Knowledge (XXG)

Feshbach–Fano partitioning

Source 📝

22: 239:
should be chosen such that the resulting background scattering phase or cross-section is slowly depending on the scattering energy in the neighbourhood of the resonances (this is the so-called flat continuum hypothesis). If one succeeds in translating the flat continuum hypothesis in a mathematical
222:
are not defined within the Feshbach–Fano method. This is its major power as well as its major weakness. On the one hand, this makes the method very general and, on the other hand, it introduces some arbitrariness which is difficult to control. Some authors define first the P space as an
450: 266:. It is often supposed that the solution of this problem is trivial or at least fulfilling some standard hypotheses which allow to skip its full resolution. Second by solving the resonant scattering problem corresponding to the effective complex (energy dependent) Hamiltonian 883: 694: 272: 530: 732: 495: 599: 43: 759: 735: 618: 899: 94: 66: 231:
space as an approximation to the resonance. This step relies always on some physical intuition which is not easy to quantify. In practice
73: 445:{\displaystyle H_{\mathrm {eff} }(E)=QHQ+\lim _{\varepsilon \to 0}QHP{1 \over E+i\varepsilon -PHP}PHQ=QHQ+\Delta (E)-i\Gamma (E)/2,\,} 113: 80: 62: 47: 894: 256: 455:
whose dimension is equal to the number of interacting resonances and depends parametrically on the scattering energy
32: 924: 51: 36: 87: 500: 252: 151: 702: 465: 746: 166: 904: 200: 538: 131: 127: 211:
are interpreted as the projectors on the background and the resonant subspaces respectively.
262:) in two steps: First by solving the scattering problem ruled by the background Hamiltonian 878:{\displaystyle T_{\mathrm {total} }=T_{\mathrm {background} }+T_{\mathrm {resonances} }.\,} 139: 909: 739: 165:
In general, the partitioning formalism is based on the definition of two complementary
918: 609: 224: 155: 147: 689:{\displaystyle z_{\mathrm {res} }=E_{\mathrm {res} }-i\Gamma _{\mathrm {res} }\,} 21: 460: 159: 146:, separates (partitions) the resonant and the background components of the 143: 199:
project are sets of states obeying the continuum and the bound state
227:
to the background scattering but most authors define first the
158:. This approach allows us to define rigorously the concept of 15: 240:
form, it is possible to generate a set of equations defining
742:
profile in the corresponding cross section. Both resulting
753:
matrix corresponding to the full scattering problem :
532:
are obtained by solving the so-called implicit equation
762: 705: 621: 541: 503: 468: 275: 251:
The aim of the Feshbach–Fano method is to solve the
877: 726: 688: 593: 524: 489: 444: 542: 319: 150:and therefore of the associated quantities like 255:governing a scattering process (defined by the 734:is close to the real axis it gives rise to a 8: 50:. Unsourced material may be challenged and 874: 837: 836: 795: 794: 768: 767: 761: 711: 710: 704: 685: 672: 671: 648: 647: 627: 626: 620: 590: 553: 552: 540: 509: 508: 502: 474: 473: 467: 441: 430: 343: 322: 281: 280: 274: 114:Learn how and when to remove this message 900:Resonances in scattering from potentials 749:have to be added in order to obtain the 525:{\displaystyle \Gamma _{\mathrm {res} }} 7: 48:adding citations to reliable sources 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 823: 820: 817: 814: 811: 808: 805: 802: 799: 796: 781: 778: 775: 772: 769: 727:{\displaystyle z_{\mathrm {res} }} 718: 715: 712: 679: 676: 673: 668: 655: 652: 649: 634: 631: 628: 560: 557: 554: 516: 513: 510: 505: 490:{\displaystyle E_{\mathrm {res} }} 481: 478: 475: 418: 400: 288: 285: 282: 14: 20: 581: 572: 566: 545: 427: 421: 409: 403: 326: 300: 294: 1: 895:Resonance (particle physics) 63:"Feshbach–Fano partitioning" 248:on a less arbitrary basis. 941: 699:is the resonance pole. If 191:The subspaces onto which 594:{\displaystyle \det=0\,} 130:, and in particular in 879: 728: 690: 595: 526: 491: 446: 162:in quantum mechanics. 880: 729: 691: 596: 527: 492: 447: 760: 703: 619: 539: 501: 466: 273: 253:Schrödinger equation 136:Feshbach–Fano method 44:improve this article 201:boundary conditions 905:Feshbach resonance 875: 724: 686: 591: 522: 487: 442: 333: 925:Scattering theory 374: 318: 132:scattering theory 128:quantum mechanics 124: 123: 116: 98: 932: 884: 882: 881: 876: 870: 869: 868: 828: 827: 826: 786: 785: 784: 733: 731: 730: 725: 723: 722: 721: 695: 693: 692: 687: 684: 683: 682: 660: 659: 658: 639: 638: 637: 600: 598: 597: 592: 565: 564: 563: 531: 529: 528: 523: 521: 520: 519: 496: 494: 493: 488: 486: 485: 484: 459:. The resonance 451: 449: 448: 443: 434: 375: 373: 344: 332: 293: 292: 291: 119: 112: 108: 105: 99: 97: 56: 24: 16: 940: 939: 935: 934: 933: 931: 930: 929: 915: 914: 891: 832: 790: 763: 758: 757: 706: 701: 700: 667: 643: 622: 617: 616: 612:. The solution 548: 537: 536: 504: 499: 498: 469: 464: 463: 348: 276: 271: 270: 214:The projectors 140:Herman Feshbach 120: 109: 103: 100: 57: 55: 41: 25: 12: 11: 5: 938: 936: 928: 927: 917: 916: 913: 912: 910:Fano resonance 907: 902: 897: 890: 887: 886: 885: 873: 867: 864: 861: 858: 855: 852: 849: 846: 843: 840: 835: 831: 825: 822: 819: 816: 813: 810: 807: 804: 801: 798: 793: 789: 783: 780: 777: 774: 771: 766: 720: 717: 714: 709: 697: 696: 681: 678: 675: 670: 666: 663: 657: 654: 651: 646: 642: 636: 633: 630: 625: 602: 601: 589: 586: 583: 580: 577: 574: 571: 568: 562: 559: 556: 551: 547: 544: 518: 515: 512: 507: 483: 480: 477: 472: 453: 452: 440: 437: 433: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 372: 369: 366: 363: 360: 357: 354: 351: 347: 342: 339: 336: 331: 328: 325: 321: 317: 314: 311: 308: 305: 302: 299: 296: 290: 287: 284: 279: 203:respectively. 189: 188: 152:cross sections 138:, named after 122: 121: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 937: 926: 923: 922: 920: 911: 908: 906: 903: 901: 898: 896: 893: 892: 888: 871: 833: 829: 791: 787: 764: 756: 755: 754: 752: 748: 745: 741: 737: 707: 664: 661: 644: 640: 623: 615: 614: 613: 611: 610:complex plane 608:in the lower 607: 587: 584: 578: 575: 569: 549: 535: 534: 533: 470: 462: 458: 438: 435: 431: 424: 415: 412: 406: 397: 394: 391: 388: 385: 382: 379: 376: 370: 367: 364: 361: 358: 355: 352: 349: 345: 340: 337: 334: 329: 323: 315: 312: 309: 306: 303: 297: 277: 269: 268: 267: 265: 261: 258: 254: 249: 247: 243: 238: 234: 230: 226: 225:approximation 221: 217: 212: 210: 206: 202: 198: 194: 186: 182: 179: 178: 177: 175: 171: 168: 163: 161: 157: 153: 149: 148:wave function 145: 141: 137: 133: 129: 118: 115: 107: 104:December 2009 96: 93: 89: 86: 82: 79: 75: 72: 68: 65: –  64: 60: 59:Find sources: 53: 49: 45: 39: 38: 34: 29:This article 27: 23: 18: 17: 750: 743: 736:Breit–Wigner 698: 605: 603: 456: 454: 263: 259: 250: 245: 241: 236: 232: 228: 219: 215: 213: 208: 204: 196: 192: 190: 184: 180: 173: 169: 164: 135: 125: 110: 101: 91: 84: 77: 70: 58: 42:Please help 30: 257:Hamiltonian 156:phase shift 461:parameters 176:such that 167:projectors 74:newspapers 669:Γ 662:− 576:− 506:Γ 419:Γ 413:− 401:Δ 362:− 359:ε 327:→ 324:ε 160:resonance 31:does not 919:Category 889:See also 747:matrices 144:Ugo Fano 88:scholar 52:removed 37:sources 134:, the 90:  83:  76:  69:  61:  738:or a 95:JSTOR 81:books 740:Fano 604:for 497:and 244:and 218:and 207:and 195:and 187:= 1. 172:and 142:and 67:news 35:any 33:cite 543:det 320:lim 264:PHP 235:or 154:or 126:In 46:by 921:: 183:+ 872:. 866:s 863:e 860:c 857:n 854:a 851:n 848:o 845:s 842:e 839:r 834:T 830:+ 824:d 821:n 818:u 815:o 812:r 809:g 806:k 803:c 800:a 797:b 792:T 788:= 782:l 779:a 776:t 773:o 770:t 765:T 751:T 744:T 719:s 716:e 713:r 708:z 680:s 677:e 674:r 665:i 656:s 653:e 650:r 645:E 641:= 635:s 632:e 629:r 624:z 606:z 588:0 585:= 582:] 579:z 573:) 570:z 567:( 561:f 558:f 555:e 550:H 546:[ 517:s 514:e 511:r 482:s 479:e 476:r 471:E 457:E 439:, 436:2 432:/ 428:) 425:E 422:( 416:i 410:) 407:E 404:( 398:+ 395:Q 392:H 389:Q 386:= 383:Q 380:H 377:P 371:P 368:H 365:P 356:i 353:+ 350:E 346:1 341:P 338:H 335:Q 330:0 316:+ 313:Q 310:H 307:Q 304:= 301:) 298:E 295:( 289:f 286:f 283:e 278:H 260:H 246:Q 242:P 237:Q 233:P 229:Q 220:Q 216:P 209:Q 205:P 197:Q 193:P 185:Q 181:P 174:Q 170:P 117:) 111:( 106:) 102:( 92:· 85:· 78:· 71:· 54:. 40:.

Index


cite
sources
improve this article
adding citations to reliable sources
removed
"Feshbach–Fano partitioning"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
quantum mechanics
scattering theory
Herman Feshbach
Ugo Fano
wave function
cross sections
phase shift
resonance
projectors
boundary conditions
approximation
Schrödinger equation
Hamiltonian
parameters
complex plane
Breit–Wigner
Fano

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.