synchrotrons was developed independently in Japan by
1668: 1435: 1390: 1242: 1120: 954: 719: 312: 1585: 1520: 674: 1309:
Innovation was not enough: a history of the Midwestern Universities Research Association (MURA)
1218:
E. M. Rowe and F. E. Mills, Tantalus I: A Dedicated Storage Ring Synchrotron Radiation Source,
1791: 1759: 1742:"Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy" 1382: 1321: 1288: 1241:
Cole, F. T.; Parzen, G.; Rowe, E. M.; Snowdon, S. C.; MacKenzie, K. R.; Wright, B. T. (1963).
1199: 1193: 1112: 1095: 1090: 932: 907: 814: 794: 706: 641: 459: 141: 1921: 1880: 1707: 1687: 1660: 1427: 1374: 1342: 1307: 1265: 1104: 1045: 1037: 924: 826: 743: 597: 282: 278:. In 1992, the European Particle Accelerator Conference at CERN was about FFA accelerators. 275: 93: 65:
In all circular accelerators, magnetic fields are used to bend the particle beam. Since the
156:
acceleration and was operational in early 1956. That fall, the prototype was moved to the
1638:"An FFAG Compressor and Accelerator Ring Studied for the German Spallation Neutron Source" 786: 100: 55: 1917: 1876: 1836: 1703: 1656: 1535: 1423: 1360: 1317: 1261: 1010: 920: 1688:"Superconducting magnet design for Fixed-Field Alternating-Gradient (FFAG) Accelerator" 834: 766: 619: 575: 553: 1219: 1940: 1269: 801: 129: 66: 1672: 1439: 1394: 78:
less expensive fixed magnets with increased beam focus of strong focusing machines.
1725:
S. A. Martin; et al. (24 May 1993). "FFAG Studies for a 5 MW Neutron Source".
1584:
Martin, S.; Meads, P.; Wüstefeld, G.; Zaplatin, E.; Ziegler, K. (13 October 1992).
1472:"COSY - Fundamental research in the field of hadron, particle, and nuclear physics" 1124: 986: 950: 790: 341: 183: 175: 1926: 1901: 1885: 1860: 1821: 1521:"New Concepts in FFAG Design for Secondary Beam Facilities and Other Applications" 1108: 1093:; Sessler, A. M.; Symon, K. R. (2007). "A Brief History of the FFAG Accelerator". 928: 773:
to high energies before they have time to decay, and as "energy amplifiers", for
1787: 1146: 1067: 847: 240: 165: 133: 116: 59: 17: 1556: 1250:
Proc. International Conference on Sector-Focused Cyclotrons and Meson Factories
227:
Example of a 16-cell superconducting FFA. Energy: 1.6 GeV, average radius 26 m.
1173: 1150: 1071: 232: 85: 1664: 1431: 1386: 1378: 884: 817:'s control rods inserted into the reactor core to damp it below criticality. 739: 51: 1498: 1495:"2nd Jülich Seminar on Fixed Field Alternating Gradient Accelerators (FFA)" 1116: 936: 301: 46:
concept that can be characterized by its time-independent magnetic fields (
1621:
M. Aiba; et al. (2000). "Development of a FFAG Proton Synchrotron".
1606:
Zaplatin, E. (24 March 1992). "Fourth Accelerator Meeting for the EPNS".
1049: 286: 271: 179: 153: 121: 1861:"Vertical orbit excursion fixed field alternating gradient accelerators" 1011:
A Small Model Fixed Field Alternating Gradient Radial Sector Accelerator
223: 782: 442:{\displaystyle B_{r}=0,\quad B_{\theta }=0,\quad B_{z}=ar^{k}~f(\psi )} 82: 1711: 1292: 235:, starting off projects like the Argonne Tandem Linear Accelerator at 193: 1494: 267: 1041: 959: 953:(April 18, 2016). "Fixed-Field Alternating Gradient Accelerators". 1586:"Study of FFAG Options for a European Pulsed Neutron Source (ESS)" 1343:"ASPUN, Design for an Argonne Super Intense Pulsed Neutron Source" 308: 222: 214: 192: 115: 1306:
Jones, L.; Mills, F.; Sessler, A.; Symon, K.; Young, D. (2010).
770: 255: 215: 89: 1727:
International Collaboration on Advanced Neutron Sources (ICANS)
1285:
Proc. 5th International Conference on High Energy Accelerators
1231:
F. C. Cole, Ed., 12.5 GeV FFA Accelerator, MURA report (1964)
614:
is the spiral angle (which equals zero for a radial machine),
190:. The 50MeV machine was finally retired in the early 1970s. 320: 1849:
S. Machida et al, Nature Physics vol 8 issue 3 pp 243-247
1593:
Proc. XIII National Accelerator Conference, Dubna, Russia
701:
The idea of building a non-scaling FFA first occurred to
70:
and allow the particle path to change with acceleration.
765:
FFA accelerators have potential medical applications in
1906:
Physical Review Special Topics - Accelerators and Beams
785:
beam derived from a FFA drives a slightly sub-critical
1865:
Physical Review Special Topics: Accelerators and Beams
1454:"Argonne History: Understanding the Physical Universe" 1030:
Kent M. Terwilliger memorial symposium, 13−14 Oct 1989
905:
Daniel Clery (4 January 2010). "The Next Big Beam?".
677: 667:
is an arbitrary function that enables a stable orbit.
644: 622: 600: 578: 556: 462: 357: 735:
vertically into regions with a higher dipole field.
164:, where it was converted to a 500 keV electron 1829:
Proc. European Particle Accelerator Conference 2008
307:In 2010, after the workshop on FFA accelerators in 1023: 1021: 1019: 689: 659: 628: 606: 584: 562: 540: 441: 878: 876: 1528:21St Particle Accelerator Conference (Pac 05) 1456:. Argonne National Laboratory. Archived from 8: 1764:: CS1 maint: multiple names: authors list ( 1243:"Design of a 720 MeV Proton FFA Accelerator" 793:waste, with its long life and potential for 158:Midwestern Universities Research Association 32:Fixed-Field alternating gradient Accelerator 1579: 1577: 1822:"EMMA, The World's First Non-scaling FFAG" 92:colliders and to accelerate muons in a 1925: 1884: 1368: 958: 676: 643: 621: 599: 577: 555: 514: 505: 461: 418: 402: 382: 362: 356: 172:team for several years starting in 1955. 1686:Abdelsalam, M.; Kustom, R. (July 1994). 1623:European Particle Accelerator Conference 1608:European Particle Accelerator Conference 1341:Khoe, T.K.; Kustom, R.L. (August 1983). 1009:Lawrence W. Jones, Kent M. Terwilliger, 775:Accelerator-Driven Sub-critical Reactors 274:, and the Reactor Research Institute at 872: 313:Electron Machine with Many Applications 1757: 54:) and the use of alternating gradient 1151:Imparting Energy to Charged Particles 1072:Imparting Energy to Charged Particles 27:Circular particle accelerator concept 7: 1645:IEEE Transactions on Nuclear Science 1636:Meads, P. F.; Wüstefeld, G. (1985). 1411:IEEE Transactions on Nuclear Science 1348:IEEE Transactions on Nuclear Science 1740:D. Trbojevic, E. Keil, A. Sessler. 885:"Brief History of FFA Accelerators" 746:. Isochronous accelerators have no 1820:Edgecock, R.; et al. (2008). 25: 1198:. World Scientific. p. 529. 976:"Developments of FFA Accelerator" 233:intense spallation neutron source 140:. The first prototype, built by 1036:. Vol. 237. pp. 1–21. 254:focusing on FFA accelerators at 1474:. Institute for Nuclear Physics 1222:, Vol. 4 (1973); pages 211-227. 1195:Advances in Accelerator Physics 397: 377: 348:plane magnetic field satisfies 103:cavities and in magnet design. 1692:IEEE Transactions on Magnetics 654: 648: 535: 520: 499: 475: 436: 430: 1: 1927:10.1103/PhysRevSTAB.16.030101 1886:10.1103/PhysRevSTAB.16.084001 1493:Wüstefeld, G. (14 May 1984). 1109:10.1126/science.316.5831.1567 795:nuclear weapons proliferation 1270:10.1016/0029-554X(63)90185-X 1192:Schopper, Herwig F. (1993). 929:10.1126/science.327.5962.142 833:which might use an FFA as a 327:Scaling vs non-scaling types 188:Synchrotron Radiation Center 883:Ruggiero, A.G. (Mar 2006). 831:subcritical nuclear reactor 237:Argonne National Laboratory 180:colliding beam accelerators 1963: 1900:Peach, K (11 March 2013). 1418:(5 (part II)): 2697–2699. 1172:, Tihiro Ohkawa, " 1034:AIP Conference Proceedings 748:longitudinal beam focusing 690:{\displaystyle k>>1} 311:, the construction of the 132:, in the United States by 848:"The rebirth of the FFAG" 186:at what would become the 88:sources, as a driver for 1665:10.1109/TNS.1985.4334153 1432:10.1109/TNS.1985.4334153 1379:10.1109/tns.1983.4332724 1176:", issued 1959-06-09 1153:", issued 1960-04-12 1074:", issued 1960-04-12 660:{\displaystyle f(\psi )} 541:{\displaystyle \psi =N~} 315:(EMMA) was completed at 1519:Craddock, M.K. (2005). 983:Proceedings of FFAG04 / 710:several decades later. 636:the average radius, and 294:superconducting magnets 162:University of Wisconsin 112:First development phase 1782:; Blewett, J. (1962). 691: 661: 630: 608: 607:{\displaystyle \zeta } 586: 564: 542: 443: 334:University of Illinois 245:Jülich Research Centre 228: 220: 211:Continuing development 198: 150:University of Michigan 125: 1947:Particle accelerators 1784:Particle Accelerators 1220:Particle Accelerators 1170:US patent 2890348 1139:US patent 2932798 1064:US patent 2932797 779:Sub-critical Reactors 692: 662: 631: 609: 587: 565: 543: 444: 338:mechanical calculator 226: 218: 196: 119: 96:since the mid-1990s. 1557:"Previous Workshops" 1460:on 9 September 2004. 1312:. World Scientific. 1174:Particle Accelerator 1143:Donald William Kerst 757:rather than tested. 675: 642: 620: 598: 576: 554: 460: 355: 317:Daresbury Laboratory 44:particle accelerator 1918:2013PhRvS..16c0101P 1877:2013PhRvS..16h4001B 1859:Brooks, S. (2013). 1837:2007pac..conf.2624E 1704:1994ITM....30.2620A 1657:1985ITNS...32.2697M 1536:2005pac..conf..261C 1424:1985ITNS...32.2697M 1361:1983ITNS...30.2086K 1318:2010ine..book.....J 1262:1964NucIM..25..189C 921:2010Sci...327..142C 716:linear, non-scaling 592:is the periodicity, 570:is the field index, 283:high-energy physics 146:Kent M. Terwilliger 136:, and in Russia by 38:; also abbreviated 687: 657: 626: 604: 582: 560: 538: 439: 229: 221: 199: 197:Layout of MURA FFA 126: 1780:Livingston, M. S. 1712:10.1109/20.305816 974:Mori, Y. (2004). 915:(5962): 142–143. 892:BNL-75635-2006-Cp 815:critical assembly 744:synchrocyclotrons 707:Lawrence W. Jones 629:{\displaystyle r} 585:{\displaystyle N} 563:{\displaystyle k} 531: 525: 492: 486: 474: 426: 142:Lawrence W. Jones 138:Andrei Kolomensky 124:transformer core. 16:(Redirected from 1954: 1932: 1931: 1929: 1897: 1891: 1890: 1888: 1856: 1850: 1847: 1841: 1840: 1826: 1817: 1811: 1808: 1802: 1801: 1776: 1770: 1769: 1763: 1755: 1753: 1751: 1746: 1737: 1731: 1730: 1722: 1716: 1715: 1698:(4): 2620–2623. 1683: 1677: 1676: 1651:(5): 2697–2699. 1642: 1633: 1627: 1626: 1618: 1612: 1611: 1603: 1597: 1596: 1590: 1581: 1572: 1571: 1569: 1567: 1553: 1547: 1546: 1544: 1542: 1525: 1516: 1510: 1509: 1507: 1505: 1490: 1484: 1483: 1481: 1479: 1468: 1462: 1461: 1450: 1444: 1443: 1405: 1399: 1398: 1372: 1355:(4): 2086–2088. 1338: 1332: 1331: 1303: 1297: 1296: 1280: 1274: 1273: 1247: 1238: 1232: 1229: 1223: 1216: 1210: 1209: 1189: 1183: 1182: 1181: 1177: 1166: 1160: 1159: 1158: 1154: 1135: 1129: 1128: 1087: 1081: 1080: 1079: 1075: 1060: 1054: 1053: 1025: 1014: 1007: 1001: 1000: 998: 997: 991: 985:. Archived from 980: 971: 965: 964: 962: 947: 941: 940: 902: 896: 895: 889: 880: 863: 861: 859: 827:Energy amplifier 703:Kent Terwilliger 696: 694: 693: 688: 666: 664: 663: 658: 635: 633: 632: 627: 613: 611: 610: 605: 591: 589: 588: 583: 569: 567: 566: 561: 547: 545: 544: 539: 529: 523: 519: 518: 509: 490: 484: 472: 448: 446: 445: 440: 424: 423: 422: 407: 406: 387: 386: 367: 366: 276:Kyoto University 94:neutrino factory 42:) is a circular 21: 18:FFAG synchrotron 1962: 1961: 1957: 1956: 1955: 1953: 1952: 1951: 1937: 1936: 1935: 1899: 1898: 1894: 1858: 1857: 1853: 1848: 1844: 1824: 1819: 1818: 1814: 1809: 1805: 1798: 1778: 1777: 1773: 1756: 1749: 1747: 1744: 1739: 1738: 1734: 1724: 1723: 1719: 1685: 1684: 1680: 1640: 1635: 1634: 1630: 1620: 1619: 1615: 1605: 1604: 1600: 1588: 1583: 1582: 1575: 1565: 1563: 1555: 1554: 1550: 1540: 1538: 1523: 1518: 1517: 1513: 1503: 1501: 1492: 1491: 1487: 1477: 1475: 1470: 1469: 1465: 1452: 1451: 1447: 1407: 1406: 1402: 1370:10.1.1.609.1789 1340: 1339: 1335: 1328: 1305: 1304: 1300: 1282: 1281: 1277: 1245: 1240: 1239: 1235: 1230: 1226: 1217: 1213: 1206: 1191: 1190: 1186: 1179: 1168: 1167: 1163: 1156: 1137: 1136: 1132: 1089: 1088: 1084: 1077: 1062: 1061: 1057: 1042:10.1063/1.41146 1027: 1026: 1017: 1008: 1004: 995: 993: 989: 978: 973: 972: 968: 949: 948: 944: 904: 903: 899: 887: 882: 881: 874: 870: 857: 855: 846: 843: 841:Further reading 823: 810: 787:fission reactor 763: 728: 673: 672: 640: 639: 618: 617: 596: 595: 574: 573: 552: 551: 510: 458: 457: 414: 398: 378: 358: 353: 352: 329: 239:and the Cooler 213: 114: 109: 56:strong focusing 28: 23: 22: 15: 12: 11: 5: 1960: 1958: 1950: 1949: 1939: 1938: 1934: 1933: 1892: 1851: 1842: 1812: 1803: 1797:978-1114443846 1796: 1771: 1732: 1717: 1678: 1628: 1613: 1598: 1573: 1548: 1511: 1485: 1463: 1445: 1400: 1333: 1326: 1298: 1275: 1233: 1224: 1211: 1204: 1184: 1161: 1147:Keith R. Symon 1130: 1103:(5831): 1567. 1082: 1068:Keith R. Symon 1055: 1015: 1002: 966: 942: 897: 871: 869: 866: 865: 864: 854:. Jul 28, 2004 842: 839: 838: 837: 835:neutron source 822: 819: 809: 806: 767:proton therapy 762: 759: 727: 724: 686: 683: 680: 669: 668: 656: 653: 650: 647: 637: 625: 615: 603: 593: 581: 571: 559: 549: 537: 534: 528: 522: 517: 513: 508: 504: 501: 498: 495: 489: 483: 480: 477: 471: 468: 465: 451: 450: 438: 435: 432: 429: 421: 417: 413: 410: 405: 401: 396: 393: 390: 385: 381: 376: 373: 370: 365: 361: 328: 325: 212: 209: 160:(MURA) lab at 113: 110: 108: 105: 67:magnetic force 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1959: 1948: 1945: 1944: 1942: 1928: 1923: 1919: 1915: 1912:(3): 030101. 1911: 1907: 1903: 1896: 1893: 1887: 1882: 1878: 1874: 1871:(8): 084001. 1870: 1866: 1862: 1855: 1852: 1846: 1843: 1838: 1834: 1830: 1823: 1816: 1813: 1807: 1804: 1799: 1793: 1789: 1785: 1781: 1775: 1772: 1767: 1761: 1743: 1736: 1733: 1728: 1721: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1682: 1679: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1632: 1629: 1624: 1617: 1614: 1609: 1602: 1599: 1594: 1587: 1580: 1578: 1574: 1562: 1558: 1552: 1549: 1537: 1533: 1529: 1522: 1515: 1512: 1500: 1496: 1489: 1486: 1473: 1467: 1464: 1459: 1455: 1449: 1446: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1412: 1404: 1401: 1396: 1392: 1388: 1384: 1380: 1376: 1371: 1366: 1362: 1358: 1354: 1350: 1349: 1344: 1337: 1334: 1329: 1327:9789812832832 1323: 1319: 1315: 1311: 1310: 1302: 1299: 1294: 1290: 1286: 1279: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1237: 1234: 1228: 1225: 1221: 1215: 1212: 1207: 1205:9789810209582 1201: 1197: 1196: 1188: 1185: 1175: 1171: 1165: 1162: 1152: 1148: 1144: 1140: 1134: 1131: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1097: 1092: 1086: 1083: 1073: 1069: 1065: 1059: 1056: 1051: 1050:2027.42/87537 1047: 1043: 1039: 1035: 1031: 1024: 1022: 1020: 1016: 1012: 1006: 1003: 992:on 2016-12-20 988: 984: 977: 970: 967: 961: 956: 952: 946: 943: 938: 934: 930: 926: 922: 918: 914: 910: 909: 901: 898: 893: 886: 879: 877: 873: 867: 853: 849: 845: 844: 840: 836: 832: 828: 825: 824: 820: 818: 816: 807: 805: 803: 802:muon collider 798: 796: 792: 788: 784: 780: 776: 772: 768: 760: 758: 756: 751: 749: 745: 741: 740:isochronously 736: 734: 726:Vertical FFAs 725: 723: 721: 717: 711: 708: 704: 699: 684: 681: 678: 651: 645: 638: 623: 616: 601: 594: 579: 572: 557: 550: 532: 526: 515: 511: 506: 502: 496: 493: 487: 481: 478: 469: 466: 463: 456: 455: 454: 433: 427: 419: 415: 411: 408: 403: 399: 394: 391: 388: 383: 379: 374: 371: 368: 363: 359: 351: 350: 349: 345: 343: 339: 335: 326: 324: 322: 318: 314: 310: 305: 303: 299: 295: 290: 288: 284: 279: 277: 273: 269: 265: 261: 257: 253: 248: 246: 242: 238: 234: 225: 217: 210: 208: 205: 203: 195: 191: 189: 185: 181: 177: 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 130:Tihiro Ohkawa 123: 118: 111: 106: 104: 102: 97: 95: 91: 87: 84: 79: 75: 71: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1909: 1905: 1895: 1868: 1864: 1854: 1845: 1828: 1815: 1806: 1786:. New York: 1783: 1774: 1748:. Retrieved 1735: 1726: 1720: 1695: 1691: 1681: 1648: 1644: 1631: 1622: 1616: 1607: 1601: 1592: 1564:. Retrieved 1551: 1539:. Retrieved 1527: 1514: 1502:. Retrieved 1488: 1476:. Retrieved 1466: 1458:the original 1448: 1415: 1409: 1403: 1352: 1346: 1336: 1308: 1301: 1284: 1278: 1253: 1249: 1236: 1227: 1214: 1194: 1187: 1164: 1133: 1100: 1094: 1091:Jones, L. W. 1085: 1058: 1029: 1005: 994:. Retrieved 987:the original 982: 969: 951:Sheehy, S.L. 945: 912: 906: 900: 891: 856:. Retrieved 852:CERN Courier 851: 811: 804:facilities. 799: 791:transuranium 764: 761:Applications 752: 737: 729: 718:FFA called ( 715: 712: 700: 670: 452: 346: 330: 306: 297: 291: 280: 249: 230: 206: 200: 184:storage ring 176:Donald Kerst 174: 127: 98: 80: 76: 72: 64: 50:, like in a 47: 39: 35: 31: 29: 1788:McGraw-Hill 1750:12 February 1566:12 February 1541:12 February 1504:12 February 1478:12 February 1256:: 189–196. 781:in which a 241:Synchrotron 166:synchrotron 134:Keith Symon 60:synchrotron 48:fixed-field 996:2016-05-04 960:1604.05221 868:References 777:(ADSRs) / 86:spallation 1387:0891-9356 1365:CiteSeerX 755:simulated 652:ψ 602:ζ 533:θ 527:− 497:⁡ 488:ζ 482:⁡ 464:ψ 434:ψ 384:θ 340:built by 252:workshops 58:(as in a 52:cyclotron 1941:Category 1831:: 2624. 1760:cite web 1673:41784649 1440:41784649 1395:31021790 1117:17569845 937:20056871 821:See also 733:rigidity 682:>> 287:medicine 272:Fermilab 154:betatron 122:betatron 1914:Bibcode 1873:Bibcode 1833:Bibcode 1700:Bibcode 1653:Bibcode 1532:Bibcode 1530:: 261. 1420:Bibcode 1357:Bibcode 1314:Bibcode 1293:4453496 1258:Bibcode 1149:, " 1125:5201822 1096:Science 1070:, " 917:Bibcode 908:Science 858:Apr 11, 783:neutron 148:at the 107:History 83:neutron 1794:  1671:  1499:Jülich 1438:  1393:  1385:  1367:  1324:  1291:  1202:  1180:  1157:  1141:, 1123:  1115:  1078:  1066:, 935:  808:Status 530:  524:  491:  485:  473:  453:where 425:  342:Friden 302:Jülich 298:et al. 268:TRIUMF 1825:(PDF) 1745:(PDF) 1669:S2CID 1641:(PDF) 1589:(PDF) 1524:(PDF) 1436:S2CID 1391:S2CID 1246:(PDF) 1121:S2CID 990:(PDF) 979:(PDF) 955:arXiv 888:(PDF) 771:muons 336:on a 309:Kyoto 300:from 292:With 152:used 1792:ISBN 1766:link 1752:2017 1568:2017 1543:2012 1506:2017 1480:2017 1383:ISSN 1322:ISBN 1289:OSTI 1200:ISBN 1145:and 1113:PMID 933:PMID 860:2012 720:EMMA 705:and 671:For 285:and 256:CERN 202:MURA 170:MURA 144:and 90:muon 62:). 40:FFAG 1922:doi 1881:doi 1708:doi 1661:doi 1561:BNL 1428:doi 1375:doi 1266:doi 1105:doi 1101:316 1046:hdl 1038:doi 925:doi 913:327 479:tan 264:BNL 260:KEK 243:at 36:FFA 1943:: 1920:. 1910:16 1908:. 1904:. 1879:. 1869:16 1867:. 1863:. 1827:. 1790:. 1762:}} 1758:{{ 1706:. 1696:30 1694:. 1690:. 1667:. 1659:. 1649:32 1647:. 1643:. 1591:. 1576:^ 1559:. 1526:. 1497:. 1434:. 1426:. 1416:32 1414:. 1389:. 1381:. 1373:. 1363:. 1353:30 1351:. 1345:. 1320:. 1287:. 1264:. 1254:25 1252:. 1248:. 1119:. 1111:. 1099:. 1044:. 1032:. 1018:^ 981:. 931:. 923:. 911:. 890:. 875:^ 850:. 829:a 797:. 494:ln 321:UK 319:, 304:. 289:. 270:, 266:, 262:, 258:, 247:. 101:RF 30:A 1930:. 1924:: 1916:: 1889:. 1883:: 1875:: 1839:. 1835:: 1800:. 1768:) 1754:. 1729:. 1714:. 1710:: 1702:: 1675:. 1663:: 1655:: 1625:. 1610:. 1595:. 1570:. 1545:. 1534:: 1508:. 1482:. 1442:. 1430:: 1422:: 1397:. 1377:: 1359:: 1330:. 1316:: 1295:. 1272:. 1268:: 1260:: 1208:. 1127:. 1107:: 1052:. 1048:: 1040:: 999:. 963:. 957:: 939:. 927:: 919:: 894:. 862:. 685:1 679:k 655:) 649:( 646:f 624:r 580:N 558:k 548:, 536:] 521:) 516:0 512:r 507:/ 503:r 500:( 476:[ 470:N 467:= 449:, 437:) 431:( 428:f 420:k 416:r 412:a 409:= 404:z 400:B 395:, 392:0 389:= 380:B 375:, 372:0 369:= 364:r 360:B 34:( 20:)

Index

FFAG synchrotron
particle accelerator
cyclotron
strong focusing
synchrotron
magnetic force
neutron
spallation
muon
neutrino factory
RF

betatron
Tihiro Ohkawa
Keith Symon
Andrei Kolomensky
Lawrence W. Jones
Kent M. Terwilliger
University of Michigan
betatron
Midwestern Universities Research Association
University of Wisconsin
synchrotron
MURA
Donald Kerst
colliding beam accelerators
storage ring
Synchrotron Radiation Center

MURA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.