Knowledge (XXG)

Fermi surface

Source đź“ť

675:, no two fermions can be in the same state. Additionally, at zero temperature the enthalpy of the electrons must be minimal, meaning that they cannot change state. If, for a particle in some state, there existed an unoccupied lower state that it could occupy, then the energy difference between those states would give the electron an additional enthalpy. Hence, the enthalpy of the electron would not be minimal. Therefore, at zero temperature all the lowest energy states must be saturated. For a large ensemble the Fermi level will be approximately equal to the chemical potential of the system, and hence every state below this energy must be occupied. Thus, particles fill up all energy levels below the Fermi level at absolute zero, which is equivalent to saying that is the energy level below which there are exactly 1619: 118: 25: 1531: 867: 1527:. Therefore, dHvA and SdH experiments are usually performed at high-field facilities like the High Field Magnet Laboratory in Netherlands, Grenoble High Magnetic Field Laboratory in France, the Tsukuba Magnet Laboratory in Japan or the National High Magnetic Field Laboratory in the United States. 1581:
it is also possible to determine the Fermi surface as the annihilation process conserves the momentum of the initial particle. Since a positron in a solid will thermalize prior to annihilation, the annihilation radiation carries the information about the electron momentum. The corresponding
666: 1522:
Thus the determination of the periods of oscillation for various applied field directions allows mapping of the Fermi surface. Observation of the dHvA and SdH oscillations requires magnetic fields large enough that the circumference of the cyclotron orbit is smaller than a
821: 292: 1602:
conditions, cryogenic temperatures, high magnetic fields or fully ordered alloys. However, ACAR needs samples with a low vacancy concentration as they act as effective traps for positrons. In this way, the first determination of a
1154:
so at finite temperatures the Fermi surface is accordingly broadened. In principle all fermion energy level populations are bound by a Fermi surface although the term is not generally used outside of condensed-matter physics.
734:
The linear response of a metal to an electric, magnetic, or thermal gradient is determined by the shape of the Fermi surface, because currents are due to changes in the occupancy of states near the Fermi energy. In
557: 1516: 1583: 122: 952:, which results in a portion of the Fermi surface lying in the second (or higher) zones. As with the band structure itself, the Fermi surface can be displayed in an extended-zone scheme where 333: 1317: 1261: 917: 1007: 382: 186: 1121: 1099: 1077: 1055: 1033: 972: 946: 729: 516: 460: 1454: 1423: 745: 845: 549: 2028: 1368: 424: 1225: 194: 93:
which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the
1392: 1341: 1181: 693: 482: 402: 353: 155: 1590:
of both annihilation quanta. In this way it is possible to probe the electron momentum density of a solid and determine the Fermi surface. Furthermore, using
1598:
states in magnetized materials can be obtained. ACAR has many advantages and disadvantages compared to other experimental techniques: It does not rely on
1642: 1567: 1563: 1822:
Weber, J. A.; Böni, P.; Ceeh, H.; Leitner, M.; Hugenschmidt, Ch (2013-01-01). "First 2D-ACAR Measurements on Cu with the new Spectrometer at TUM".
890:
Fermi surface of graphite, which has both electron and hole pockets in its Fermi surface due to multiple bands crossing the Fermi energy along the
1618: 1896: 1371: 661:{\displaystyle \left\langle n_{i}\right\rangle \to {\begin{cases}1&(\epsilon _{i}<\mu )\\0&(\epsilon _{i}>\mu )\end{cases}}.} 2033: 46: 1227:
and occur because of the quantization of energy levels in the plane perpendicular to a magnetic field, a phenomenon first predicted by
1943: 1929: 2023: 1772: 1747: 68: 1462: 1163:
Electronic Fermi surfaces have been measured through observation of the oscillation of transport properties in magnetic fields
1184: 1647: 1558:
The most direct experimental technique to resolve the electronic structure of crystals in the momentum-energy space (see
1188: 1320: 303: 117: 1151: 158: 39: 33: 1542:. The experimental data shown as an intensity plot in yellow-red-black scale. Green dashed rectangle represents the 105:, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called 1951: 1266: 672: 102: 98: 1127:
where the condensation energy comes from opening a gap at the Fermi surface. Examples of such ground states are
1123:. Solids with a large density of states at the Fermi level become unstable at low temperatures and tend to form 50: 82: 1234: 121:
Fig. 1: Fermi surface and electron mo­mentum density of copper in the reduced zone schema measured with
1192: 848: 1136: 1652: 1535: 1578: 856: 893: 1997: 1974: 1947: 1841: 1708: 1685: 485: 980: 587: 1933: 360: 164: 94: 1938:"Angle-resolved photoemission spectroscopy of the cuprate superconductors (Review Article)" (2002) 1104: 1082: 1060: 1038: 1016: 955: 1865: 1831: 1559: 975: 974:
is allowed to have arbitrarily large values or a reduced-zone scheme where wavevectors are shown
922: 816:{\displaystyle k_{\rm {F}}={\frac {p_{\rm {F}}}{\hbar }}={\frac {\sqrt {2mE_{\rm {F}}}}{\hbar }}} 736: 705: 519: 492: 436: 427: 1432: 2002: 1892: 1857: 1804: 1768: 1743: 1713: 1599: 1591: 1405: 1140: 1992: 1982: 1849: 1703: 1693: 1530: 1010: 830: 528: 90: 1346: 287:{\displaystyle \langle n_{i}\rangle ={\frac {1}{e^{(\epsilon _{i}-\mu )/k_{\rm {B}}T}+1}},} 409: 1853: 1202: 1987: 1978: 1962: 1845: 1698: 1689: 1673: 1637: 1624: 1595: 1543: 1524: 1426: 1395: 1377: 1326: 1166: 1128: 1013:. In the three-dimensional case the reduced zone scheme means that from any wavevector 949: 875: 699: 678: 467: 387: 338: 140: 130: 2017: 1885: 1869: 1731: 430:(at zero temperature, this is the maximum kinetic energy the particle can have, i.e. 1735: 1632: 1399: 1124: 882:
Materials with complex crystal structures can have quite intricate Fermi surfaces.
431: 1196: 1132: 887: 852: 863:. When a material's Fermi level falls in a bandgap, there is no Fermi surface. 1614: 1228: 2006: 1861: 1717: 134: 1956:"ARPES experiment in fermiology of quasi-2D metals (Review Article)" (2014) 1808: 1937: 1425:
is related to the cross-section of the Fermi surface (typically given in
1231:. The new states are called Landau levels and are separated by an energy 871: 1787: 1147: 866: 860: 1955: 1836: 1551: 1539: 1529: 865: 116: 101:. The existence of a Fermi surface is a direct consequence of the 739:, the Fermi surface of an ideal Fermi gas is a sphere of radius 1584:
angular correlation of electron positron annihilation radiation
878:
showing the trigonal symmetry of the electron and hole pockets.
18: 1035:
there is an appropriate number of reciprocal lattice vectors
1511:{\displaystyle A_{\perp }={\frac {2\pi e\Delta H}{\hbar c}}} 1963:"Life on the edge: a beginner's guide to the Fermi surface" 1674:"Life on the edge: a beginner's guide to the Fermi surface" 651: 1801:
Electrons in Metals: A short Guide to the Fermi Surface
827:
determined by the valence electron concentration where
983: 919:
direction. Often in a metal, the Fermi surface radius
1465: 1435: 1408: 1380: 1349: 1329: 1269: 1237: 1205: 1169: 1107: 1085: 1063: 1041: 1019: 958: 925: 896: 833: 748: 708: 681: 560: 531: 495: 470: 439: 412: 390: 363: 341: 306: 197: 167: 143: 731:, the surface of which is called the Fermi surface. 161:, the mean occupation number of a state with energy 1884: 1510: 1448: 1417: 1386: 1362: 1335: 1311: 1255: 1219: 1175: 1115: 1093: 1071: 1049: 1027: 1001: 966: 940: 911: 839: 815: 723: 687: 660: 543: 510: 476: 454: 418: 396: 376: 347: 327: 286: 180: 149: 1765:Electronic Structure and the Properties of Solids 1594:positrons, the momentum distribution for the two 1586:(ACAR) as it measures the angular deviation from 1562:), and, consequently, the Fermi surface, is the 1429:) perpendicular to the magnetic field direction 328:{\displaystyle \left\langle n_{i}\right\rangle } 1887:Fundamentals of Statistical and Thermal Physics 859:or semiconductor depending on the size of the 16:Abstract boundary in condensed matter physics 8: 874:Fermi surface at the corner H points of the 211: 198: 1312:{\displaystyle \omega _{\rm {c}}=eH/m^{*}c} 1009:(in the 1-dimensional case) where a is the 702:, these particles fill up a ball of radius 1998:1983/18576e8a-c769-424d-8ac2-1c52ef80700e 1996: 1986: 1835: 1709:1983/18576e8a-c769-424d-8ac2-1c52ef80700e 1707: 1697: 1643:Fermi surface of superconducting cuprates 1568:Fermi surface of superconducting cuprates 1564:angle-resolved photoemission spectroscopy 1479: 1470: 1464: 1440: 1434: 1407: 1379: 1354: 1348: 1328: 1300: 1291: 1275: 1274: 1268: 1246: 1245: 1236: 1209: 1204: 1168: 1108: 1106: 1086: 1084: 1064: 1062: 1042: 1040: 1020: 1018: 984: 982: 959: 957: 931: 930: 924: 903: 898: 895: 832: 800: 799: 786: 771: 770: 764: 754: 753: 747: 714: 713: 707: 680: 633: 602: 582: 569: 559: 530: 501: 500: 494: 469: 445: 444: 438: 411: 389: 368: 362: 340: 315: 305: 260: 259: 250: 235: 227: 217: 205: 196: 172: 166: 142: 69:Learn how and when to remove this message 32:This article includes a list of general 1664: 1499: 1256:{\displaystyle \hbar \omega _{\rm {c}}} 1238: 1199:. The oscillations are periodic versus 1191:(SdH). The former is an oscillation in 834: 808: 778: 2029:Electric and magnetic fields in matter 1402:proved that the period of oscillation 1824:Journal of Physics: Conference Series 1607:in a 30% alloy was obtained in 1978. 948:is larger than the size of the first 335:is the mean occupation number of the 7: 1942:Experimental Fermi surfaces of some 1928:Experimental Fermi surfaces of some 855:falls in a gap between bands is an 1491: 1409: 1276: 1247: 932: 801: 772: 755: 715: 502: 446: 261: 38:it lacks sufficient corresponding 14: 1582:experimental technique is called 1948:transition metal dichalcogenides 1803:. London: Taylor & Francis. 1617: 1109: 1087: 1065: 1043: 1021: 960: 912:{\displaystyle \mathbf {k} _{z}} 899: 23: 1079:now is closer to the origin in 1002:{\textstyle {\frac {2\pi }{a}}} 1854:10.1088/1742-6596/443/1/012092 1742:. Holt, Rinehart and Winston. 1570:measured by ARPES is shown in 1150:like electrons is governed by 645: 626: 614: 595: 579: 535: 525:Suppose we consider the limit 247: 228: 1: 1988:10.1088/0031-8949/91/5/053009 1961:Dugdale, S. B. (2016-01-01). 1763:Harrison, W. A. (July 1989). 1699:10.1088/0031-8949/91/5/053009 1648:Kelvin probe force microscope 384:is the kinetic energy of the 377:{\displaystyle \epsilon _{i}} 181:{\displaystyle \epsilon _{i}} 1891:. McGraw–Hill. p. 341. 1116:{\displaystyle \mathbf {K} } 1094:{\displaystyle \mathbf {k} } 1072:{\displaystyle \mathbf {k} } 1050:{\displaystyle \mathbf {K} } 1028:{\displaystyle \mathbf {k} } 967:{\displaystyle \mathbf {k} } 1788:VRML Fermi Surface Database 1566:(ARPES). An example of the 941:{\displaystyle k_{\rm {F}}} 724:{\displaystyle k_{\rm {F}}} 511:{\displaystyle k_{\rm {B}}} 455:{\displaystyle E_{\rm {F}}} 97:and from the occupation of 2050: 1952:iron-based superconductors 1449:{\displaystyle A_{\perp }} 1343:is the electronic charge, 1159:Experimental determination 1185:de Haas–van Alphen effect 673:Pauli exclusion principle 103:Pauli exclusion principle 2024:Condensed matter physics 1930:superconducting cuprates 1418:{\displaystyle \Delta H} 1189:Shubnikov–de Haas effect 1057:subtracted that the new 157:particles. According to 83:condensed matter physics 1767:. Courier Corporation. 1193:magnetic susceptibility 1146:The state occupancy of 1137:Jahn–Teller distortions 849:reduced Planck constant 99:electronic energy bands 53:more precise citations. 2034:Fermi–Dirac statistics 1555: 1536:Fermi surface of BSCCO 1520: 1512: 1450: 1419: 1398:. In a famous result, 1388: 1364: 1337: 1313: 1257: 1221: 1177: 1152:Fermi–Dirac statistics 1117: 1095: 1073: 1051: 1029: 1003: 968: 942: 913: 879: 870:Fig. 2: A view of the 841: 840:{\displaystyle \hbar } 817: 725: 689: 662: 545: 544:{\displaystyle T\to 0} 512: 478: 456: 420: 398: 378: 349: 329: 288: 182: 159:Fermi–Dirac statistics 151: 126: 1913:Statistical Mechanics 1799:Ziman, J. M. (1963). 1672:Dugdale, S B (2016). 1605:smeared Fermi surface 1579:positron annihilation 1533: 1513: 1458: 1451: 1420: 1389: 1365: 1363:{\displaystyle m^{*}} 1338: 1314: 1258: 1222: 1178: 1118: 1096: 1074: 1052: 1030: 1004: 969: 943: 914: 869: 842: 818: 726: 690: 663: 546: 513: 479: 457: 421: 399: 379: 350: 330: 289: 183: 152: 120: 1934:strontium ruthenates 1463: 1433: 1406: 1378: 1347: 1327: 1267: 1235: 1203: 1167: 1105: 1083: 1061: 1039: 1017: 981: 956: 923: 894: 831: 746: 706: 679: 558: 529: 493: 486:absolute temperature 468: 437: 419:{\displaystyle \mu } 410: 388: 361: 339: 304: 195: 165: 141: 1979:2016PhyS...91e3009D 1846:2013JPhCS.443a2092W 1740:Solid-State Physics 1690:2016PhyS...91e3009D 1653:Luttinger's theorem 1321:cyclotron frequency 1220:{\displaystyle 1/H} 1101:-space than to any 851:. A material whose 95:crystalline lattice 1950:, ruthenates, and 1560:reciprocal lattice 1556: 1508: 1446: 1415: 1384: 1360: 1333: 1309: 1253: 1217: 1195:and the latter in 1183:, for example the 1173: 1141:spin density waves 1113: 1091: 1069: 1047: 1025: 999: 964: 938: 909: 880: 837: 813: 721: 685: 658: 650: 541: 520:Boltzmann constant 508: 474: 452: 428:chemical potential 416: 394: 374: 345: 325: 284: 178: 147: 127: 89:is the surface in 1898:978-0-07-051800-1 1883:Reif, F. (1965). 1506: 1387:{\displaystyle c} 1336:{\displaystyle e} 1176:{\displaystyle H} 997: 811: 807: 781: 688:{\displaystyle N} 477:{\displaystyle T} 397:{\displaystyle i} 348:{\displaystyle i} 279: 150:{\displaystyle N} 79: 78: 71: 2041: 2010: 2000: 1990: 1916: 1909: 1903: 1902: 1890: 1880: 1874: 1873: 1839: 1819: 1813: 1812: 1796: 1790: 1785: 1779: 1778: 1760: 1754: 1753: 1728: 1722: 1721: 1711: 1701: 1669: 1627: 1622: 1621: 1589: 1517: 1515: 1514: 1509: 1507: 1505: 1497: 1480: 1475: 1474: 1455: 1453: 1452: 1447: 1445: 1444: 1424: 1422: 1421: 1416: 1393: 1391: 1390: 1385: 1370:is the electron 1369: 1367: 1366: 1361: 1359: 1358: 1342: 1340: 1339: 1334: 1318: 1316: 1315: 1310: 1305: 1304: 1295: 1281: 1280: 1279: 1262: 1260: 1259: 1254: 1252: 1251: 1250: 1226: 1224: 1223: 1218: 1213: 1182: 1180: 1179: 1174: 1122: 1120: 1119: 1114: 1112: 1100: 1098: 1097: 1092: 1090: 1078: 1076: 1075: 1070: 1068: 1056: 1054: 1053: 1048: 1046: 1034: 1032: 1031: 1026: 1024: 1011:lattice constant 1008: 1006: 1005: 1000: 998: 993: 985: 973: 971: 970: 965: 963: 947: 945: 944: 939: 937: 936: 935: 918: 916: 915: 910: 908: 907: 902: 886:illustrates the 846: 844: 843: 838: 822: 820: 819: 814: 812: 806: 805: 804: 788: 787: 782: 777: 776: 775: 765: 760: 759: 758: 737:reciprocal space 730: 728: 727: 722: 720: 719: 718: 694: 692: 691: 686: 667: 665: 664: 659: 654: 653: 638: 637: 607: 606: 578: 574: 573: 551:. Then we have, 550: 548: 547: 542: 517: 515: 514: 509: 507: 506: 505: 483: 481: 480: 475: 461: 459: 458: 453: 451: 450: 449: 425: 423: 422: 417: 403: 401: 400: 395: 383: 381: 380: 375: 373: 372: 354: 352: 351: 346: 334: 332: 331: 326: 324: 320: 319: 293: 291: 290: 285: 280: 278: 271: 270: 266: 265: 264: 254: 240: 239: 218: 210: 209: 187: 185: 184: 179: 177: 176: 156: 154: 153: 148: 91:reciprocal space 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 2049: 2048: 2044: 2043: 2042: 2040: 2039: 2038: 2014: 2013: 1967:Physica Scripta 1960: 1925: 1920: 1919: 1910: 1906: 1899: 1882: 1881: 1877: 1821: 1820: 1816: 1798: 1797: 1793: 1786: 1782: 1775: 1762: 1761: 1757: 1750: 1730: 1729: 1725: 1678:Physica Scripta 1671: 1670: 1666: 1661: 1623: 1616: 1613: 1587: 1549: 1498: 1481: 1466: 1461: 1460: 1456:by the equation 1436: 1431: 1430: 1404: 1403: 1376: 1375: 1350: 1345: 1344: 1325: 1324: 1296: 1270: 1265: 1264: 1241: 1233: 1232: 1201: 1200: 1187:(dHvA) and the 1165: 1164: 1161: 1129:superconductors 1103: 1102: 1081: 1080: 1059: 1058: 1037: 1036: 1015: 1014: 986: 979: 978: 954: 953: 926: 921: 920: 897: 892: 891: 829: 828: 795: 766: 749: 744: 743: 709: 704: 703: 677: 676: 649: 648: 629: 624: 618: 617: 598: 593: 583: 565: 561: 556: 555: 527: 526: 496: 491: 490: 466: 465: 440: 435: 434: 408: 407: 386: 385: 364: 359: 358: 337: 336: 311: 307: 302: 301: 255: 231: 223: 222: 201: 193: 192: 168: 163: 162: 139: 138: 115: 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 2047: 2045: 2037: 2036: 2031: 2026: 2016: 2015: 2012: 2011: 1958: 1940: 1924: 1923:External links 1921: 1918: 1917: 1915:(2000), p. 244 1904: 1897: 1875: 1814: 1791: 1780: 1773: 1755: 1748: 1723: 1663: 1662: 1660: 1657: 1656: 1655: 1650: 1645: 1640: 1638:Brillouin zone 1635: 1629: 1628: 1625:Physics portal 1612: 1609: 1592:spin polarized 1547: 1544:Brillouin zone 1525:mean free path 1504: 1501: 1496: 1493: 1490: 1487: 1484: 1478: 1473: 1469: 1443: 1439: 1414: 1411: 1396:speed of light 1383: 1372:effective mass 1357: 1353: 1332: 1319:is called the 1308: 1303: 1299: 1294: 1290: 1287: 1284: 1278: 1273: 1249: 1244: 1240: 1216: 1212: 1208: 1172: 1160: 1157: 1111: 1089: 1067: 1045: 1023: 996: 992: 989: 962: 950:Brillouin zone 934: 929: 906: 901: 876:Brillouin zone 836: 825: 824: 810: 803: 798: 794: 791: 785: 780: 774: 769: 763: 757: 752: 717: 712: 700:momentum space 684: 669: 668: 657: 652: 647: 644: 641: 636: 632: 628: 625: 623: 620: 619: 616: 613: 610: 605: 601: 597: 594: 592: 589: 588: 586: 581: 577: 572: 568: 564: 540: 537: 534: 523: 522: 504: 499: 488: 473: 463: 448: 443: 415: 405: 393: 371: 367: 356: 344: 323: 318: 314: 310: 295: 294: 283: 277: 274: 269: 263: 258: 253: 249: 246: 243: 238: 234: 230: 226: 221: 216: 213: 208: 204: 200: 175: 171: 146: 114: 111: 77: 76: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2046: 2035: 2032: 2030: 2027: 2025: 2022: 2021: 2019: 2008: 2004: 1999: 1994: 1989: 1984: 1980: 1976: 1973:(5): 053009. 1972: 1968: 1964: 1959: 1957: 1953: 1949: 1945: 1941: 1939: 1935: 1931: 1927: 1926: 1922: 1914: 1908: 1905: 1900: 1894: 1889: 1888: 1879: 1876: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1838: 1833: 1830:(1): 012092. 1829: 1825: 1818: 1815: 1810: 1806: 1802: 1795: 1792: 1789: 1784: 1781: 1776: 1774:0-486-66021-4 1770: 1766: 1759: 1756: 1751: 1749:0-03-083993-9 1745: 1741: 1737: 1736:Mermin, N. D. 1733: 1727: 1724: 1719: 1715: 1710: 1705: 1700: 1695: 1691: 1687: 1684:(5): 053009. 1683: 1679: 1675: 1668: 1665: 1658: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1630: 1626: 1620: 1615: 1610: 1608: 1606: 1601: 1597: 1593: 1585: 1580: 1575: 1573: 1569: 1565: 1561: 1553: 1545: 1541: 1537: 1532: 1528: 1526: 1519: 1502: 1494: 1488: 1485: 1482: 1476: 1471: 1467: 1457: 1441: 1437: 1428: 1412: 1401: 1397: 1381: 1373: 1355: 1351: 1330: 1322: 1306: 1301: 1297: 1292: 1288: 1285: 1282: 1271: 1242: 1230: 1214: 1210: 1206: 1198: 1194: 1190: 1186: 1170: 1158: 1156: 1153: 1149: 1144: 1142: 1138: 1134: 1130: 1126: 1125:ground states 1012: 994: 990: 987: 977: 951: 927: 904: 889: 885: 877: 873: 868: 864: 862: 858: 854: 850: 796: 792: 789: 783: 767: 761: 750: 742: 741: 740: 738: 732: 710: 701: 696: 682: 674: 655: 642: 639: 634: 630: 621: 611: 608: 603: 599: 590: 584: 575: 570: 566: 562: 554: 553: 552: 538: 532: 521: 497: 489: 487: 471: 464: 441: 433: 429: 413: 406: 391: 369: 365: 357: 342: 321: 316: 312: 308: 300: 299: 298: 281: 275: 272: 267: 256: 251: 244: 241: 236: 232: 224: 219: 214: 206: 202: 191: 190: 189: 173: 169: 160: 144: 136: 132: 124: 119: 112: 110: 108: 104: 100: 96: 92: 88: 87:Fermi surface 84: 73: 70: 62: 52: 48: 42: 41: 35: 30: 21: 20: 1970: 1966: 1912: 1907: 1886: 1878: 1827: 1823: 1817: 1800: 1794: 1783: 1764: 1758: 1739: 1732:Ashcroft, N. 1726: 1681: 1677: 1667: 1633:Fermi energy 1604: 1576: 1571: 1557: 1538:measured by 1521: 1459: 1400:Lars Onsager 1162: 1145: 1133:ferromagnets 883: 881: 826: 733: 697: 670: 524: 432:Fermi energy 296: 188:is given by 133:-less ideal 128: 106: 86: 80: 65: 56: 37: 1197:resistivity 888:anisotropic 853:Fermi level 129:Consider a 51:introducing 2018:Categories 1911:K. Huang, 1659:References 1546:of the CuO 1229:Lev Landau 107:fermiology 59:March 2023 34:references 2007:1402-4896 1870:119246268 1862:1742-6596 1837:1304.5363 1718:0031-8949 1550:plane of 1500:ℏ 1492:Δ 1486:π 1472:⊥ 1442:⊥ 1410:Δ 1356:∗ 1302:∗ 1272:ω 1243:ω 1239:ℏ 991:π 857:insulator 835:ℏ 809:ℏ 779:ℏ 643:μ 631:ϵ 612:μ 600:ϵ 580:→ 536:→ 414:μ 366:ϵ 245:μ 242:− 233:ϵ 212:⟩ 199:⟨ 170:ϵ 135:Fermi gas 1944:cuprates 1738:(1976). 1611:See also 1572:Figure 3 1534:Fig. 3: 1148:fermions 884:Figure 2 872:graphite 695:states. 576:⟩ 563:⟨ 404:th state 355:th state 322:⟩ 309:⟨ 1975:Bibcode 1842:Bibcode 1686:Bibcode 1394:is the 861:bandgap 847:is the 671:By the 518:is the 484:is the 426:is the 123:2D ACAR 47:improve 2005:  1895:  1868:  1860:  1809:541173 1807:  1771:  1746:  1716:  1263:where 976:modulo 297:where 113:Theory 85:, the 36:, but 1866:S2CID 1832:arXiv 1577:With 1552:BSCCO 1540:ARPES 2003:ISSN 1932:and 1893:ISBN 1858:ISSN 1805:OCLC 1769:ISBN 1744:ISBN 1714:ISSN 1596:spin 1588:180° 1374:and 1139:and 640:> 609:< 131:spin 1993:hdl 1983:doi 1954:in 1936:in 1850:doi 1828:443 1704:hdl 1694:doi 1600:UHV 698:In 137:of 81:In 2020:: 2001:. 1991:. 1981:. 1971:91 1969:. 1965:. 1946:, 1864:. 1856:. 1848:. 1840:. 1826:. 1734:; 1712:. 1702:. 1692:. 1682:91 1680:. 1676:. 1574:. 1518:. 1323:, 1143:. 1135:, 1131:, 109:. 2009:. 1995:: 1985:: 1977:: 1901:. 1872:. 1852:: 1844:: 1834:: 1811:. 1777:. 1752:. 1720:. 1706:: 1696:: 1688:: 1554:. 1548:2 1503:c 1495:H 1489:e 1483:2 1477:= 1468:A 1438:A 1427:Ă… 1413:H 1382:c 1352:m 1331:e 1307:c 1298:m 1293:/ 1289:H 1286:e 1283:= 1277:c 1248:c 1215:H 1211:/ 1207:1 1171:H 1110:K 1088:k 1066:k 1044:K 1022:k 995:a 988:2 961:k 933:F 928:k 905:z 900:k 823:, 802:F 797:E 793:m 790:2 784:= 773:F 768:p 762:= 756:F 751:k 716:F 711:k 683:N 656:. 646:) 635:i 627:( 622:0 615:) 604:i 596:( 591:1 585:{ 571:i 567:n 539:0 533:T 503:B 498:k 472:T 462:) 447:F 442:E 392:i 370:i 343:i 317:i 313:n 282:, 276:1 273:+ 268:T 262:B 257:k 252:/ 248:) 237:i 229:( 225:e 220:1 215:= 207:i 203:n 174:i 145:N 125:. 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
condensed matter physics
reciprocal space
crystalline lattice
electronic energy bands
Pauli exclusion principle

2D ACAR
spin
Fermi gas
Fermi–Dirac statistics
chemical potential
Fermi energy
absolute temperature
Boltzmann constant
Pauli exclusion principle
momentum space
reciprocal space
reduced Planck constant
Fermi level
insulator
bandgap

graphite
Brillouin zone
anisotropic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑