Knowledge (XXG)

Fermi problem

Source 📝

339:
checking, and to find faulty assumptions if the figure produced is far beyond what we might reasonably expect. By contrast, precise calculations can be extremely complex but with the expectation that the answer they produce is correct. The far larger number of factors and operations involved can obscure a very significant error, either in mathematical process or in the assumptions the equation is based on, but the result may still be assumed to be right because it has been derived from a precise formula that is expected to yield good results. Without a reasonable frame of reference to work from it is seldom clear if a result is acceptably precise or is many degrees of magnitude (tens or hundreds of times) too big or too small. The Fermi estimation gives a quick, simple way to obtain this frame of reference for what might reasonably be expected to be the answer.
343:
tuners in Chicago. If their initial estimate told them there should be a hundred or so, but the precise answer tells them there are many thousands, then they know they need to find out why there is this divergence from the expected result. First looking for errors, then for factors the estimation did not take account of – does Chicago have a number of music schools or other places with a disproportionately high ratio of pianos to people? Whether close or very far from the observed results, the context the estimation provides gives useful information both about the process of calculation and the assumptions that have been used to look at problems.
359:
typical day, or look up an accurate number for the population of Chicago. It also gives a rough estimate that may be good enough for some purposes: if a person wants to start a store in Chicago that sells piano tuning equipment, and calculates that they need 10,000 potential customers to stay in business, they can reasonably assume that the above estimate is far enough below 10,000 that they should consider a different business plan (and, with a little more work, they could compute a rough upper bound on the number of piano tuners by considering the most extreme
1472: 278: 43: 371:
Fermi estimates generally work because the estimations of the individual terms are often close to correct, and overestimates and underestimates help cancel each other out. That is, if there is no consistent bias, a Fermi calculation that involves the multiplication of several estimated factors (such
358:
Although Fermi calculations are often not accurate, as there may be many problems with their assumptions, this sort of analysis does inform one what to look for to get a better answer. For the above example, one might try to find a better estimate of the number of pianos tuned by a piano tuner in a
342:
As long as the initial assumptions in the estimate are reasonable quantities, the result obtained will give an answer within the same scale as the correct result, and if not gives a base for understanding why this is the case. For example, suppose a person was asked to determine the number of piano
338:
Scientists often look for Fermi estimates of the answer to a problem before turning to more sophisticated methods to calculate a precise answer. This provides a useful check on the results. While the estimate is almost certainly incorrect, it is also a simple calculation that allows for easy error
346:
Fermi estimates are also useful in approaching problems where the optimal choice of calculation method depends on the expected size of the answer. For instance, a Fermi estimate might indicate whether the internal stresses of a structure are low enough that it can be accurately described by
484:
For instance, if one makes a 9-step Fermi estimate, at each step overestimating or underestimating the correct number by a factor of 2 (or with a standard deviation 2), then after 9 steps the standard error will have grown by a logarithmic factor of
1017:
There are or have been a number of university-level courses devoted to estimation and the solution of Fermi problems. The materials for these courses are a good source for additional Fermi problem examples and material about solution strategies:
260:, which seeks to estimate the number of intelligent civilizations in the galaxy. The basic question of why, if there were a significant number of such civilizations, human civilization has never encountered any others is called the 529:, and much less than the worst case of erring by a factor of 2 = 512 (about 2.71 orders of magnitude). If one has a shorter chain or estimates more accurately, the overall estimate will be correspondingly better. 242:"If the mass of one teaspoon of water could be converted entirely into energy in the form of heat, what volume of water, initially at room temperature, could it bring to a boil? (litres)." 195:
as he was known for his ability to make good approximate calculations with little or no actual data. Fermi problems typically involve making justified guesses about quantities and their
455: 513: 479: 409: 996:
An example of a Fermi Problem relating to total gasoline consumed by cars since the invention of cars and comparison to the output of the energy released by the sun.
1126: 1283: 1174: 1248: 1198: 1154: 355:
relative to some other value, for example, if a structure will be over-engineered to withstand loads several times greater than the estimate.
1233: 1030: 905: 890: 842: 819: 1238: 1060: 966: 995: 1149: 1080: 1050: 952: 937: 867: 796: 1293: 1268: 1218: 1119: 922: 882: 834: 811: 788: 773: 758: 727: 662: 325: 126: 1329: 1006: 188: 850: 1273: 1228: 1213: 235:
Fermi questions are often extreme in nature, and cannot usually be solved using common mathematical or scientific information.
1263: 1164: 859: 303: 299: 64: 60: 107: 1501: 1308: 1253: 1203: 1189: 1179: 79: 1475: 1396: 1313: 1298: 1223: 1194: 1169: 1112: 1288: 1258: 1208: 223:, based on the distance traveled by pieces of paper he dropped from his hand during the blast. Fermi's estimate of 10 288: 86: 1496: 1303: 1243: 1184: 1159: 913: 307: 292: 53: 1447: 1438: 619: 93: 1040: 596: 1415: 558: 75: 1506: 1070: 433: 416: 372:
as the number of piano tuners in Chicago) will probably be more accurate than might be first supposed.
975: 30:
This article is about the estimation technique. For Fermi's question about extraterrestrial life, see
1430: 1334: 1003:
by Nuño Sempere, which has a proof sketch of why Fermi-style decompositions produce better estimates.
430:
units on the log scale from the actual value, then the overall estimate will have standard deviation
200: 180: 1086: 375:
In detail, multiplying estimates corresponds to adding their logarithms; thus one obtains a sort of
1098: 488: 1348: 1135: 526: 460: 424: 390: 199:
or lower and upper bounds. In some cases, order-of-magnitude estimates can also be derived using
563: 1401: 1380: 1375: 1000: 948: 933: 918: 901: 886: 878: 863: 855: 838: 830: 815: 807: 792: 784: 769: 754: 723: 668: 658: 384: 348: 168: 1056: 650: 631: 252:"What is the mass of all the automobiles scrapped in North America this month? (kilograms)." 851:
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
100: 224: 1036: 1278: 1010: 989: 635: 543: 376: 257: 216: 1490: 1370: 1094: 588: 568: 352: 261: 184: 31: 1076: 970: 415:). In discrete terms, the number of overestimates minus underestimates will have a 246: 220: 212: 192: 1066: 1423: 1407: 1344: 538: 380: 277: 227:
was well within an order of magnitude of the now-accepted value of 21 kilotons.
176: 42: 17: 687: 1455: 548: 945:
Maths on the Back of an Envelope: Clever ways to (roughly) calculate anything
672: 1363: 1358: 804:
Guesstimation: Solving the World's Problems on the Back of a Cocktail Napkin
766:
Consider a Cylindrical Cow: More Adventures in Environmental Problem Solving
745:
The following books contain many examples of Fermi problems with solutions:
553: 196: 1353: 172: 1104: 976:
Fermi Questions: A Guide for Teachers, Students, and Event Supervisors
1046: 986:
What if? Serious Scientific Answers to Absurd Hypothetical Questions
1023:
6.055J / 2.038J The Art of Approximation in Science and Engineering
898:
Guesstimation 2.0: Solving Today's Problems on the Back of a Napkin
751:
Consider a Spherical Cow: A Course in Environmental Problem Solving
1108: 981: 351:; or if the estimate already bears significant relationship in 187:
of extreme scientific calculations. Fermi problems are usually
271: 36: 1026: 720:
The Great Silence: Science and Philosophy of Fermi's Paradox
238:
Example questions given by the official Fermi Competition:
245:"How much does the Thames River heat up in going over the 1007:"How should mathematics be taught to non-mathematicians?" 1022: 419:. In continuous terms, if one makes a Fermi estimate of 363:
values that could appear in each of their assumptions).
827:
How Many Licks?: Or, How to Estimate Damn Near Anything
930:
Physics on your feet. Berkeley Graduate Exam Questions
27:
Estimation problem in physics or engineering education
491: 463: 436: 393: 191:. The estimation technique is named after physicist 1389: 1322: 1142: 622:(September 1988). "How Fermi Would Have Fixed It". 67:. Unsourced material may be challenged and removed. 507: 473: 457:, since the standard deviation of a sum scales as 449: 403: 1087:Chapter 2: Discoveries on the Back of an Envelope 1091:Frontiers of Science: Scientific Habits of Mind 256:Possibly the most famous Fermi Question is the 240: 515:, so 2 = 8. Thus one will expect to be within 1120: 914:The Art of Insight in Science and Engineering 600:(2). Los Alamos National Laboratory: 45. 2005 8: 589:"A Backward Glance: Eyewitnesses to Trinity" 306:. Unsourced material may be challenged and 1127: 1113: 1105: 875:Quantify! A Crash Course in Smart Thinking 525:to 8 times the correct value – within an 492: 490: 464: 462: 440: 435: 394: 392: 326:Learn how and when to remove this message 127:Learn how and when to remove this message 708:Fermi Questions. Richard K Curtis. 2001. 877:Johns Hopkins University Press. 2010. 802:Lawrence Weinstein & John A. Adam, 783:Johns Hopkins University Press. 2003. 580: 1031:Massachusetts Institute of Technology 928:Dmitry Budker, Alexander O. Sushkov, 657:. Dover Publications. pp. 3–12. 655:The Fermi Solution: Essays on Science 7: 1061:University of California, Santa Cruz 969:Physics Education Group maintains a 304:adding citations to reliable sources 65:adding citations to reliable sources 900:Princeton University Press. 2012. 806:Princeton University Press. 2008. 649:Von Baeyer, Hans Christian (2001). 215:'s estimate of the strength of the 1081:University of California, Berkeley 1067:Order of Magnitude Problem Solving 1051:California Institute of Technology 1037:Physics on the Back of an Envelope 718:Ćirković, Milan M. (10 May 2018). 636:10.1002/j.2326-1951.1988.tb03037.x 450:{\displaystyle \sigma {\sqrt {n}}} 25: 1001:"Introduction to Fermi estimates" 768:University Science Books. 2001. 753:University Science Books. 1988. 189:back-of-the-envelope calculations 1471: 1470: 1402:Earth's location in the Universe 1330:Back-of-the-envelope calculation 1059:taught by Patrick Chuang at the 1039:taught by Lawrence Weinstein at 822:. A textbook on Fermi problems. 276: 41: 1335:Best-selling electronic devices 1079:taught by Eugene Chiang at the 1069:taught by Linda Strubbe at the 1049:taught by Sterl Phinney at the 932:Oxford University Press. 2015. 52:needs additional citations for 1: 1057:Order of Magnitude Estimation 971:collection of Fermi problems. 508:{\displaystyle {\sqrt {9}}=3} 179:education, designed to teach 1397:Astronomical system of units 781:Back-of-the-Envelope Physics 722:. Oxford University Press. 481:in the number of summands. 474:{\displaystyle {\sqrt {n}}} 404:{\displaystyle {\sqrt {n}}} 161:order-of-magnitude estimate 1523: 1077:Order of Magnitude Physics 1047:Order of Magnitude Physics 982:"What if? Paint the Earth" 620:Von Baeyer, Hans Christian 157:order-of-magnitude problem 29: 1466: 1448:The Scale of the Universe 690:. Old Dominion University 686:Weinstein, L.B. (2012). 1041:Old Dominion University 829:. Running Press. 2009. 597:Nuclear Weapons Journal 1416:To the Moon and Beyond 1284:Specific heat capacity 967:University of Maryland 559:Order of approximation 509: 475: 451: 405: 254: 219:that detonated at the 1434:(1968 and 1977 films) 1071:University of Toronto 947:HarperCollins. 2019. 510: 476: 452: 417:binomial distribution 406: 249:? (Celsius degrees)." 207:Historical background 1502:Dimensional analysis 896:Lawrence Weinstein, 651:"The Fermi Solution" 489: 461: 434: 411:(in number of terms 391: 387:, which diffuses as 300:improve this section 268:Advantages and scope 201:dimensional analysis 181:dimensional analysis 61:improve this article 1136:Orders of magnitude 1099:Columbia University 155:), also known as a 1442:(1996 documentary) 1371:Metric (SI) prefix 854:MIT Press. 2010. 527:order of magnitude 505: 471: 447: 425:standard deviation 401: 1497:Physics education 1484: 1483: 1381:Microscopic scale 1376:Macroscopic scale 917:MIT Press. 2014. 906:978-0-691-15080-2 891:978-0-8018-9717-7 843:978-0-7624-3560-9 820:978-1-4008-2444-1 779:Clifford Swartz, 688:"Fermi Questions" 497: 469: 445: 399: 385:logarithmic scale 349:linear elasticity 336: 335: 328: 137: 136: 129: 111: 16:(Redirected from 1514: 1474: 1473: 1155:Angular momentum 1129: 1122: 1115: 1106: 978:by Lloyd Abrams. 911:Sanjoy Mahajan, 873:Göran Grimvall, 848:Sanjoy Mahajan, 734: 733: 715: 709: 706: 700: 699: 697: 695: 683: 677: 676: 646: 640: 639: 616: 610: 609: 607: 605: 593: 585: 524: 523: 519: 514: 512: 511: 506: 498: 493: 480: 478: 477: 472: 470: 465: 456: 454: 453: 448: 446: 441: 410: 408: 407: 402: 400: 395: 331: 324: 320: 317: 311: 280: 272: 165:order estimation 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 18:Fermi estimation 1522: 1521: 1517: 1516: 1515: 1513: 1512: 1511: 1487: 1486: 1485: 1480: 1462: 1385: 1318: 1234:Magnetic moment 1138: 1133: 962: 743: 741:Further reading 738: 737: 730: 717: 716: 712: 707: 703: 693: 691: 685: 684: 680: 665: 648: 647: 643: 618: 617: 613: 603: 601: 591: 587: 586: 582: 577: 564:Stein's example 535: 521: 517: 516: 487: 486: 459: 458: 432: 431: 389: 388: 369: 332: 321: 315: 312: 297: 281: 270: 233: 225:kilotons of TNT 209: 133: 122: 116: 113: 76:"Fermi problem" 70: 68: 58: 46: 35: 28: 23: 22: 15: 12: 11: 5: 1520: 1518: 1510: 1509: 1504: 1499: 1489: 1488: 1482: 1481: 1479: 1478: 1467: 1464: 1463: 1461: 1460: 1452: 1444: 1436: 1428: 1420: 1412: 1404: 1399: 1393: 1391: 1387: 1386: 1384: 1383: 1378: 1373: 1368: 1367: 1366: 1361: 1356: 1342: 1337: 1332: 1326: 1324: 1320: 1319: 1317: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1279:Sound pressure 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1239:Magnetic field 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1199:Energy density 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1146: 1144: 1140: 1139: 1134: 1132: 1131: 1124: 1117: 1109: 1103: 1102: 1084: 1074: 1064: 1054: 1044: 1034: 1027:Sanjoy Mahajan 1015: 1014: 1011:Timothy Gowers 1004: 998: 993: 990:Randall Munroe 984:from the book 979: 973: 961: 960:External links 958: 957: 956: 953:978-0008324582 943:Rob Eastaway, 941: 938:978-0199681655 926: 909: 894: 871: 868:978-0262514293 846: 825:Aaron Santos, 823: 800: 797:978-0801872631 777: 762: 742: 739: 736: 735: 728: 710: 701: 678: 663: 641: 611: 579: 578: 576: 573: 572: 571: 566: 561: 556: 551: 546: 544:Dead reckoning 541: 534: 531: 504: 501: 496: 468: 444: 439: 398: 377:Wiener process 368: 365: 334: 333: 284: 282: 275: 269: 266: 258:Drake equation 232: 229: 211:An example is 208: 205: 153:Fermi estimate 149:Fermi question 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1519: 1508: 1505: 1503: 1500: 1498: 1495: 1494: 1492: 1477: 1469: 1468: 1465: 1458: 1457: 1453: 1450: 1449: 1445: 1443: 1441: 1440:Cosmic Voyage 1437: 1435: 1433: 1432:Powers of Ten 1429: 1426: 1425: 1421: 1418: 1417: 1413: 1410: 1409: 1405: 1403: 1400: 1398: 1395: 1394: 1392: 1388: 1382: 1379: 1377: 1374: 1372: 1369: 1365: 1362: 1360: 1357: 1355: 1352: 1351: 1350: 1346: 1343: 1341: 1340:Fermi problem 1338: 1336: 1333: 1331: 1328: 1327: 1325: 1321: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1147: 1145: 1141: 1137: 1130: 1125: 1123: 1118: 1116: 1111: 1110: 1107: 1100: 1096: 1095:David Helfand 1092: 1088: 1085: 1082: 1078: 1075: 1072: 1068: 1065: 1062: 1058: 1055: 1052: 1048: 1045: 1042: 1038: 1035: 1032: 1028: 1024: 1021: 1020: 1019: 1012: 1008: 1005: 1002: 999: 997: 994: 991: 987: 983: 980: 977: 974: 972: 968: 964: 963: 959: 954: 950: 946: 942: 939: 935: 931: 927: 924: 923:9780262526548 920: 916: 915: 910: 907: 903: 899: 895: 892: 888: 884: 883:0-8018-9717-3 880: 876: 872: 869: 865: 861: 857: 853: 852: 847: 844: 840: 836: 835:0-7624-3560-7 832: 828: 824: 821: 817: 813: 812:0-691-12949-5 809: 805: 801: 798: 794: 790: 789:0-8018-7263-4 786: 782: 778: 775: 774:1-891389-17-3 771: 767: 763: 760: 759:0-935702-58-X 756: 752: 748: 747: 746: 740: 731: 729:9780199646302 725: 721: 714: 711: 705: 702: 689: 682: 679: 674: 670: 666: 664:9780486417073 660: 656: 652: 645: 642: 637: 633: 629: 625: 621: 615: 612: 599: 598: 590: 584: 581: 574: 570: 569:Spherical cow 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 536: 532: 530: 528: 502: 499: 494: 482: 466: 442: 437: 429: 426: 422: 418: 414: 396: 386: 382: 378: 373: 366: 364: 362: 356: 354: 350: 344: 340: 330: 327: 319: 309: 305: 301: 295: 294: 290: 285:This section 283: 279: 274: 273: 267: 265: 263: 262:Fermi paradox 259: 253: 250: 248: 243: 239: 236: 230: 228: 226: 222: 218: 214: 206: 204: 202: 198: 194: 190: 186: 185:approximation 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 141:Fermi problem 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: –  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 32:Fermi paradox 19: 1507:Enrico Fermi 1454: 1446: 1439: 1431: 1422: 1414: 1406: 1345:Powers of 10 1339: 1197: / 1150:Acceleration 1090: 1016: 985: 944: 929: 912: 897: 874: 849: 826: 803: 780: 765: 764:John Harte, 750: 749:John Harte, 744: 719: 713: 704: 692:. Retrieved 681: 654: 644: 627: 624:The Sciences 623: 614: 602:. Retrieved 595: 583: 483: 427: 423:steps, with 420: 412: 374: 370: 360: 357: 345: 341: 337: 322: 313: 298:Please help 286: 255: 251: 247:Fanshawe Dam 244: 241: 237: 234: 221:Trinity test 213:Enrico Fermi 210: 193:Enrico Fermi 164: 160: 156: 152: 148: 144: 140: 138: 123: 114: 104: 97: 90: 83: 71: 59:Please help 54:verification 51: 1427:(1968 film) 1424:Cosmic Zoom 1419:(1964 film) 1411:(1957 book) 1408:Cosmic View 1294:Temperature 1269:Probability 1219:Illuminance 539:Guesstimate 381:random walk 367:Explanation 316:August 2023 217:atomic bomb 177:engineering 171:problem in 1491:Categories 1456:Cosmic Eye 1093:taught by 1025:taught by 860:026251429X 694:27 October 630:(5): 2–4. 604:27 October 575:References 549:Handwaving 361:reasonable 169:estimation 145:Fermi quiz 87:newspapers 1364:1000000th 1274:Radiation 1229:Luminance 1214:Frequency 1175:Computing 673:775985788 554:Heuristic 438:σ 287:does not 167:), is an 117:July 2015 1476:Category 1323:See also 1264:Pressure 1249:Molarity 1165:Bit rate 1143:Quantity 533:See also 231:Examples 197:variance 1390:Related 1349:decades 1309:Voltage 1254:Numbers 1204:Entropy 1190:Density 1180:Current 1029:at the 520:⁄ 383:on the 308:removed 293:sources 173:physics 101:scholar 1459:(2012) 1451:(2010) 1314:Volume 1299:Torque 1224:Length 1195:Energy 1170:Charge 1033:(MIT). 951:  936:  921:  904:  889:  881:  866:  858:  841:  833:  818:  810:  795:  787:  772:  757:  726:  671:  661:  103:  96:  89:  82:  74:  1359:100th 1289:Speed 1259:Power 1209:Force 1089:from 592:(PDF) 353:scale 108:JSTOR 94:books 1354:10th 1347:and 1304:Time 1244:Mass 1185:Data 1160:Area 965:The 949:ISBN 934:ISBN 919:ISBN 902:ISBN 887:ISBN 879:ISBN 864:ISBN 856:ISBN 839:ISBN 831:ISBN 816:ISBN 808:ISBN 793:ISBN 785:ISBN 770:ISBN 755:ISBN 724:ISBN 696:2022 669:OCLC 659:ISBN 606:2022 291:any 289:cite 159:(or 143:(or 80:news 1097:at 1009:by 988:by 632:doi 379:or 302:by 183:or 175:or 63:by 1493:: 885:. 862:. 837:. 814:. 791:. 667:. 653:. 628:28 626:. 594:. 264:. 203:. 163:, 151:, 147:, 139:A 1128:e 1121:t 1114:v 1101:. 1083:. 1073:. 1063:. 1053:. 1043:. 1013:. 992:. 955:. 940:. 925:. 908:. 893:. 870:. 845:. 799:. 776:. 761:. 732:. 698:. 675:. 638:. 634:: 608:. 522:8 518:1 503:3 500:= 495:9 467:n 443:n 428:σ 421:n 413:n 397:n 329:) 323:( 318:) 314:( 310:. 296:. 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Fermi estimation
Fermi paradox

verification
improve this article
adding citations to reliable sources
"Fermi problem"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
estimation
physics
engineering
dimensional analysis
approximation
back-of-the-envelope calculations
Enrico Fermi
variance
dimensional analysis
Enrico Fermi
atomic bomb
Trinity test
kilotons of TNT
Fanshawe Dam
Drake equation
Fermi paradox

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.