Knowledge (XXG)

Field-effect transistor

Source đź“ť

291:. Bardeen then decided to make use of an inversion layer instead of the very thin layer of semiconductor which Shockley had envisioned in his FET designs. Based on his theory, in 1948 Bardeen patented the progenitor of MOSFET, an insulated-gate FET (IGFET) with an inversion layer. The inversion layer confines the flow of minority carriers, increasing modulation and conductivity, although its electron transport depends on the gate's insulator or quality of oxide if used as an insulator, deposited above the inversion layer. Bardeen's patent as well as the concept of an inversion layer forms the basis of CMOS technology today. In 1976 Shockley described Bardeen's surface state hypothesis "as one of the most significant research ideas in the semiconductor program". 408: 665:
the source terminal towards the drain terminal is influenced by an applied voltage. The body simply refers to the bulk of the semiconductor in which the gate, source and drain lie. Usually the body terminal is connected to the highest or lowest voltage within the circuit, depending on the type of the FET. The body terminal and the source terminal are sometimes connected together since the source is often connected to the highest or lowest voltage within the circuit, although there are several uses of FETs which do not have such a configuration, such as
149: 3687: 3723: 813:. Any increase of the drain-to-source voltage will increase the distance from drain to the pinch-off point, increasing the resistance of the depletion region in proportion to the drain-to-source voltage applied. This proportional change causes the drain-to-source current to remain relatively fixed, independent of changes to the drain-to-source voltage, quite unlike its ohmic behavior in the linear mode of operation. Thus, in saturation mode, the FET behaves as a 694: 686: 40: 1276:
stray inductances and generate significant voltages that can couple to the gate and cause unintentional switching. FET circuits can therefore require very careful layout and can involve trades between switching speed and power dissipation. There is also a trade-off between voltage rating and "on" resistance, so high-voltage FETs have a relatively high "on" resistance and hence conduction losses.
1306: 586: 883: 713: 728:) from the source to drain by affecting the size and shape of a "conductive channel" created and influenced by voltage (or lack of voltage) applied across the gate and source terminals. (For simplicity, this discussion assumes that the body and source are connected.) This conductive channel is the "stream" through which electrons flow from source to drain. 295:
poor. Bardeen went further and suggested to rather focus on the conductivity of the inversion layer. Further experiments led them to replace electrolyte with a solid oxide layer in the hope of getting better results. Their goal was to penetrate the oxide layer and get to the inversion layer. However, Bardeen suggested they switch from
797:, for a better analogy with bipolar transistor operating regions. The saturation mode, or the region between ohmic and saturation, is used when amplification is needed. The in-between region is sometimes considered to be part of the ohmic or linear region, even where drain current is not approximately linear with drain voltage. 745:
very small current). This is called "pinch-off", and the voltage at which it occurs is called the "pinch-off voltage". Conversely, a positive gate-to-source voltage increases the channel size and allows electrons to flow easily (see right figure, when there is a conduction channel and current is large).
664:
The names of the terminals refer to their functions. The gate terminal may be thought of as controlling the opening and closing of a physical gate. This gate permits electrons to flow through or blocks their passage by creating or eliminating a channel between the source and drain. Electron-flow from
1275:
FETs often have a very low "on" resistance and have a high "off" resistance. However, the intermediate resistances are significant, and so FETs can dissipate large amounts of power while switching. Thus, efficiency can put a premium on switching quickly, but this can cause transients that can excite
929:
or a p-type semiconductor. The drain and source may be doped of opposite type to the channel, in the case of enhancement mode FETs, or doped of similar type to the channel as in depletion mode FETs. Field-effect transistors are also distinguished by the method of insulation between channel and gate.
808:
exists in the p-type body, surrounding the conductive channel and drain and source regions. The electrons which comprise the channel are free to move out of the channel through the depletion region if attracted to the drain by drain-to-source voltage. The depletion region is free of carriers and has
538:
FETs can be majority-charge-carrier devices, in which the current is carried predominantly by majority carriers, or minority-charge-carrier devices, in which the current is mainly due to a flow of minority carriers. The device consists of an active channel through which charge carriers, electrons or
350:
on the semiconductor surface. Their further work demonstrated how to etch small openings in the oxide layer to diffuse dopants into selected areas of the silicon wafer. In 1957, they published a research paper and patented their technique summarizing their work. The technique they developed is known
1388:
In FETs, electrons can flow in either direction through the channel when operated in the linear mode. The naming convention of drain terminal and source terminal is somewhat arbitrary, as the devices are typically (but not always) built symmetrical from source to drain. This makes FETs suitable for
748:
In an n-channel "enhancement-mode" device, a conductive channel does not exist naturally within the transistor, and a positive gate-to-source voltage is necessary to create one. The positive voltage attracts free-floating electrons within the body towards the gate, forming a conductive channel. But
453:
proposed a silicon MOS transistor in 1959 and successfully demonstrated a working MOS device with their Bell Labs team in 1960. Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and
744:
to expand in width and encroach on the channel from the sides, narrowing the channel. If the active region expands to completely close the channel, the resistance of the channel from source to drain becomes large, and the FET is effectively turned off like a switch (see right figure, when there is
676:
Unlike BJTs, the vast majority of FETs are electrically symmetrical. The source and drain terminals can thus be interchanged in practical circuits with no change in operating characteristics or function. This can be confusing when FET's appear to be connected "backwards" in schematic diagrams and
423:
effects. By 1957 Frosch and Derrick, using masking and predeposition, were able to manufacture silicon dioxide transistors and showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer. J.R. Ligenza and W.G. Spitzer studied the mechanism of
788:
If drain-to-source voltage is increased, this creates a significant asymmetrical change in the shape of the channel due to a gradient of voltage potential from source to drain. The shape of the inversion region becomes "pinched-off" near the drain end of the channel. If drain-to-source voltage is
784:
For either enhancement- or depletion-mode devices, at drain-to-source voltages much less than gate-to-source voltages, changing the gate voltage will alter the channel resistance, and drain current will be proportional to drain voltage (referenced to source voltage). In this mode the FET operates
465:
integrated circuits. The MOSFET is also capable of handling higher power than the JFET. The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. The MOSFET thus became the most common type of transistor in computers, electronics, and
294:
After Bardeen's surface state theory the trio tried to overcome the effect of surface states. In late 1947, Robert Gibney and Brattain suggested the use of electrolyte placed between metal and semiconductor to overcome the effects of surface states. Their FET device worked, but amplification was
660:
is the extension of the transistor, in the direction perpendicular to the cross section in the diagram (i.e., into/out of the screen). Typically the width is much larger than the length of the gate. A gate length of 1 ÎĽm limits the upper frequency to about 5 GHz, 0.2 ÎĽm to about
254:
basis, which limited them to a number of specialised applications. The insulated-gate field-effect transistor (IGFET) was theorized as a potential alternative to junction transistors, but researchers were unable to build working IGFETs, largely due to the troublesome surface state barrier that
314:
By the end of the first half of the 1950s, following theoretical and experimental work of Bardeen, Brattain, Kingston, Morrison and others, it became more clear that there were two types of surface states. Fast surface states were found to be associated with the bulk and a semiconductor/oxide
1007:
technology which are utilized to detect charged molecules; when a charged molecule is present, changes in the electrostatic field at the BioFET surface result in a measurable change in current through the transistor. These include enzyme modified FETs (EnFETs), immunologically modified FETs
1231:
Field-effect transistors have high gate-to-drain current resistance, of the order of 100 MΩ or more, providing a high degree of isolation between control and flow. Because base current noise will increase with shaping time, a FET typically produces less noise than a
286:
in 1932) and realized that the external field was blocked at the surface because of extra electrons which are drawn to the semiconductor surface. Electrons become trapped in those localized states forming an inversion layer. Bardeen's hypothesis marked the birth of
2085: 1830: 863:; often, OFET gate insulators and electrodes are made of organic materials, as well. Such FETs are manufactured using a variety of materials such as silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), and indium gallium arsenide (InGaAs). 1267:
compared to a bipolar junction transistor. MOSFETs are very susceptible to overload voltages, thus requiring special handling during installation. The fragile insulating layer of the MOSFET between the gate and the channel makes it vulnerable to
1292:. If the characteristics of the body diode are not taken into consideration, the FET can experience slow body diode behavior, where a parasitic transistor will turn on and allow high current to be drawn from drain to source when the FET is off. 773:"depletion-mode" device, a positive voltage from gate to body widens the depletion layer by forcing electrons to the gate-insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, positively charged acceptor ions. 1156:
The VeSFET (vertical-slit field-effect transistor) is a square-shaped junctionless FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the
375:
or MFSFET. Its structure was like that of a modern inversion channel MOSFET, but ferroelectric material was used as a dielectric/insulator instead of oxide. He envisioned it as a form of memory, years before the
963:) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200–3000 V drain-to-source voltage range of operation. 355:
of MOSFET devices. At Bell Labs, the importance of Frosch's technique was immediately realized. Results of their work circulated around Bell Labs in the form of BTL memos before being published in 1957. At
1255:
in some states. This allows extremely low-power switching, which in turn allows greater miniaturization of circuits because heat dissipation needs are reduced compared to other types of switches.
757:
of the FET. Further gate-to-source voltage increase will attract even more electrons towards the gate which are able to create an active channel from source to drain; this process is called
1057:
The FREDFET (fast-reverse or fast-recovery epitaxial diode FET) is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode, making it convenient for driving
978: 1196:. Due to the 2 dimensional structure of graphene, along with its physical properties, GFETs offer increased sensitivity, and reduced instances of 'false positives' in sensing applications 2962:
Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A; Avouris, P; Jenkins, K. A. (2011). "Wafer-Scale Graphene Integrated Circuit".
3446: 817:
rather than as a resistor, and can effectively be used as a voltage amplifier. In this case, the gate-to-source voltage determines the level of constant current through the channel.
211:
compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, it led to Bardeen and Brattain instead inventing the
1412:
Source-gated transistors are more robust to manufacturing and environmental issues in large-area electronics such as display screens, but are slower in operation than FETs.
1244:
and satellite receivers. It exhibits no offset voltage at zero drain current and makes an excellent signal chopper. It typically has better thermal stability than a BJT.
2674: 697:
Simulation result for right side: formation of inversion channel (electron density) and left side: current-gate voltage curve (transfer characteristics) in an n-channel
1054:
The DEPFET is a FET formed in a fully depleted substrate and acts as a sensor, amplifier and memory node at the same time. It can be used as an image (photon) sensor.
749:
first, enough electrons must be attracted near the gate to counter the dopant ions added to the body of the FET; this forms a region with no mobile carriers called a
1385:
uses an arrangement where the (usually "enhancement-mode") p-channel MOSFET and n-channel MOSFET are connected in series such that when one is on, the other is off.
1178:) takes advantage of quantum tunneling to greatly increase the speed of transistor operation by eliminating the traditional transistor's area of electron conduction. 3814: 3664: 278:. Shockley independently envisioned the FET concept in 1945, but he was unable to build a working device. The next year Bardeen explained his failure in terms of 1284:
Field-effect transistors are relatively robust, especially when operated within the temperature and electrical limitations defined by the manufacturer (proper
1397:, for example. FET is commonly used as an amplifier. For example, due to its large input resistance and low output resistance, it is effective as a buffer in 2621:
Sekigawa, Toshihiro; Hayashi, Yutaka (1 August 1984). "Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate".
776:
Conversely, in a p-channel "enhancement-mode" device, a conductive region does not exist and negative voltage must be used to generate a conduction channel.
644:
the transistor into operation; it is rare to make non-trivial use of the body terminal in circuit designs, but its presence is important when setting up the
311:
argues that "had Brattain and Bardeen been working with silicon instead of germanium they would have stumbled across a successful field effect transistor".
2512: 1495: 4688: 2517: 3605: 2700: 1327: 1272:
or changes to threshold voltage during handling. This is not usually a problem after the device has been installed in a properly designed circuit.
1181:
The SB-FET (Schottky-barrier field-effect transistor) is a field-effect transistor with metallic source and drain contact electrodes, which create
191:
in 1947, shortly after the 17-year patent expired. Shockley initially attempted to build a working FET by trying to modulate the conductivity of a
4329: 3615: 3213:
Sarvari H.; Ghayour, R.; Dastjerdy, E. (2011). "Frequency analysis of graphene nanoribbon FET by Non-Equilibrium Green's Function in mode space".
1161: 104: 2083:, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13 1828:, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13 3481: 3259: 2918: 2893: 2860: 2835: 2810: 2773: 2745: 2605: 2466: 2336: 2242: 2022: 1995: 1970: 1945: 1920: 1889: 1809: 1754: 1653: 1615: 1582: 1557: 1512: 1404:
IGBTs are used in switching internal combustion engine ignition coils, where fast switching and voltage blocking capabilities are important.
1247:
Because the FETs are controlled by gate charge, once the gate is closed or open, there is no additional power draw, as there would be with a
992:(ion-sensitive field-effect transistor) can be used to measure ion concentrations in a solution; when the ion concentration (such as H, see 4246: 3498: 2664: 126:
in their operation, but not both. Many different types of field effect transistors exist. Field effect transistors generally display very
4027: 3807: 3657: 2280: 407: 2211: 2186: 789:
increased further, the pinch-off point of the channel begins to move away from the drain towards the source. The FET is said to be in
3014: 2540: 4857: 4010: 3906: 1353: 1105: 1076: 960: 357: 677:
circuits because the physical orientation of the FET was decided for other reasons, such as printed circuit layout considerations.
319:
of atoms, molecules and ions by the oxide from the ambient. The latter were found to be much more numerous and to have much longer
282:. Bardeen applied the theory of surface states on semiconductors (previous work on surface states was done by Shockley in 1939 and 259:
from penetrating into the material. By the mid-1950s, researchers had largely given up on the FET concept, and instead focused on
4887: 4150: 3877: 1421: 1382: 971: 352: 342:. They showed that oxide layer prevented certain dopants into the silicon wafer, while allowing for others, thus discovering the 223: 1215: 4198: 3997: 2487: 1175: 1168: 856: 800:
Even though the conductive channel formed by gate-to-source voltage no longer connects source to drain during saturation mode,
238:
and Y. Watanabe in 1950. Following Shockley's theoretical treatment on the JFET in 1952, a working practical JFET was built by
554:
source (S), through which the carriers enter the channel. Conventionally, current entering the channel at S is designated by I
461:, and much lower power consumption and higher density than bipolar junction transistors, the MOSFET made it possible to build 3800: 3650: 2234: 1331: 1087: 475: 3521: 1207:
between the gate, allowing the transistor to retain its state in the absence of bias - such devices may have application as
561:
drain (D), through which the carriers leave the channel. Conventionally, current leaving the channel at D is designated by I
4877: 3159: 1474: 974:) is a type of Field-effect transistor (FET) which channel is one or multiple nanowires and does not present any junction. 88: 4882: 4872: 4867: 4229: 3981: 1436: 303:
and in the process their oxide got inadvertently washed off. They stumbled upon a completely different transistor, the
4033: 3970: 3771: 3693: 2178: 1912: 1248: 1233: 1066: 1046: 1016: 886:
Depletion-type FETs under typical voltages: JFET, poly-silicon MOSFET, double-gate MOSFET, metal-gate MOSFET, MESFET.
618: 509: 260: 231: 216: 1316: 1264: 543:, flow from the source to the drain. Source and drain terminal conductors are connected to the semiconductor through 392:
was used as a gate dielectric, but he didn't pursue the idea. In his other patent filed the same year he described a
17: 4693: 4240: 3422: 2669: 1504: 1335: 1320: 4852: 4447: 4161: 4004: 3889: 874:. These transistors are capable of about 2.23 GHz cutoff frequency, much higher than standard silicon FETs. 830: 645: 467: 419:
and Lincoln Derrick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed
143: 4314: 4862: 4456: 4166: 4022: 547:. The conductivity of the channel is a function of the potential applied across the gate and source terminals. 304: 212: 1518: 3460: 3448:
IBM Research Unveils 'VTFET': A Revolutionary New Chip Architecture Which is Two Times the Performance finFET
1012:, cell-based BioFETs (CPFETs), beetle/chip FETs (BeetleFETs), and FETs based on ion-channels/protein binding. 400:, conceived of a device similar to the later proposed MOSFET, although Labate's device didn't explicitly use 4467: 4187: 2545: 2428: 2288: 1673: 1269: 848: 834: 635: 493: 462: 360:, Shockley had circulated the preprint of their article in December 1956 to all his senior staff, including 343: 160: 152: 917:
Top: source, bottom: drain, left: gate, right: bulk. Voltages that lead to channel formation are not shown.
572:
gate (G), the terminal that modulates the channel conductivity. By applying voltage to G, one can control I
4636: 4203: 4068: 4044: 3781: 1042:(junction field-effect transistor) uses a reverse biased p–n junction to separate the gate from the body. 922: 180: 159:
The concept of a field-effect transistor (FET) was first patented by the Austro-Hungarian born physicist
103:. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the 4705: 4657: 4478: 4294: 4209: 4140: 3976: 3766: 3536:"Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits" 1094: 982: 939: 860: 641: 148: 1598:
Nishizawa, Jun-Ichi (1982). "Junction Field-Effect Devices". In Sittig, Roland; Roggwiller, P. (eds.).
250:
in general. Junction transistors were relatively bulky devices that were difficult to manufacture on a
2395: 4779: 4523: 4418: 4192: 4085: 3939: 3900: 3831: 3823: 3547: 3361: 3288: 3222: 3116: 3055: 2971: 2630: 2423: 1645: 1549: 1150: 1109: 852: 497: 385: 377: 320: 168: 119: 28: 1093:
The TQFET (topological quantum field-effect transistor) switches a 2D material from dissipationless
4499: 4407: 4299: 4135: 4112: 3686: 2885: 1237: 1208: 1132: 1072:
The HIGFET (heterostructure insulated-gate field-effect transistor) is now used mainly in research.
837: 693: 420: 335: 247: 1773:(1994). "Research on crystal rectifiers during World War II and the invention of the transistor". 4804: 4664: 4372: 4339: 4155: 4039: 4017: 3351: 3320: 3185: 3140: 2995: 2377: 1378: 871: 649: 389: 381: 235: 3620: 2935: 2131: 3594: 2802: 2678: 4799: 4720: 4611: 4563: 4392: 4319: 4281: 3573: 3477: 3403: 3385: 3377: 3312: 3304: 3255: 3249: 3132: 3071: 2987: 2914: 2889: 2856: 2831: 2806: 2769: 2741: 2646: 2601: 2462: 2452: 2369: 2332: 2238: 2207: 2182: 2170: 2151: 2062: 2018: 1991: 1966: 1941: 1916: 1885: 1805: 1750: 1649: 1639: 1611: 1578: 1553: 1508: 844: 754: 705: 666: 484:(complementary MOS), a semiconductor device fabrication process for MOSFETs, was developed by 347: 327:
and others came up with various methods of producing atomically clean semiconductor surfaces.
2595: 2228: 2012: 1906: 1879: 1543: 1124: 785:
like a variable resistor and the FET is said to be operating in a linear mode or ohmic mode.
4515: 4462: 4324: 4289: 3928: 3722: 3707: 3563: 3555: 3393: 3369: 3296: 3230: 3124: 3107: 3063: 2979: 2877: 2798: 2790: 2638: 2361: 2143: 2112: 2054: 1860: 1782: 1770: 1703: 1603: 1451: 1182: 1128: 953: 805: 750: 741: 517: 393: 324: 308: 267: 184: 76: 1003:(Biologically sensitive field-effect transistor) is a class of sensors/biosensors based on 315:
interface. Slow surface states were found to be associated with the oxide layer because of
4792: 4725: 4578: 4309: 4219: 4063: 3040: 1478: 943: 801: 478:
calls it a "groundbreaking invention that transformed life and culture around the world".
425: 401: 339: 288: 275: 251: 239: 227: 2878: 3551: 3365: 3292: 3226: 3120: 3059: 2975: 2634: 2042: 804:
are not blocked from flowing. Considering again an n-channel enhancement-mode device, a
396:
FET. In March 1957, in his laboratory notebook, Ernesto Labate, a research scientist at
4767: 4548: 4538: 4304: 4107: 3702: 3610: 3568: 3535: 3398: 3339: 2258: 2100: 1848: 1723: 1062: 814: 533: 458: 446: 368: 279: 256: 243: 196: 127: 123: 72: 2513:"Remarks by Director Iancu at the 2019 International Intellectual Property Conference" 1542:
Puers, Robert; Baldi, Livio; Voorde, Marcel Van de; Nooten, Sebastiaan E. van (2017).
1116:. The fully depleted wide-band-gap material forms the isolation between gate and body. 4846: 4829: 4652: 4568: 4387: 4214: 4182: 3740: 2791: 2737: 2729: 2642: 2230:
To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology
2147: 2014:
To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology
1431: 1374:(complementary metal oxide semiconductor) process technology is the basis for modern 1204: 1097:('on' state) to conventional insulator ('off' state) using an applied electric field. 1023:, by using a gate made of single-strand DNA molecules to detect matching DNA strands. 926: 725: 544: 540: 489: 485: 200: 192: 80: 3599: 2381: 4710: 4698: 4586: 4553: 4382: 4367: 3950: 3934: 3745: 3338:
Prakash, Abhijith; Ilatikhameneh, Hesameddin; Wu, Peng; Appenzeller, Joerg (2017).
3190: 3144: 3105:(2011). "Tunnel field-effect transistors as energy-efficient electronic switches". 2999: 1398: 1394: 1390: 1375: 1143: 1080: 993: 964: 271: 176: 84: 3324: 3088: 2580:
D. Kahng and S. M. Sze, "A floating gate and its application to memory devices",
1963:
Development of HfO2-Based Ferroelectric Memories for Future CMOS Technology Nodes
1744: 1607: 1481:
US Patent no. 1,745,175 (filed: 8 October 1926 ; issued: 28 January 1930).
4752: 4494: 4443: 4349: 4334: 4117: 4079: 3750: 3712: 3234: 2262: 1305: 685: 505: 471: 450: 416: 361: 331: 39: 3373: 3340:"Understanding contact gating in Schottky barrier transistors from 2D channels" 2482: 2365: 2080: 1825: 1471: 234:(SIT), a type of JFET with a short channel, was invented by Japanese engineers 4824: 4814: 4747: 4621: 4591: 4558: 4533: 4528: 4505: 4377: 4357: 4235: 4097: 4074: 3960: 3862: 3857: 3852: 3673: 3631: 3389: 3186:"Organic transistor paves way for new generations of neuro-inspired computers" 3102: 3041:"Recent advances in biologically sensitive field-effect transistors (BioFETs)" 2567: 1786: 1669: 1289: 1188:
The GFET is a highly sensitive graphene-based field effect transistor used as
411:
1957, Diagram of one of the SiO2 transistor devices made by Frosch and Derrick
316: 172: 164: 68: 3381: 3316: 3308: 3300: 2650: 2373: 2309: 2155: 2066: 1641:
Advanced Materials Innovation: Managing Global Technology in the 21st century
949:) between the gate and the body. This is by far the most common type of FET. 4787: 4631: 4626: 4616: 4543: 4423: 4257: 4252: 4177: 4102: 3676: 3625: 2983: 1670:"The Foundation of Today's Digital World: The Triumph of the MOS Transistor" 1189: 1020: 882: 585: 501: 397: 300: 283: 204: 188: 3577: 3407: 3276: 3136: 3075: 2991: 114:
since they involve single-carrier-type operation. That is, FETs use either
967:
are still the device of choice for drain-to-source voltages of 1 to 200 V.
829:
is by far the most common. Most FETs are made by using conventional bulk
4809: 4757: 4737: 4715: 4601: 4596: 4484: 4473: 4402: 4172: 3522:
Slow Body Diode Failures of Field Effect Transistors (FETs): A Case Study
2940: 2458: 1881:
Makers of the Microchip: A Documentary History of Fairchild Semiconductor
1285: 1058: 867: 721: 698: 115: 3792: 3642: 3128: 1908:
ULSI Process Integration III: Proceedings of the International Symposium
712: 130:
at low frequencies. The most widely used field-effect transistor is the
4669: 4606: 4428: 4413: 4267: 4224: 3872: 3776: 3635: 2855:. Upper Saddle River NJ: Pearson Education/Prentice-Hall. p. 102. 2400: 2058: 1727: 1446: 826: 810: 670: 521: 296: 3559: 2331:. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. 2116: 2101:"Surface Protection and Selective Masking during Diffusion in Silicon" 1864: 1849:"Surface Protection and Selective Masking during Diffusion in Silicon" 1708: 1236:(BJT), and is found in noise-sensitive electronics such as tuners and 996:) changes, the current through the transistor will change accordingly. 520:
MOSFET, originated from the research of Digh Hisamoto and his team at
4742: 4433: 4397: 4362: 3922: 3894: 3867: 3842: 3067: 1441: 1367: 1219: 1200: 1193: 1139: 1120: 1113: 1030: 1026: 1009: 1000: 935: 701: 513: 440: 208: 131: 740:"depletion-mode" device, a negative gate-to-source voltage causes a 3499:"Origins of SiC FETs and Their Evolution Toward the Perfect Switch" 3356: 266:
The foundations of MOSFET technology were laid down by the work of
4819: 4730: 4489: 4262: 4055: 3917: 3912: 2707: 1252: 1004: 989: 881: 825:
FETs can be constructed from various semiconductors, out of which
711: 692: 689:
I–V characteristics and output plot of a JFET n-channel transistor
684: 584: 372: 2265:(1960). "Silicon-silicon dioxide field induced surface devices". 4762: 4145: 4091: 3992: 3945: 3883: 3534:
Sporea, R.A.; Trainor, M.J.; Young, N.D.; Silva, S.R.P. (2014).
2281:"1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated" 1426: 1371: 1149:
The GNRFET (graphene nanoribbon field-effect transistor) uses a
1101: 1039: 938:(metal–oxide–semiconductor field-effect transistor) utilizes an 481: 334:
and Lincoln Derrick accidentally covered the surface of silicon
155:, who proposed the concept of a field-effect transistor in 1925. 3796: 3646: 2701:"The Breakthrough Advantage for FPGAs with Tri-Gate Technology" 1108:), also called a HFET (heterostructure FET), can be made using 3251:
Semiconductor Glossary: A Resource for Semiconductor Community
1698:
Howard R. Duff (2001). "John Bardeen and transistor physics".
1299: 1241: 1123:(metal–semiconductor field-effect transistor) substitutes the 656:
in the diagram, is the distance between source and drain. The
3160:"Topological off-on switch could make new type of transistor" 2884:(Fifth ed.). New York: Oxford University Press. p.  753:, and the voltage at which this occurs is referred to as the 351:
as oxide diffusion masking, which would later be used in the
3626:
The Field Effect Transistor as a Voltage Controlled Resistor
1545:
Nanoelectronics: Materials, Devices, Applications, 2 Volumes
1033:
or gate-all-around FET, used on high density processor chips
3634:. rolinychupetin (L.R.Linares). March 30, 2013 – via 2913:(Fourth ed.). New York: Wiley. pp. Â§1.5.2 p. 45. 2541:"1963: Complementary MOS Circuit Configuration is Invented" 1075:
The MODFET (modulation-doped field-effect transistor) is a
167:
in 1934, but they were unable to build a working practical
43:
Cross-sectional view of a field-effect transistor, showing
3616:
Winning the Battle Against Latchup in CMOS Analog Switches
2132:"The mechanisms for silicon oxidation in steam and oxygen" 866:
In June 2011, IBM announced that it had successfully used
454:
H. K. Gummel and R. Lindner who characterized the device.
2830:. Englewood Cliffs, NJ: Prentice Hall. pp. 315–316. 1185:
at both the source-channel and drain-channel interfaces.
424:
thermally grown oxides and fabricated a high quality Si/
195:, but was unsuccessful, mainly due to problems with the 1472:"Method and apparatus for controlling electric current" 1288:). However, modern FET devices can often incorporate a 1083:
structure formed by graded doping of the active region.
516:(fin field-effect transistor), a type of 3D non-planar 2206:. Springer Science & Business Media. p. 322. 1940:. Springer Science & Business Media. p. 324. 1497:
The Design of CMOS Radio-Frequency Integrated Circuits
1393:). With this concept, one can construct a solid-state 246:
in 1953. However, the JFET still had issues affecting
222:
The first FET device to be successfully built was the
3423:"What Are Graphene Field Effect Transistors (GFETs)?" 3215:
Physica E: Low-dimensional Systems and Nanostructures
2936:"IBM creates first graphene based integrated circuit" 2828:
Electronic circuits: analysis, simulation, and design
2600:. Springer Science & Business Media. p. 11. 1878:
Christophe LĂ©cuyer; David C. Brook; Jay Last (2010).
134:(metal–oxide–semiconductor field-effect transistor). 2171:"Highlights Of Silicon Thermal Oxidation Technology" 534:
Charge carrier § Majority and minority carriers
18:
Fast-reverse epitaxial diode field-effect transistor
4778: 4678: 4645: 4577: 4514: 4442: 4348: 4280: 4126: 4054: 3959: 3841: 3830: 3759: 3730: 3692: 2352:Motoyoshi, M. (2009). "Through-Silicon Via (TSV)". 512:researchers Toshihiro Sekigawa and Yutaka Hayashi. 3600:How Semiconductors and Transistors Work (MOSFETs) 3039:Schöning, Michael J.; Poghossian, Arshak (2002). 2911:Analysis and design of analog integrated circuits 2675:Institute of Electrical and Electronics Engineers 2043:"Frosch and Derick: Fifty Years Later (Foreword)" 3621:Field Effect Transistors in Theory and Practice 3015:"Flexible graphene transistor sets new records" 2793:MOSFET modeling for circuit analysis and design 2267:IRE-AIEE Solid State Device Research Conference 1263:A field-effect transistor has a relatively low 1171:) uses an organic semiconductor in its channel. 2909:PR Gray; PJ Hurst; SH Lewis; RG Meyer (2001). 2017:. Johns Hopkins University Press. p. 22. 1802:Crystal Fire: The Birth of the Information Age 956:) or DGMOS, a MOSFET with two insulated gates. 621:. Most FETs have a fourth terminal called the 3808: 3658: 2130:Ligenza, J. R.; Spitzer, W. G. (1960-07-01). 2041:Huff, Howard; Riordan, Michael (2007-09-01). 1049:(SIT) is a type of JFET with a short channel. 8: 3275:Appenzeller J, et al. (November 2008). 2768:. Singapore: McGraw-Hill. pp. 384–385. 1600:Semiconductor Devices for Power Conditioning 1008:(ImmunoFETs), gene-modified FETs (GenFETs), 979:metal–nitride–oxide–semiconductor transistor 780:Effect of drain-to-source voltage on channel 2789:Galup-Montoro, C.; Schneider, M.C. (2007). 1749:. The Electrochemical Society. p. 43. 1633: 1631: 1629: 1627: 1334:. Unsourced material may be challenged and 175:effect was later observed and explained by 3838: 3815: 3801: 3793: 3665: 3651: 3643: 2759: 2757: 2136:Journal of Physics and Chemistry of Solids 1800:Michael Riordan; Lillian Hoddeson (1997). 1216:Vertical-Transport Field-Effect Transistor 843:Among the more unusual body materials are 215:in 1947, which was followed by Shockley's 27:"FET" redirects here. For other uses, see 3567: 3397: 3355: 2518:United States Patent and Trademark Office 2314:Technical memorandum of Bell Laboratories 1707: 1354:Learn how and when to remove this message 605:terminals that correspond roughly to the 508:MOSFET was first demonstrated in 1984 by 2597:FinFETs and Other Multi-Gate Transistors 2507: 2505: 2310:"Silicon-Silicon Dioxide Surface Device" 2175:Silicon materials science and technology 1389:switching analog signals between paths ( 1222:to allow higher density and lower power. 708:for this device lies around 0.45 V. 406: 147: 38: 2665:"IEEE Andrew S. Grove Award Recipients" 2454:High Performance Audio Power Amplifiers 1463: 1162:carbon nanotube field-effect transistor 1146:organic memory field-effect transistor. 793:; although some authors refer to it as 2105:Journal of The Electrochemical Society 1853:Journal of The Electrochemical Society 1019:) is a specialized FET that acts as a 435:Metal-oxide-semiconductor FET (MOSFET) 3476:. New Delhi: Prentice-Hall of India. 3474:Electronic devices and siraj circuits 3281:IEEE Transactions on Electron Devices 2584:, vol. 46, no. 4, 1967, pp. 1288–1295 2047:The Electrochemical Society Interface 2036: 2034: 1842: 1840: 1489: 1487: 1090:) is based on band-to-band tunneling. 851:or other amorphous semiconductors in 226:(JFET). A JFET was first patented by 91:(MOSFET). FETs have three terminals: 7: 4247:Three-dimensional integrated circuit 2851:Spencer, R.R.; Ghausi, M.S. (2001). 2396:"Transistors Keep Moore's Law Alive" 2329:History of Semiconductor Engineering 2204:History of Semiconductor Engineering 1938:History of Semiconductor Engineering 1693: 1691: 1332:adding citations to reliable sources 4028:Programmable unijunction transistor 3632:"The FET (field effect transistor)" 3158:DumĂ©, Isabelle (12 December 2018). 1112:in a ternary semiconductor such as 831:semiconductor processing techniques 522:Hitachi Central Research Laboratory 3929:Multi-gate field-effect transistor 2876:Sedra, A. S.; Smith, K.C. (2004). 1366:The most commonly used FET is the 840:as the active region, or channel. 25: 3907:Insulated-gate bipolar transistor 3254:. World Scientific. p. 244. 2582:The Bell System Technical Journal 2099:Frosch, C. J.; Derick, L (1957). 1847:Frosch, C. J.; Derick, L (1957). 1401:(source follower) configuration. 1106:high-electron-mobility transistor 1077:high-electron-mobility transistor 981:) utilizes a nitride-oxide layer 961:insulated-gate bipolar transistor 681:Effect of gate voltage on current 589:Cross section of an n-type MOSFET 4151:Heterostructure barrier varactor 3878:Chemical field-effect transistor 3721: 3685: 3606:Junction Field Effect Transistor 1961:Stefan Ferdinand MĂĽller (2016). 1746:ULSI Science and Technology/1997 1702:. Vol. 550. pp. 3–32. 1422:Chemical field-effect transistor 1304: 1131:; and is used in GaAs and other 972:Junctionless nanowire transistor 857:organic field-effect transistors 652:. The size of the gate, length 224:junction field-effect transistor 4199:Mixed-signal integrated circuit 3595:PBS The Field Effect Transistor 3091:, HIGFET and method - Motorola] 3013:Belle DumĂ© (10 December 2012). 2766:Electronic devices and circuits 2734:Electronic devices and circuits 2571:, filed in 1960, issued in 1963 2488:National Inventors Hall of Fame 1176:quantum field effect transistor 1169:organic field-effect transistor 640:This fourth terminal serves to 550:The FET's three terminals are: 496:in 1963. The first report of a 2424:"Who Invented the Transistor?" 2235:Johns Hopkins University Press 1986:B.G Lowe; R.A. Sareen (2013). 1804:. W. W. Norton & Company. 1638:Moskowitz, Sanford L. (2016). 1602:. Springer. pp. 241–272. 1088:tunnel field-effect transistor 985:between the gate and the body. 565:. Drain-to-source voltage is V 476:US Patent and Trademark Office 107:between the drain and source. 1: 3277:"Toward Nanowire Electronics" 2934:Bob Yirka (10 January 2011). 1988:Semiconductor X-Ray Detectors 1884:. MIT Press. pp. 62–63. 1575:The Physics of Semiconductors 1218:, IBM's 2021 modification of 720:The FET controls the flow of 716:FET conventional symbol types 89:metal-oxide-semiconductor FET 4230:Silicon controlled rectifier 4092:Organic light-emitting diode 3982:Diffused junction transistor 3461:VIII.5. Noise in Transistors 2643:10.1016/0038-1101(84)90036-4 2148:10.1016/0022-3697(60)90219-5 1608:10.1007/978-1-4684-7263-9_11 1437:Field effect (semiconductor) 1065:, especially medium-powered 925:to produce either an n-type 835:single crystal semiconductor 500:was made by Dawon Kahng and 4034:Static induction transistor 3971:Bipolar junction transistor 3923:MOS field-effect transistor 3895:Fin field-effect transistor 3772:Complementary feedback pair 3694:Bipolar junction transistor 3497:Bhalla, Anup (2021-09-17). 3235:10.1016/j.physe.2011.04.018 2227:Bassett, Ross Knox (2007). 2179:The Electrochemical Society 2011:Bassett, Ross Knox (2007). 1913:The Electrochemical Society 1743:Massoud, Hisham Z. (1997). 1249:bipolar junction transistor 1234:bipolar junction transistor 1047:static induction transistor 1017:DNA field-effect transistor 510:Electrotechnical Laboratory 261:bipolar junction transistor 232:static induction transistor 217:bipolar junction transistor 4904: 4241:Static induction thyristor 3472:Allen Mottershead (2004). 3374:10.1038/s41598-017-12816-3 2670:IEEE Andrew S. Grove Award 2366:10.1109/JPROC.2008.2007462 1700:AIP Conference Proceedings 1573:Grundmann, Marius (2010). 1505:Cambridge University Press 859:(OFETs) that are based on 531: 438: 171:based on the concept. The 141: 83:. It comes in two types: 26: 4410:(Hexode, Heptode, Octode) 4162:Hybrid integrated circuit 4005:Light-emitting transistor 3719: 3683: 2738:McGraw-Hill International 1787:10.1080/07341519408581858 468:communications technology 445:Following this research, 144:History of the transistor 4858:Field-effect transistors 4457:Backward-wave oscillator 4167:Light emitting capacitor 4023:Point-contact transistor 3993:Junction Gate FET (JFET) 3301:10.1109/ted.2008.2008011 2880:Microelectronic circuits 2853:Microelectronic circuits 2826:Norbert R Malik (1995). 921:The channel of a FET is 809:a resistance similar to 305:point-contact transistor 213:point-contact transistor 4888:South Korean inventions 4468:Crossed-field amplifier 3987:Field-effect transistor 3732:Field-effect transistor 2984:10.1126/science.1204428 2623:Solid-State Electronics 2546:Computer History Museum 2429:Computer History Museum 2354:Proceedings of the IEEE 2289:Computer History Museum 2169:Deal, Bruce E. (1998). 1905:Claeys, Cor L. (2003). 1674:Computer History Museum 1494:Lee, Thomas H. (2003). 1408:Source-gated transistor 1270:electrostatic discharge 930:Types of FETs include: 849:polycrystalline silicon 815:constant-current source 494:Fairchild Semiconductor 255:prevented the external 161:Julius Edgar Lilienfeld 153:Julius Edgar Lilienfeld 110:FETs are also known as 75:to control the flow of 61:field-effect transistor 4637:Voltage-regulator tube 4204:MOS integrated circuit 4069:Constant-current diode 4045:Unijunction transistor 3602:WeCanFigureThisOut.org 3503:Power Electronics News 3248:Jerzy Ruzyllo (2016). 2764:Jacob Millman (1985). 2594:Colinge, J.P. (2008). 1775:History and Technology 1729:Designing Analog Chips 1265:gain–bandwidth product 918: 861:organic semiconductors 717: 709: 690: 590: 412: 358:Shockley Semiconductor 181:Walter Houser Brattain 156: 56: 4706:Electrolytic detector 4479:Inductive output tube 4295:Low-dropout regulator 4210:Organic semiconductor 4141:Printed circuit board 3977:Darlington transistor 3824:Electronic components 3767:Darlington transistor 3760:Multiple transistors: 3089:freepatentsonline.com 2568:U.S. patent 3,102,230 1646:John Wiley & Sons 1550:John Wiley & Sons 1251:or with non-latching 1095:topological insulator 885: 853:thin-film transistors 715: 696: 688: 588: 410: 371:filed a patent for a 169:semiconducting device 151: 142:Further information: 42: 4878:Hungarian inventions 4524:Beam deflection tube 4193:Metal oxide varistor 4086:Light-emitting diode 3940:Thin-film transistor 3901:Floating-gate MOSFET 2797:. London/Singapore: 2681:on September 9, 2018 2451:Duncan, Ben (1996). 1328:improve this section 1238:low-noise amplifiers 581:More about terminals 498:floating-gate MOSFET 380:. In February 1957, 378:floating gate MOSFET 248:junction transistors 183:while working under 128:high input impedance 112:unipolar transistors 29:FET (disambiguation) 4883:Japanese inventions 4873:Egyptian inventions 4868:Austrian inventions 4500:Traveling-wave tube 4300:Switching regulator 4136:Printed electronics 4113:Step recovery diode 3890:Depletion-load NMOS 3611:CMOS gate circuitry 3552:2014NatSR...4E4295S 3366:2017NatSR...712596P 3293:2008ITED...55.2827A 3227:2011PhyE...43.1509S 3129:10.1038/nature10679 3121:2011Natur.479..329I 3060:2002Ana...127.1137S 2976:2011Sci...332.1294L 2970:(6035): 1294–1297. 2635:1984SSEle..27..827S 1577:. Springer-Verlag. 1379:integrated circuits 1209:non-volatile memory 1151:graphene nanoribbon 1133:III-V semiconductor 1127:of the JFET with a 1110:bandgap engineering 1067:brushless DC motors 421:surface passivation 384:filed a patent for 4805:Crystal oscillator 4665:Variable capacitor 4340:Switched capacitor 4282:Voltage regulators 4156:Integrated circuit 4040:Tetrode transistor 4018:Pentode transistor 4011:Organic LET (OLET) 3998:Organic FET (OFET) 3540:Scientific Reports 3344:Scientific Reports 3194:. January 29, 2010 2404:. 12 December 2018 2327:Lojek, Bo (2007). 2308:KAHNG, D. (1961). 2285:The Silicon Engine 2237:. pp. 22–23. 2202:Lojek, Bo (2007). 2059:10.1149/2.F02073IF 1936:Lojek, Bo (2007). 1915:. pp. 27–30. 1477:2022-04-09 at the 1383:process technology 919: 872:integrated circuit 870:-based FETs in an 718: 710: 691: 667:transmission gates 650:integrated circuit 591: 413: 390:germanium monoxide 263:(BJT) technology. 236:Jun-ichi Nishizawa 157: 57: 36:Type of transistor 4840: 4839: 4800:Ceramic resonator 4612:Mercury-arc valve 4564:Video camera tube 4516:Cathode-ray tubes 4276: 4275: 3884:Complementary MOS 3790: 3789: 3560:10.1038/srep04295 3483:978-81-203-0124-5 3287:(11): 2827–2845. 3261:978-981-4749-56-5 3115:(7373): 329–337. 2920:978-0-471-32168-2 2895:978-0-19-514251-8 2862:978-0-201-36183-4 2837:978-0-02-374910-0 2812:978-981-256-810-6 2775:978-0-07-085505-2 2747:978-0-07-085505-2 2607:978-0-387-71751-7 2468:978-0-08-050804-7 2432:. 4 December 2013 2338:978-3-540-34258-8 2244:978-0-8018-8639-3 2117:10.1149/1.2428650 2024:978-0-8018-8639-3 1997:978-1-4665-5401-6 1972:978-3-7392-4894-3 1947:978-3-540-34258-8 1922:978-1-56677-376-8 1891:978-0-262-01424-3 1865:10.1149/1.2428650 1811:978-0-393-04124-8 1756:978-1-56677-130-6 1709:10.1063/1.1354371 1655:978-0-470-50892-3 1617:978-1-4684-7265-3 1584:978-3-642-13884-3 1559:978-3-527-34053-8 1514:978-1-139-64377-1 1470:Lilienfeld, J.E. 1364: 1363: 1356: 1183:Schottky barriers 845:amorphous silicon 755:threshold voltage 706:threshold voltage 528:Basic information 16:(Redirected from 4895: 4853:Transistor types 4694:electrical power 4579:Gas-filled tubes 4463:Cavity magnetron 4290:Linear regulator 3839: 3817: 3810: 3803: 3794: 3782:Long-tailed pair 3725: 3708:Common collector 3689: 3667: 3660: 3653: 3644: 3639: 3582: 3581: 3571: 3531: 3525: 3519: 3513: 3512: 3510: 3509: 3494: 3488: 3487: 3469: 3463: 3458: 3452: 3444: 3438: 3437: 3435: 3433: 3418: 3412: 3411: 3401: 3359: 3335: 3329: 3328: 3272: 3266: 3265: 3245: 3239: 3238: 3221:(8): 1509–1513. 3210: 3204: 3203: 3201: 3199: 3182: 3176: 3175: 3173: 3171: 3166:. IOP Publishing 3155: 3149: 3148: 3101:Ionescu, A. M.; 3098: 3092: 3086: 3080: 3079: 3068:10.1039/B204444G 3054:(9): 1137–1151. 3045: 3036: 3030: 3029: 3027: 3025: 3010: 3004: 3003: 2959: 2953: 2952: 2950: 2948: 2931: 2925: 2924: 2906: 2900: 2899: 2883: 2873: 2867: 2866: 2848: 2842: 2841: 2823: 2817: 2816: 2799:World Scientific 2796: 2786: 2780: 2779: 2761: 2752: 2751: 2726: 2720: 2719: 2717: 2715: 2705: 2697: 2691: 2690: 2688: 2686: 2677:. Archived from 2661: 2655: 2654: 2618: 2612: 2611: 2591: 2585: 2578: 2572: 2570: 2564: 2558: 2557: 2555: 2553: 2537: 2531: 2530: 2528: 2526: 2509: 2500: 2499: 2497: 2495: 2479: 2473: 2472: 2448: 2442: 2441: 2439: 2437: 2420: 2414: 2413: 2411: 2409: 2392: 2386: 2385: 2349: 2343: 2342: 2324: 2318: 2317: 2305: 2299: 2298: 2296: 2295: 2277: 2271: 2270: 2255: 2249: 2248: 2224: 2218: 2217: 2199: 2193: 2192: 2166: 2160: 2159: 2127: 2121: 2120: 2096: 2090: 2089: 2088: 2084: 2077: 2071: 2070: 2038: 2029: 2028: 2008: 2002: 2001: 1983: 1977: 1976: 1958: 1952: 1951: 1933: 1927: 1926: 1902: 1896: 1895: 1875: 1869: 1868: 1844: 1835: 1834: 1833: 1829: 1822: 1816: 1815: 1797: 1791: 1790: 1771:Lillian Hoddeson 1767: 1761: 1760: 1740: 1734: 1733: 1720: 1714: 1713: 1711: 1695: 1686: 1685: 1683: 1681: 1666: 1660: 1659: 1635: 1622: 1621: 1595: 1589: 1588: 1570: 1564: 1563: 1539: 1533: 1532: 1530: 1529: 1523: 1517:. Archived from 1502: 1491: 1482: 1468: 1452:Multigate device 1359: 1352: 1348: 1345: 1339: 1308: 1300: 1194:chemical sensors 1153:for its channel. 1129:Schottky barrier 954:dual-gate MOSFET 914: 908: 902: 896: 890: 806:depletion region 751:depletion region 742:depletion region 704:. Note that the 459:high scalability 404:as an insulator. 338:with a layer of 325:Philo Farnsworth 321:relaxation times 309:Lillian Hoddeson 268:William Shockley 185:William Shockley 21: 4903: 4902: 4898: 4897: 4896: 4894: 4893: 4892: 4863:Arab inventions 4843: 4842: 4841: 4836: 4774: 4689:audio and video 4674: 4641: 4573: 4510: 4438: 4419:Photomultiplier 4344: 4272: 4220:Quantum circuit 4128: 4122: 4064:Avalanche diode 4050: 3962: 3955: 3844: 3833: 3826: 3821: 3791: 3786: 3755: 3726: 3717: 3690: 3679: 3671: 3630: 3591: 3586: 3585: 3533: 3532: 3528: 3520: 3516: 3507: 3505: 3496: 3495: 3491: 3484: 3471: 3470: 3466: 3459: 3455: 3445: 3441: 3431: 3429: 3421:Miklos, Bolza. 3420: 3419: 3415: 3337: 3336: 3332: 3274: 3273: 3269: 3262: 3247: 3246: 3242: 3212: 3211: 3207: 3197: 3195: 3184: 3183: 3179: 3169: 3167: 3157: 3156: 3152: 3100: 3099: 3095: 3087: 3083: 3043: 3038: 3037: 3033: 3023: 3021: 3012: 3011: 3007: 2961: 2960: 2956: 2946: 2944: 2933: 2932: 2928: 2921: 2908: 2907: 2903: 2896: 2875: 2874: 2870: 2863: 2850: 2849: 2845: 2838: 2825: 2824: 2820: 2813: 2788: 2787: 2783: 2776: 2763: 2762: 2755: 2748: 2740:. p. 397. 2728: 2727: 2723: 2713: 2711: 2703: 2699: 2698: 2694: 2684: 2682: 2663: 2662: 2658: 2620: 2619: 2615: 2608: 2593: 2592: 2588: 2579: 2575: 2566: 2565: 2561: 2551: 2549: 2539: 2538: 2534: 2524: 2522: 2521:. June 10, 2019 2511: 2510: 2503: 2493: 2491: 2481: 2480: 2476: 2469: 2461:. p. 177. 2450: 2449: 2445: 2435: 2433: 2422: 2421: 2417: 2407: 2405: 2394: 2393: 2389: 2351: 2350: 2346: 2339: 2326: 2325: 2321: 2307: 2306: 2302: 2293: 2291: 2279: 2278: 2274: 2257: 2256: 2252: 2245: 2226: 2225: 2221: 2214: 2201: 2200: 2196: 2189: 2181:. p. 183. 2168: 2167: 2163: 2129: 2128: 2124: 2098: 2097: 2093: 2086: 2079: 2078: 2074: 2040: 2039: 2032: 2025: 2010: 2009: 2005: 1998: 1985: 1984: 1980: 1973: 1960: 1959: 1955: 1948: 1935: 1934: 1930: 1923: 1904: 1903: 1899: 1892: 1877: 1876: 1872: 1846: 1845: 1838: 1831: 1824: 1823: 1819: 1812: 1799: 1798: 1794: 1769: 1768: 1764: 1757: 1742: 1741: 1737: 1722: 1721: 1717: 1697: 1696: 1689: 1679: 1677: 1668: 1667: 1663: 1656: 1648:. p. 168. 1637: 1636: 1625: 1618: 1597: 1596: 1592: 1585: 1572: 1571: 1567: 1560: 1541: 1540: 1536: 1527: 1525: 1521: 1515: 1500: 1493: 1492: 1485: 1479:Wayback Machine 1469: 1465: 1460: 1418: 1410: 1360: 1349: 1343: 1340: 1325: 1309: 1298: 1282: 1261: 1229: 1063:electric motors 947: 916: 915: Insulator 912: 910: 906: 904: 900: 898: 897: Electrons 894: 892: 891: Depletion 888: 880: 823: 791:saturation mode 782: 767: 734: 683: 646:physical layout 583: 575: 568: 564: 557: 536: 530: 443: 437: 431:stack in 1960. 429: 402:silicon dioxide 340:silicon dioxide 289:surface physics 276:Walter Brattain 252:mass-production 240:George C. Dacey 228:Heinrich Welker 163:in 1925 and by 146: 140: 124:charge carriers 122:(p-channel) as 118:(n-channel) or 67:) is a type of 37: 32: 23: 22: 15: 12: 11: 5: 4901: 4899: 4891: 4890: 4885: 4880: 4875: 4870: 4865: 4860: 4855: 4845: 4844: 4838: 4837: 4835: 4834: 4833: 4832: 4827: 4817: 4812: 4807: 4802: 4797: 4796: 4795: 4784: 4782: 4776: 4775: 4773: 4772: 4771: 4770: 4768:Wollaston wire 4760: 4755: 4750: 4745: 4740: 4735: 4734: 4733: 4728: 4718: 4713: 4708: 4703: 4702: 4701: 4696: 4691: 4682: 4680: 4676: 4675: 4673: 4672: 4667: 4662: 4661: 4660: 4649: 4647: 4643: 4642: 4640: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4604: 4599: 4594: 4589: 4583: 4581: 4575: 4574: 4572: 4571: 4566: 4561: 4556: 4551: 4549:Selectron tube 4546: 4541: 4539:Magic eye tube 4536: 4531: 4526: 4520: 4518: 4512: 4511: 4509: 4508: 4503: 4497: 4492: 4487: 4482: 4476: 4471: 4465: 4460: 4453: 4451: 4440: 4439: 4437: 4436: 4431: 4426: 4421: 4416: 4411: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4370: 4365: 4360: 4354: 4352: 4346: 4345: 4343: 4342: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4286: 4284: 4278: 4277: 4274: 4273: 4271: 4270: 4265: 4260: 4255: 4250: 4244: 4238: 4233: 4227: 4222: 4217: 4212: 4207: 4201: 4196: 4190: 4185: 4180: 4175: 4170: 4164: 4159: 4153: 4148: 4143: 4138: 4132: 4130: 4124: 4123: 4121: 4120: 4115: 4110: 4108:Schottky diode 4105: 4100: 4095: 4089: 4083: 4077: 4072: 4066: 4060: 4058: 4052: 4051: 4049: 4048: 4042: 4037: 4031: 4025: 4020: 4015: 4014: 4013: 4002: 4001: 4000: 3995: 3984: 3979: 3974: 3967: 3965: 3957: 3956: 3954: 3953: 3948: 3943: 3937: 3932: 3926: 3920: 3915: 3910: 3904: 3898: 3892: 3887: 3881: 3875: 3870: 3865: 3860: 3855: 3849: 3847: 3836: 3828: 3827: 3822: 3820: 3819: 3812: 3805: 3797: 3788: 3787: 3785: 3784: 3779: 3774: 3769: 3763: 3761: 3757: 3756: 3754: 3753: 3748: 3743: 3737: 3735: 3728: 3727: 3720: 3718: 3716: 3715: 3710: 3705: 3703:Common emitter 3699: 3697: 3691: 3684: 3681: 3680: 3672: 3670: 3669: 3662: 3655: 3647: 3641: 3640: 3628: 3623: 3618: 3613: 3608: 3603: 3597: 3590: 3589:External links 3587: 3584: 3583: 3526: 3514: 3489: 3482: 3464: 3453: 3439: 3413: 3330: 3267: 3260: 3240: 3205: 3177: 3150: 3093: 3081: 3031: 3005: 2954: 2926: 2919: 2901: 2894: 2868: 2861: 2843: 2836: 2818: 2811: 2781: 2774: 2753: 2746: 2721: 2692: 2656: 2629:(8): 827–828. 2613: 2606: 2586: 2573: 2559: 2532: 2501: 2474: 2467: 2443: 2415: 2387: 2344: 2337: 2319: 2300: 2272: 2250: 2243: 2219: 2213:978-3540342588 2212: 2194: 2188:978-1566771931 2187: 2161: 2122: 2091: 2072: 2030: 2023: 2003: 1996: 1978: 1971: 1953: 1946: 1928: 1921: 1897: 1890: 1870: 1836: 1817: 1810: 1792: 1781:(2): 121–130. 1762: 1755: 1735: 1724:Hans Camenzind 1715: 1687: 1676:. 13 July 2010 1661: 1654: 1623: 1616: 1590: 1583: 1565: 1558: 1552:. p. 14. 1534: 1513: 1483: 1462: 1461: 1459: 1456: 1455: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1417: 1414: 1409: 1406: 1362: 1361: 1344:September 2018 1312: 1310: 1303: 1297: 1294: 1281: 1278: 1260: 1257: 1228: 1225: 1224: 1223: 1212: 1197: 1186: 1179: 1172: 1165: 1158: 1154: 1147: 1136: 1117: 1098: 1091: 1084: 1073: 1070: 1061:loads such as 1055: 1052: 1051: 1050: 1036: 1035: 1034: 1024: 1013: 997: 986: 975: 968: 957: 952:The DGMOSFET ( 945: 911: 905: 899: 893: 887: 879: 876: 822: 819: 781: 778: 766: 763: 733: 730: 726:electron holes 682: 679: 593:All FETs have 582: 579: 578: 577: 573: 570: 566: 562: 559: 555: 545:ohmic contacts 529: 526: 447:Mohamed Atalla 439:Main article: 436: 433: 427: 369:Ian Munro Ross 323:. At the time 280:surface states 257:electric field 197:surface states 139: 136: 73:electric field 35: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4900: 4889: 4886: 4884: 4881: 4879: 4876: 4874: 4871: 4869: 4866: 4864: 4861: 4859: 4856: 4854: 4851: 4850: 4848: 4831: 4830:mercury relay 4828: 4826: 4823: 4822: 4821: 4818: 4816: 4813: 4811: 4808: 4806: 4803: 4801: 4798: 4794: 4791: 4790: 4789: 4786: 4785: 4783: 4781: 4777: 4769: 4766: 4765: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4732: 4729: 4727: 4724: 4723: 4722: 4719: 4717: 4714: 4712: 4709: 4707: 4704: 4700: 4697: 4695: 4692: 4690: 4687: 4686: 4684: 4683: 4681: 4677: 4671: 4668: 4666: 4663: 4659: 4656: 4655: 4654: 4653:Potentiometer 4651: 4650: 4648: 4644: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4613: 4610: 4608: 4605: 4603: 4600: 4598: 4595: 4593: 4590: 4588: 4585: 4584: 4582: 4580: 4576: 4570: 4569:Williams tube 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4521: 4519: 4517: 4513: 4507: 4504: 4501: 4498: 4496: 4493: 4491: 4488: 4486: 4483: 4480: 4477: 4475: 4472: 4469: 4466: 4464: 4461: 4458: 4455: 4454: 4452: 4449: 4445: 4441: 4435: 4432: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4388:Fleming valve 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4369: 4366: 4364: 4361: 4359: 4356: 4355: 4353: 4351: 4347: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4287: 4285: 4283: 4279: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4248: 4245: 4242: 4239: 4237: 4234: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4215:Photodetector 4213: 4211: 4208: 4205: 4202: 4200: 4197: 4194: 4191: 4189: 4186: 4184: 4183:Memtransistor 4181: 4179: 4176: 4174: 4171: 4168: 4165: 4163: 4160: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4133: 4131: 4125: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4093: 4090: 4087: 4084: 4081: 4078: 4076: 4073: 4070: 4067: 4065: 4062: 4061: 4059: 4057: 4053: 4046: 4043: 4041: 4038: 4035: 4032: 4029: 4026: 4024: 4021: 4019: 4016: 4012: 4009: 4008: 4006: 4003: 3999: 3996: 3994: 3991: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3972: 3969: 3968: 3966: 3964: 3958: 3952: 3949: 3947: 3944: 3941: 3938: 3936: 3933: 3930: 3927: 3924: 3921: 3919: 3916: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3891: 3888: 3885: 3882: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3850: 3848: 3846: 3840: 3837: 3835: 3832:Semiconductor 3829: 3825: 3818: 3813: 3811: 3806: 3804: 3799: 3798: 3795: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3764: 3762: 3758: 3752: 3749: 3747: 3744: 3742: 3741:Common source 3739: 3738: 3736: 3733: 3729: 3724: 3714: 3711: 3709: 3706: 3704: 3701: 3700: 3698: 3695: 3688: 3682: 3678: 3675: 3668: 3663: 3661: 3656: 3654: 3649: 3648: 3645: 3637: 3633: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3601: 3598: 3596: 3593: 3592: 3588: 3579: 3575: 3570: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3530: 3527: 3523: 3518: 3515: 3504: 3500: 3493: 3490: 3485: 3479: 3475: 3468: 3465: 3462: 3457: 3454: 3451: 3449: 3443: 3440: 3428: 3424: 3417: 3414: 3409: 3405: 3400: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3363: 3358: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3271: 3268: 3263: 3257: 3253: 3252: 3244: 3241: 3236: 3232: 3228: 3224: 3220: 3216: 3209: 3206: 3193: 3192: 3187: 3181: 3178: 3165: 3164:Physics World 3161: 3154: 3151: 3146: 3142: 3138: 3134: 3130: 3126: 3122: 3118: 3114: 3110: 3109: 3104: 3097: 3094: 3090: 3085: 3082: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3042: 3035: 3032: 3020: 3019:Physics World 3016: 3009: 3006: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2958: 2955: 2943: 2942: 2937: 2930: 2927: 2922: 2916: 2912: 2905: 2902: 2897: 2891: 2887: 2882: 2881: 2872: 2869: 2864: 2858: 2854: 2847: 2844: 2839: 2833: 2829: 2822: 2819: 2814: 2808: 2804: 2800: 2795: 2794: 2785: 2782: 2777: 2771: 2767: 2760: 2758: 2754: 2749: 2743: 2739: 2736:. Singapore: 2735: 2731: 2730:Jacob Millman 2725: 2722: 2709: 2702: 2696: 2693: 2680: 2676: 2672: 2671: 2666: 2660: 2657: 2652: 2648: 2644: 2640: 2636: 2632: 2628: 2624: 2617: 2614: 2609: 2603: 2599: 2598: 2590: 2587: 2583: 2577: 2574: 2569: 2563: 2560: 2548: 2547: 2542: 2536: 2533: 2520: 2519: 2514: 2508: 2506: 2502: 2490: 2489: 2484: 2483:"Dawon Kahng" 2478: 2475: 2470: 2464: 2460: 2456: 2455: 2447: 2444: 2431: 2430: 2425: 2419: 2416: 2403: 2402: 2397: 2391: 2388: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2348: 2345: 2340: 2334: 2330: 2323: 2320: 2315: 2311: 2304: 2301: 2290: 2286: 2282: 2276: 2273: 2268: 2264: 2260: 2254: 2251: 2246: 2240: 2236: 2232: 2231: 2223: 2220: 2215: 2209: 2205: 2198: 2195: 2190: 2184: 2180: 2176: 2172: 2165: 2162: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2126: 2123: 2118: 2114: 2110: 2106: 2102: 2095: 2092: 2082: 2076: 2073: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2037: 2035: 2031: 2026: 2020: 2016: 2015: 2007: 2004: 1999: 1993: 1990:. CRC Press. 1989: 1982: 1979: 1974: 1968: 1964: 1957: 1954: 1949: 1943: 1939: 1932: 1929: 1924: 1918: 1914: 1910: 1909: 1901: 1898: 1893: 1887: 1883: 1882: 1874: 1871: 1866: 1862: 1858: 1854: 1850: 1843: 1841: 1837: 1827: 1821: 1818: 1813: 1807: 1803: 1796: 1793: 1788: 1784: 1780: 1776: 1772: 1766: 1763: 1758: 1752: 1748: 1747: 1739: 1736: 1731: 1730: 1725: 1719: 1716: 1710: 1705: 1701: 1694: 1692: 1688: 1675: 1671: 1665: 1662: 1657: 1651: 1647: 1643: 1642: 1634: 1632: 1630: 1628: 1624: 1619: 1613: 1609: 1605: 1601: 1594: 1591: 1586: 1580: 1576: 1569: 1566: 1561: 1555: 1551: 1547: 1546: 1538: 1535: 1524:on 2019-12-09 1520: 1516: 1510: 1506: 1499: 1498: 1490: 1488: 1484: 1480: 1476: 1473: 1467: 1464: 1457: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1432:FET amplifier 1430: 1428: 1425: 1423: 1420: 1419: 1415: 1413: 1407: 1405: 1402: 1400: 1396: 1392: 1386: 1384: 1380: 1377: 1373: 1369: 1358: 1355: 1347: 1337: 1333: 1329: 1323: 1322: 1318: 1313:This section 1311: 1307: 1302: 1301: 1295: 1293: 1291: 1287: 1280:Failure modes 1279: 1277: 1273: 1271: 1266: 1259:Disadvantages 1258: 1256: 1254: 1250: 1245: 1243: 1239: 1235: 1226: 1221: 1217: 1213: 1210: 1206: 1205:ferroelectric 1202: 1198: 1195: 1191: 1187: 1184: 1180: 1177: 1173: 1170: 1166: 1163: 1159: 1155: 1152: 1148: 1145: 1141: 1137: 1134: 1130: 1126: 1122: 1118: 1115: 1111: 1107: 1103: 1099: 1096: 1092: 1089: 1085: 1082: 1078: 1074: 1071: 1068: 1064: 1060: 1056: 1053: 1048: 1044: 1043: 1041: 1037: 1032: 1028: 1025: 1022: 1018: 1014: 1011: 1006: 1002: 998: 995: 991: 987: 984: 980: 976: 973: 969: 966: 965:Power MOSFETs 962: 958: 955: 951: 950: 948: 941: 937: 933: 932: 931: 928: 927:semiconductor 924: 884: 877: 875: 873: 869: 864: 862: 858: 854: 850: 846: 841: 839: 836: 832: 828: 820: 818: 816: 812: 807: 803: 798: 796: 792: 786: 779: 777: 774: 772: 765:p-channel FET 764: 762: 760: 756: 752: 746: 743: 739: 732:n-channel FET 731: 729: 727: 723: 714: 707: 703: 700: 695: 687: 680: 678: 674: 672: 668: 662: 661:30 GHz. 659: 655: 651: 647: 643: 639: 637: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 587: 580: 571: 560: 553: 552: 551: 548: 546: 542: 535: 527: 525: 523: 519: 515: 511: 507: 503: 499: 495: 491: 490:Frank Wanlass 487: 486:Chih-Tang Sah 483: 479: 477: 473: 469: 464: 460: 455: 452: 448: 442: 434: 432: 430: 422: 418: 409: 405: 403: 399: 395: 391: 387: 383: 382:John Wallmark 379: 374: 370: 365: 363: 359: 354: 349: 345: 341: 337: 333: 328: 326: 322: 318: 312: 310: 306: 302: 298: 292: 290: 285: 281: 277: 273: 269: 264: 262: 258: 253: 249: 245: 241: 237: 233: 230:in 1945. The 229: 225: 220: 218: 214: 210: 206: 202: 201:dangling bond 198: 194: 193:semiconductor 190: 186: 182: 178: 174: 170: 166: 162: 154: 150: 145: 137: 135: 133: 129: 125: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 81:semiconductor 78: 74: 71:that uses an 70: 66: 62: 54: 50: 46: 41: 34: 30: 19: 4587:Cold cathode 4554:Storage tube 4444:Vacuum tubes 4393:Neutron tube 4368:Beam tetrode 4350:Vacuum tubes 3986: 3935:Power MOSFET 3746:Common drain 3731: 3543: 3539: 3529: 3517: 3506:. Retrieved 3502: 3492: 3473: 3467: 3456: 3447: 3442: 3430:. Retrieved 3426: 3416: 3350:(1): 12596. 3347: 3343: 3333: 3284: 3280: 3270: 3250: 3243: 3218: 3214: 3208: 3196:. Retrieved 3191:ScienceDaily 3189: 3180: 3168:. Retrieved 3163: 3153: 3112: 3106: 3096: 3084: 3051: 3047: 3034: 3022:. Retrieved 3018: 3008: 2967: 2963: 2957: 2945:. Retrieved 2939: 2929: 2910: 2904: 2879: 2871: 2852: 2846: 2827: 2821: 2792: 2784: 2765: 2733: 2724: 2712:. Retrieved 2695: 2683:. Retrieved 2679:the original 2668: 2659: 2626: 2622: 2616: 2596: 2589: 2581: 2576: 2562: 2550:. Retrieved 2544: 2535: 2523:. Retrieved 2516: 2492:. Retrieved 2486: 2477: 2453: 2446: 2434:. Retrieved 2427: 2418: 2406:. Retrieved 2399: 2390: 2360:(1): 43–48. 2357: 2353: 2347: 2328: 2322: 2313: 2303: 2292:. Retrieved 2284: 2275: 2266: 2253: 2229: 2222: 2203: 2197: 2174: 2164: 2139: 2135: 2125: 2108: 2104: 2094: 2075: 2053:(3): 29–29. 2050: 2046: 2013: 2006: 1987: 1981: 1962: 1956: 1937: 1931: 1907: 1900: 1880: 1873: 1856: 1852: 1820: 1801: 1795: 1778: 1774: 1765: 1745: 1738: 1728: 1718: 1699: 1678:. Retrieved 1664: 1640: 1599: 1593: 1574: 1568: 1544: 1537: 1526:. Retrieved 1519:the original 1496: 1466: 1411: 1403: 1399:common-drain 1395:mixing board 1391:multiplexing 1387: 1365: 1350: 1341: 1326:Please help 1314: 1283: 1274: 1262: 1246: 1230: 1160:The CNTFET ( 1144:nanoparticle 1125:p–n junction 1081:quantum well 1029:, including 1015:The DNAFET ( 994:pH electrode 920: 865: 842: 824: 799: 794: 790: 787: 783: 775: 770: 768: 758: 747: 737: 735: 719: 675: 663: 657: 653: 634: 630: 626: 622: 614: 610: 606: 602: 598: 594: 592: 549: 537: 480: 463:high-density 456: 444: 414: 366: 329: 313: 293: 272:John Bardeen 265: 221: 177:John Bardeen 158: 111: 109: 105:conductivity 100: 96: 92: 85:junction FET 64: 60: 58: 52: 48: 44: 33: 4753:Transformer 4495:Sutton tube 4335:Charge pump 4188:Memory cell 4118:Zener diode 4080:Laser diode 3963:transistors 3845:transistors 3751:Common gate 3713:Common base 3198:January 14, 2142:: 131–136. 942:(typically 909: Metal 903: Holes 821:Composition 795:active mode 506:double-gate 504:in 1967. A 472:smartphones 451:Dawon Kahng 417:Carl Frosch 394:double gate 362:Jean Hoerni 353:fabrication 344:passivating 332:Carl Frosch 244:Ian M. Ross 87:(JFET) and 4847:Categories 4825:reed relay 4815:Parametron 4748:Thermistor 4726:resettable 4685:Connector 4646:Adjustable 4622:Nixie tube 4592:Crossatron 4559:Trochotron 4534:Iconoscope 4529:Charactron 4506:X-ray tube 4378:Compactron 4358:Acorn tube 4315:Buck–boost 4236:Solaristor 4098:Photodiode 4075:Gunn diode 4071:(CLD, CRD) 3853:Transistor 3677:amplifiers 3674:Transistor 3508:2022-01-21 3432:14 January 3390:1010581463 3357:1707.01459 3170:16 January 3024:14 January 2947:14 January 2801:. p.  2294:2023-01-16 2259:Atalla, M. 2111:(9): 547. 2081:US2802760A 1859:(9): 547. 1826:US2802760A 1528:2019-07-20 1458:References 1290:body diode 1227:Advantages 1214:VTFET, or 1190:biosensors 1174:The QFET ( 1167:The OFET ( 1135:materials. 1086:The TFET ( 977:The MNOS ( 970:The JLNT ( 959:The IGBT ( 833:, using a 673:circuits. 532:See also: 518:multi-gate 346:effect of 317:adsorption 203:, and the 173:transistor 165:Oskar Heil 69:transistor 4788:Capacitor 4632:Trigatron 4627:Thyratron 4617:Neon lamp 4544:Monoscope 4424:Phototube 4408:Pentagrid 4373:Barretter 4258:Trancitor 4253:Thyristor 4178:Memristor 4103:PIN diode 3880:(ChemFET) 3427:Graphenea 3382:2045-2322 3317:755663637 3309:0018-9383 2651:0038-1101 2374:0018-9219 2263:Kahng, D. 2156:0022-3697 2067:1064-8208 1315:does not 1059:inductive 1021:biosensor 983:insulator 940:insulator 771:p-channel 759:inversion 738:n-channel 722:electrons 636:substrate 611:collector 524:in 1989. 502:Simon Sze 470:(such as 457:With its 415:In 1955, 398:Bell Labs 388:in which 367:In 1955, 348:oxidation 330:In 1955, 301:germanium 284:Igor Tamm 219:in 1948. 205:germanium 189:Bell Labs 116:electrons 55:terminals 4810:Inductor 4780:Reactive 4758:Varistor 4738:Resistor 4716:Antifuse 4602:Ignitron 4597:Dekatron 4485:Klystron 4474:Gyrotron 4403:Nuvistor 4320:Split-pi 4206:(MOS IC) 4173:Memistor 3931:(MuGFET) 3925:(MOSFET) 3897:(FinFET) 3578:24599023 3546:: 4295. 3450:Dec 2021 3408:28974712 3137:22094693 3103:Riel, H. 3076:12375833 2992:21659599 2941:Phys.org 2732:(1985). 2459:Elsevier 2382:29105721 1726:(2005). 1475:Archived 1416:See also 1286:derating 1079:using a 868:graphene 802:carriers 699:nanowire 4711:Ferrite 4679:Passive 4670:Varicap 4658:digital 4607:Krytron 4429:Tetrode 4414:Pentode 4268:Varicap 4249:(3D IC) 4225:RF CMOS 4129:devices 3903:(FGMOS) 3834:devices 3777:Cascode 3636:YouTube 3569:3944386 3548:Bibcode 3399:5626721 3362:Bibcode 3289:Bibcode 3223:Bibcode 3145:4322368 3117:Bibcode 3056:Bibcode 3048:Analyst 3000:3020496 2972:Bibcode 2964:Science 2631:Bibcode 2525:20 July 2494:27 June 2436:20 July 2408:18 July 2401:EETimes 1680:21 July 1447:FlowFET 1381:. This 1376:digital 1336:removed 1321:sources 1203:uses a 1010:DNAFETs 827:silicon 811:silicon 671:cascode 607:emitter 474:). The 297:silicon 138:History 77:current 4743:Switch 4434:Triode 4398:Nonode 4363:Audion 4243:(SITh) 4127:Other 4094:(OLED) 4056:Diodes 4007:(LET) 3989:(FET) 3961:Other 3909:(IGBT) 3886:(CMOS) 3873:BioFET 3868:BiCMOS 3576:  3566:  3480:  3406:  3396:  3388:  3380:  3325:703393 3323:  3315:  3307:  3258:  3143:  3135:  3108:Nature 3074:  2998:  2990:  2917:  2892:  2859:  2834:  2809:  2772:  2744:  2714:4 July 2710:. 2014 2685:4 July 2649:  2604:  2552:6 July 2465:  2380:  2372:  2335:  2241:  2210:  2185:  2154:  2087:  2065:  2021:  1994:  1969:  1944:  1919:  1888:  1832:  1808:  1753:  1652:  1614:  1581:  1556:  1511:  1442:FinFET 1370:. The 1368:MOSFET 1253:relays 1220:finFET 1201:Fe FET 1140:NOMFET 1121:MESFET 1114:AlGaAs 1031:GAAFET 1027:finFET 1001:BioFET 936:MOSFET 913:  907:  901:  895:  889:  736:In an 702:MOSFET 648:of an 613:, and 601:, and 595:source 514:FinFET 441:MOSFET 209:copper 199:, the 132:MOSFET 99:, and 93:source 45:source 4820:Relay 4793:types 4731:eFUSE 4502:(TWT) 4490:Maser 4481:(IOT) 4470:(CFA) 4459:(BWO) 4383:Diode 4330:SEPIC 4310:Boost 4263:TRIAC 4232:(SCR) 4195:(MOV) 4169:(LEC) 4088:(LED) 4047:(UJT) 4036:(SIT) 4030:(PUT) 3973:(BJT) 3942:(TFT) 3918:LDMOS 3913:ISFET 3352:arXiv 3321:S2CID 3141:S2CID 3044:(PDF) 2996:S2CID 2708:Intel 2704:(PDF) 2378:S2CID 1522:(PDF) 1501:(PDF) 1157:slit. 1142:is a 1005:ISFET 990:ISFET 923:doped 878:Types 838:wafer 769:In a 658:width 633:, or 599:drain 541:holes 373:FeFET 336:wafer 120:holes 101:drain 79:in a 53:drain 4763:Wire 4721:Fuse 4305:Buck 4158:(IC) 4146:DIAC 4082:(LD) 3951:UMOS 3946:VMOS 3863:PMOS 3858:NMOS 3843:MOS 3574:PMID 3478:ISBN 3434:2019 3404:PMID 3386:OCLC 3378:ISSN 3313:OCLC 3305:ISSN 3256:ISBN 3200:2019 3172:2022 3133:PMID 3072:PMID 3026:2019 2988:PMID 2949:2019 2915:ISBN 2890:ISBN 2857:ISBN 2832:ISBN 2807:ISBN 2770:ISBN 2742:ISBN 2716:2019 2687:2019 2647:ISSN 2602:ISBN 2554:2019 2527:2019 2496:2019 2463:ISBN 2438:2019 2410:2019 2370:ISSN 2333:ISBN 2239:ISBN 2208:ISBN 2183:ISBN 2152:ISSN 2063:ISSN 2019:ISBN 1992:ISBN 1967:ISBN 1942:ISBN 1917:ISBN 1886:ISBN 1806:ISBN 1751:ISBN 1682:2019 1650:ISBN 1612:ISBN 1579:ISBN 1554:ISBN 1509:ISBN 1427:CMOS 1372:CMOS 1319:any 1317:cite 1296:Uses 1240:for 1199:The 1192:and 1138:The 1119:The 1102:HEMT 1100:The 1045:The 1040:JFET 1038:The 999:The 988:The 934:The 724:(or 669:and 642:bias 631:bulk 627:base 623:body 619:BJTs 615:base 603:gate 488:and 482:CMOS 449:and 274:and 242:and 207:and 179:and 97:gate 59:The 51:and 49:gate 4325:Ćuk 3564:PMC 3556:doi 3394:PMC 3370:doi 3297:doi 3231:doi 3125:doi 3113:479 3064:doi 3052:127 2980:doi 2968:332 2886:552 2639:doi 2362:doi 2144:doi 2113:doi 2109:104 2055:doi 1861:doi 1857:104 1783:doi 1704:doi 1604:doi 1330:by 1242:VHF 944:SiO 855:or 617:of 492:at 426:SiO 386:FET 299:to 187:at 65:FET 4849:: 4699:RF 4448:RF 3572:. 3562:. 3554:. 3542:. 3538:. 3501:. 3425:. 3402:. 3392:. 3384:. 3376:. 3368:. 3360:. 3346:. 3342:. 3319:. 3311:. 3303:. 3295:. 3285:55 3283:. 3279:. 3229:. 3219:43 3217:. 3188:. 3162:. 3139:. 3131:. 3123:. 3111:. 3070:. 3062:. 3050:. 3046:. 3017:. 2994:. 2986:. 2978:. 2966:. 2938:. 2888:. 2805:. 2803:83 2756:^ 2706:. 2673:. 2667:. 2645:. 2637:. 2627:27 2625:. 2543:. 2515:. 2504:^ 2485:. 2457:. 2426:. 2398:. 2376:. 2368:. 2358:97 2356:. 2312:. 2287:. 2283:. 2261:; 2233:. 2177:. 2173:. 2150:. 2140:14 2138:. 2134:. 2107:. 2103:. 2061:. 2051:16 2049:. 2045:. 2033:^ 1965:. 1911:. 1855:. 1851:. 1839:^ 1779:11 1777:. 1690:^ 1672:. 1644:. 1626:^ 1610:. 1548:. 1507:. 1503:. 1486:^ 1164:). 847:, 761:. 629:, 625:, 609:, 597:, 567:DS 364:. 307:. 270:, 95:, 47:, 4450:) 4446:( 3816:e 3809:t 3802:v 3734:: 3696:: 3666:e 3659:t 3652:v 3638:. 3580:. 3558:: 3550:: 3544:4 3524:. 3511:. 3486:. 3436:. 3410:. 3372:: 3364:: 3354:: 3348:7 3327:. 3299:: 3291:: 3264:. 3237:. 3233:: 3225:: 3202:. 3174:. 3147:. 3127:: 3119:: 3078:. 3066:: 3058:: 3028:. 3002:. 2982:: 2974:: 2951:. 2923:. 2898:. 2865:. 2840:. 2815:. 2778:. 2750:. 2718:. 2689:. 2653:. 2641:: 2633:: 2610:. 2556:. 2529:. 2498:. 2471:. 2440:. 2412:. 2384:. 2364:: 2341:. 2316:. 2297:. 2269:. 2247:. 2216:. 2191:. 2158:. 2146:: 2119:. 2115:: 2069:. 2057:: 2027:. 2000:. 1975:. 1950:. 1925:. 1894:. 1867:. 1863:: 1814:. 1789:. 1785:: 1759:. 1732:. 1712:. 1706:: 1684:. 1658:. 1620:. 1606:: 1587:. 1562:. 1531:. 1357:) 1351:( 1346:) 1342:( 1338:. 1324:. 1211:. 1104:( 1069:. 946:2 654:L 638:. 576:. 574:D 569:. 563:D 558:. 556:S 428:2 63:( 31:. 20:)

Index

Fast-reverse epitaxial diode field-effect transistor
FET (disambiguation)

transistor
electric field
current
semiconductor
junction FET
metal-oxide-semiconductor FET
conductivity
electrons
holes
charge carriers
high input impedance
MOSFET
History of the transistor

Julius Edgar Lilienfeld
Julius Edgar Lilienfeld
Oskar Heil
semiconducting device
transistor
John Bardeen
Walter Houser Brattain
William Shockley
Bell Labs
semiconductor
surface states
dangling bond
germanium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑