Knowledge (XXG)

Fermentative hydrogen production

Source 📝

209:
is an outstanding hydrogen producer. It is an anaerobic facultative and mesophilic bacterium that is able to consume different sugars and in contrast to cultivation of strict anaerobes, no special operation is required to remove all oxygen from the fermenter.
214:
has a short doubling time and high hydrogen productivity and evolution rate. Furthermore, hydrogen production by this bacterium is not inhibited at high hydrogen partial pressures; however, its yield is lower compared to strict anaerobes like
65:
from organic compounds throughout the day and night. Typically these reactions are coupled to the formation of carbon dioxide or formate. Important reactions that result in hydrogen production start with
351: 456: 431: 320: 476: 446: 378:"Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes" 245: 20: 471: 466: 426: 199: 461: 333: 389: 260: 250: 186: 182: 47: 223:/mol glucose can be produced by strict anaerobic bacteria. Facultative anaerobic bacteria such as 451: 405: 303: 255: 174: 170: 164: 58: 397: 355: 293: 393: 352:"High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose" 118: 440: 377: 401: 61:
reactions do not require light energy. These are capable of constantly producing
298: 281: 240: 71: 31: 409: 203:
SH2C can be employed to convert small molecular fatty acids into hydrogen.
307: 62: 39: 35: 24: 114: 67: 160:
These reactions are exergonic by 216 and 209 kcal/mol, respectively.
43: 178: 282:"Biochemistry of Methanogenesis: a Tribute to Marjory Stephenson" 432:
Developments and constraints in fermentative hydrogen production
167:, bacteria can be genetically altered to enhance this reaction. 46:. Fermentative hydrogen production is one of several 30:. Hydrogen produced in this manner is often called 334:"Synthetic biology aims to solve energy conundrum" 227:have a theoretical maximum yield of 2 mol H 177:, because it only proceeds in the presence of 376:Asadi, Nooshin; Zilouei, Hamid (March 2017). 8: 427:HYDROGEN PRODUCTION VIA DIRECT FERMENTATION 297: 272: 219:. A theoretical maximum of 4 mol H 197:For example, photo-fermentation with 7: 23:conversion of organic substrates to 14: 34:. The conversion is effected by 17:Fermentative hydrogen production 332:Edwards, Chris (19 June 2008). 402:10.1016/j.biortech.2016.12.073 321:Synthetic biology and hydrogen 1: 299:10.1099/00221287-144-9-2377 246:Fermentation (biochemistry) 493: 457:Environmental engineering 113:A related reaction gives 54:Dark vs photofermentation 70:, which is converted to 200:Rhodobacter sphaeroides 382:Bioresource Technology 280:Thauer, R. K. (1998). 207:Enterobacter aerogenes 48:anaerobic conversions 187:microbial fuel cells 477:Hydrogen production 447:Biofuels technology 394:2017BiTec.227..335A 261:Single cell protein 251:Hydrogen production 183:Electrohydrogenesis 256:Synthetic biology 175:dark fermentation 171:Photofermentation 165:synthetic biology 59:Dark fermentation 484: 472:Hydrogen economy 467:Hydrogen biology 414: 413: 373: 367: 366: 364: 363: 354:. Archived from 348: 342: 341: 329: 323: 318: 312: 311: 301: 277: 193:Bacteria strains 492: 491: 487: 486: 485: 483: 482: 481: 437: 436: 423: 418: 417: 375: 374: 370: 361: 359: 350: 349: 345: 331: 330: 326: 319: 315: 279: 278: 274: 269: 237: 230: 222: 195: 156: 152: 148: 144: 140: 136: 132: 128: 109: 105: 101: 97: 93: 89: 85: 81: 56: 42:, which employ 28: 12: 11: 5: 490: 488: 480: 479: 474: 469: 464: 459: 454: 449: 439: 438: 435: 434: 429: 422: 421:External links 419: 416: 415: 368: 343: 324: 313: 271: 270: 268: 265: 264: 263: 258: 253: 248: 243: 236: 233: 231:/mol glucose. 228: 220: 194: 191: 158: 157: 154: 150: 146: 142: 138: 134: 130: 126: 119:carbon dioxide 111: 110: 107: 103: 99: 95: 91: 87: 83: 79: 55: 52: 26: 13: 10: 9: 6: 4: 3: 2: 489: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 444: 442: 433: 430: 428: 425: 424: 420: 411: 407: 403: 399: 395: 391: 387: 383: 379: 372: 369: 358:on 2012-01-25 357: 353: 347: 344: 339: 335: 328: 325: 322: 317: 314: 309: 305: 300: 295: 292:: 2377–2406. 291: 287: 283: 276: 273: 266: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 238: 234: 232: 226: 218: 213: 208: 204: 202: 201: 192: 190: 188: 184: 180: 176: 173:differs from 172: 168: 166: 161: 124: 123: 122: 120: 116: 77: 76: 75: 73: 69: 64: 60: 53: 51: 49: 45: 41: 37: 33: 29: 22: 18: 462:Fermentation 385: 381: 371: 360:. Retrieved 356:the original 346: 338:The Guardian 337: 327: 316: 289: 286:Microbiology 285: 275: 225:E. aerogenes 224: 216: 212:E. aerogenes 211: 206: 205: 198: 196: 169: 162: 159: 112: 57: 21:fermentative 16: 15: 388:: 335–344. 241:Biohydrogen 185:is used in 149:H + 2 HCO 141:O → 2 CH 117:instead of 94:O → 2 CH 72:acetic acid 32:biohydrogen 441:Categories 362:2008-09-07 267:References 217:Clostridia 102:H + 2 CO 452:Catalysis 340:. London. 153:H + 2 H 410:28042989 235:See also 63:hydrogen 40:protozoa 36:bacteria 390:Bibcode 308:9782487 115:formate 68:glucose 44:enzymes 19:is the 408:  306:  163:Using 137:+ 2 H 106:+ 4 H 90:+ 2 H 179:light 406:PMID 304:PMID 38:and 398:doi 386:227 294:doi 290:144 443:: 404:. 396:. 384:. 380:. 336:. 302:. 288:. 284:. 189:. 181:. 145:CO 131:12 121:: 98:CO 84:12 74:: 50:. 412:. 400:: 392:: 365:. 310:. 296:: 229:2 221:2 155:2 151:2 147:2 143:3 139:2 135:6 133:O 129:H 127:6 125:C 108:2 104:2 100:2 96:3 92:2 88:6 86:O 82:H 80:6 78:C 27:2 25:H

Index

fermentative
H2
biohydrogen
bacteria
protozoa
enzymes
anaerobic conversions
Dark fermentation
hydrogen
glucose
acetic acid
formate
carbon dioxide
synthetic biology
Photofermentation
dark fermentation
light
Electrohydrogenesis
microbial fuel cells
Rhodobacter sphaeroides
Biohydrogen
Fermentation (biochemistry)
Hydrogen production
Synthetic biology
Single cell protein
"Biochemistry of Methanogenesis: a Tribute to Marjory Stephenson"
doi
10.1099/00221287-144-9-2377
PMID
9782487

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.