Knowledge (XXG)

Final stellation of the icosahedron

Source 📝

268: 1663: 1670: 1656: 1649: 1642: 1684: 1598: 1605: 1591: 1677: 1626: 370: 167: 1635: 1612: 941: 1570: 34: 1691: 1619: 653: 29: 640: 410: 1584: 1577: 953: 618: 629: 980:. Since three faces meet at each vertex it has 20 × 9 / 3 = 60 vertices (these are the outermost layer of visible vertices and form the tips of the "spines") and 20 × 9 / 2 = 90 edges (each edge of the star polyhedron includes and connects two of the 180 visible edges). 578: 429:
The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The
435: 421:
As a simple, visible surface polyhedron, the outward form of the final stellation is composed of 180 triangular faces, which are the outermost triangular regions in the stellation diagram. These join along 270 edges, which in turn meet at 92 vertices, with an
308:
stated a set of stellation rules for the regular icosahedron and gave a systematic enumeration of the fifty-nine stellations which conform to those rules. The complete stellation is referenced as the eighth in the book. In
863: 373:
Stellation diagram of the icosahedron with numbered cells. The complete icosahedron is formed from all the cells in the stellation, but only the outermost regions, labelled "13" in the diagram, are visible.
1120: 381:
of a polyhedron extends the faces of a polyhedron into infinite planes and generates a new polyhedron that is bounded by these planes as faces and the intersections of these planes as edges.
926: 573:{\displaystyle {\sqrt {{\frac {3}{2}}\left(3+{\sqrt {5}}\right)}}\,:\,{\sqrt {{\frac {1}{2}}\left(25+11{\sqrt {5}}\right)}}\,:\,{\sqrt {{\frac {1}{2}}\left(97+43{\sqrt {5}}\right)}}\,.} 771: 734: 704: 791: 681: 199:. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by 802: 1459: 1369: 1316: 1268: 1219: 1386: 315: 1297: 1247: 125: 1442: 872: 1150: 1727: 1229: 291: 1506: 1119:"... and some odd solids including the echidnahedron (my name; its actually the final stellation of the icosahedron)." 261: 204: 267: 241: 237: 1662: 1541: 1526: 278:
extended the stellation theory beyond regular forms, and identified ten stellations of the icosahedron, including the
1669: 1655: 1648: 1641: 1546: 1536: 1531: 1521: 1361: 319:, the final stellation of the icosahedron is included as the 17th model of stellated icosahedra with index number W 1483: 1447: 1258: 364: 304: 1597: 1683: 1604: 1590: 1233: 739: 1496: 39: 1625: 972:
having 20 faces corresponding to the 20 faces of the underlying icosahedron. Each face is an irregular 9/4
369: 1556: 286:
published a list of twenty stellation forms (twenty-two including reflective copies), also including the
1676: 1611: 646: 257: 166: 50: 1396: 401:, because it includes all cells in the stellation diagram up to and including the outermost "h" layer. 33: 1634: 940: 652: 28: 1707: 1456: 977: 423: 299: 130: 58: 1569: 1309:
The Final Stellation of the Icosahedron: An Advanced Mathematical Model to Cut Out and Glue Together
639: 1703: 1690: 1618: 1583: 1576: 1516: 1501: 1351: 709: 409: 1732: 253: 196: 686: 1551: 1423: 1404: 1365: 1312: 1293: 1264: 1243: 1215: 1173: 776: 249: 208: 153: 1407: 1355: 1287: 984: 414: 310: 228: 1344:
Certain forms of the icosahedron and a method for deriving and designating higher polyhedra
1278: 952: 1463: 1274: 1154: 992: 969: 958: 390: 347: 223: 212: 195:, and is "complete" and "final" because it includes all of the cells in the icosahedron's 157: 1201: 200: 1491: 1390: 666: 295: 1205: 1721: 1326: 245: 1426: 1176: 1147: 973: 794: 622: 417:
can be constructed by 12 sets of faces, each folded into a group of five pyramids.
1114: 633: 386: 192: 1699: 378: 233: 188: 1107: 1431: 1412: 1181: 988: 946:
Twenty 9/4 polygon faces (one face is drawn yellow with 9 vertices labeled.)
617: 1346:. Proc. Internat. Math. Congress, Toronto. Vol. 1. pp. 701–708. 176: 628: 260:
in 1812 that there are only four regular star polyhedrons, known as the
335: 1698:
The stellation process on the icosahedron creates a number of related
1472: 1468: 1111: 339: 327: 1257:
Coxeter, H.S.M.; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999) .
858:{\displaystyle S={\frac {1}{20}}(13211+{\sqrt {174306161}})a^{2}\,,} 663:
When regarded as a three-dimensional solid object with edge lengths
1121:
geometry.research; "polyhedra database"; August 30, 1995, 12:00 am.
1457:
http://www.georgehart.com/virtual-polyhedra/vrml/echidnahedron.wrl
983:
When regarded as a star icosahedron, the complete stellation is a
408: 368: 164: 1452: 1397:
Towards stellating the icosahedron and faceting the dodecahedron
968:
The complete stellation can also be seen as a self-intersecting
343: 1387:
With instructions for constructing a model of the echidnahedron
1078: 1010: 1131: 1129: 875: 805: 779: 742: 712: 689: 669: 438: 1477: 581: 171:
3D model of the final stellation of the icosahedron
148: 124: 57: 46: 21: 1329:(1810). "Memoire sur les polygones et polyèdres". 920: 857: 785: 765: 728: 698: 675: 572: 397:. The Du Val symbol of the complete stellation is 350:and which curls up in a ball to protect itself. 1207:Vielecke und Vielflache: Theorie und Geschichte 921:{\displaystyle V=(210+90{\sqrt {5}})a^{3}\,.} 389:, according to a set of rules put forward by 8: 797:) the complete icosahedron has surface area 1214:] (in German). Leipzig: B.G. Treubner. 1311:. Tarquin Publications, Norfolk, England. 1212:Polygons and Polyhedra: Theory and History 385:enumerates the stellations of the regular 1090: 1014: 914: 908: 894: 874: 851: 845: 831: 812: 804: 778: 756: 747: 741: 717: 711: 688: 668: 566: 552: 528: 526: 525: 521: 507: 483: 481: 480: 476: 462: 441: 439: 437: 1307:Jenkins, Gerald; Bear, Magdalen (1985). 1135: 1054: 1042: 1030: 766:{\displaystyle \varphi ^{2}a{\sqrt {2}}} 583:Convex hulls of each sphere of vertices 430:radii of these spheres are in the ratio 275: 266: 1066: 1026: 1003: 283: 16:Outermost stellation of the icosahedron 18: 1167: 1165: 1163: 326:In 1995, Andrew Hume named it in his 7: 1408:"Fifty nine icosahedron stellations" 207:. It can be viewed as an irregular, 248:in 1809 rediscovered two more, the 185:final stellation of the icosahedron 22:Final stellation of the icosahedron 14: 1448:59 Stellations of the Icosahedron 1689: 1682: 1675: 1668: 1661: 1654: 1647: 1640: 1633: 1624: 1617: 1610: 1603: 1596: 1589: 1582: 1575: 1568: 1106:may be credited to Andrew Hume, 951: 939: 651: 638: 627: 616: 32: 27: 1238:(3rd ed.). Dover. 3.6 6.2 244:as regular polyhedra. However, 205:Kepler–Poinsot polyhedron 1484:stellations of the icosahedron 1473:Polyhedron database, model 141 1443:Stellations of the icosahedron 1292:. Cambridge University Press. 1240:Stellating the Platonic solids 901: 882: 838: 822: 1: 729:{\displaystyle \varphi ^{2}a} 342:that is covered with coarse 242:great stellated dodecahedron 238:small stellated dodecahedron 1542:Compound of five tetrahedra 1527:Medial triambic icosahedron 1331:J. De l'École Polytechnique 1286:Cromwell, Peter R. (1997). 338:or spiny anteater, a small 330:polyhedral database as the 1749: 1697: 1547:Compound of ten tetrahedra 1537:Compound of five octahedra 1532:Great triambic icosahedron 1522:Small triambic icosahedron 1480: 1362:Cambridge University Press 1045:, Taf. XI, Fig. 14, 1900). 614: 362: 1646: 1581: 1510: 1500: 1495: 1263:(3rd ed.). Tarquin. 1260:The Fifty-Nine Icosahedra 699:{\displaystyle \varphi a} 383:The Fifty Nine Icosahedra 365:The Fifty-Nine Icosahedra 305:The Fifty Nine Icosahedra 262:Kepler–Poinsot polyhedron 236:process, recognizing the 26: 786:{\displaystyle \varphi } 93:As a simple polyhedron: 40:orthographic projections 1342:Wheeler, A. H. (1924). 203:after the discovery of 1557:Excavated dodecahedron 991:(face-transitive) and 922: 859: 787: 767: 730: 700: 677: 574: 418: 405:As a simple polyhedron 374: 272: 172: 152:As a star polyhedron: 63:As a star polyhedron: 1728:Polyhedral stellation 1079:Coxeter et al. (1999) 1011:Coxeter et al. (1999) 995:(vertex-transitive). 987:, because it is both 923: 860: 788: 768: 731: 701: 678: 657:Complete icosahedron 647:truncated icosahedron 575: 412: 372: 270: 258:Augustin-Louis Cauchy 256:. This was proved by 170: 51:Stellated icosahedron 1708:icosahedral symmetry 1517:(Convex) icosahedron 1352:Wenninger, Magnus J. 931:As a star polyhedron 873: 803: 777: 740: 710: 687: 667: 436: 424:Euler characteristic 298:, H. T. Flather and 1242:, pp. 96–104. 1115:polyhedron database 584: 395:complete stellation 302:in their 1938 book 288:complete stellation 280:complete stellation 1497:Uniform duals 1462:2021-12-31 at the 1424:Weisstein, Eric W. 1405:Weisstein, Eric W. 1174:Weisstein, Eric W. 1153:2008-10-07 at the 918: 855: 783: 763: 726: 696: 673: 582: 570: 419: 375: 273: 254:great dodecahedron 197:stellation diagram 173: 1714: 1713: 1552:Great icosahedron 1502:Regular compounds 1371:978-0-521-09859-5 1357:Polyhedron models 1318:978-0-906212-48-6 1270:978-1-899618-32-3 1235:Regular Polytopes 1221:978-1-4181-6590-1 1013:, p. 30–31; 899: 836: 820: 761: 676:{\displaystyle a} 661: 660: 564: 557: 536: 519: 512: 491: 474: 467: 449: 316:Polyhedron Models 250:great icosahedron 187:is the outermost 163: 162: 154:vertex-transitive 1740: 1693: 1686: 1679: 1672: 1665: 1658: 1651: 1644: 1637: 1628: 1621: 1614: 1607: 1600: 1593: 1586: 1579: 1572: 1562:Final stellation 1478: 1437: 1436: 1418: 1417: 1393:) by Ralph Jones 1375: 1347: 1338: 1322: 1303: 1282: 1253: 1225: 1188: 1187: 1186: 1169: 1158: 1157:at polyhedra.org 1145: 1139: 1133: 1124: 1100: 1094: 1091:Wenninger (1971) 1088: 1082: 1076: 1070: 1064: 1058: 1052: 1046: 1040: 1034: 1024: 1018: 1015:Wenninger (1971) 1008: 985:noble polyhedron 955: 943: 927: 925: 924: 919: 913: 912: 900: 895: 864: 862: 861: 856: 850: 849: 837: 832: 821: 813: 792: 790: 789: 784: 772: 770: 769: 764: 762: 757: 752: 751: 735: 733: 732: 727: 722: 721: 705: 703: 702: 697: 682: 680: 679: 674: 655: 642: 631: 620: 585: 579: 577: 576: 571: 565: 563: 559: 558: 553: 537: 529: 527: 520: 518: 514: 513: 508: 492: 484: 482: 475: 473: 469: 468: 463: 450: 442: 440: 415:polyhedral model 393:, including the 292:H. S. M. Coxeter 271:Brückner's model 229:Harmonices Mundi 169: 143: 120: 113: 106: 99: 90: 83: 76: 69: 36: 31: 19: 1748: 1747: 1743: 1742: 1741: 1739: 1738: 1737: 1718: 1717: 1464:Wayback Machine 1427:"Echidnahedron" 1422: 1421: 1403: 1402: 1399:by Guy Inchbald 1383: 1378: 1372: 1350: 1341: 1325: 1319: 1306: 1300: 1285: 1271: 1256: 1250: 1230:Coxeter, H.S.M. 1228: 1222: 1200: 1196: 1191: 1177:"Echidnahedron" 1172: 1171: 1170: 1161: 1155:Wayback Machine 1146: 1142: 1136:Cromwell (1997) 1134: 1127: 1123: 1118: 1101: 1097: 1089: 1085: 1077: 1073: 1065: 1061: 1055:Brückner (1900) 1053: 1049: 1043:Brückner (1900) 1041: 1037: 1031:Cromwell (1997) 1025: 1021: 1009: 1005: 1001: 970:star polyhedron 966: 965: 964: 963: 962: 956: 948: 947: 944: 933: 904: 871: 870: 841: 801: 800: 775: 774: 743: 738: 737: 713: 708: 707: 685: 684: 665: 664: 656: 645: 643: 632: 621: 542: 538: 497: 493: 455: 451: 434: 433: 407: 391:J. C. P. Miller 367: 361: 359:As a stellation 356: 354:Interpretations 322: 276:Brückner (1900) 224:Johannes Kepler 221: 213:star polyhedron 165: 158:face-transitive 142: 134: 115: 108: 101: 94: 92: 85: 78: 71: 64: 42: 17: 12: 11: 5: 1746: 1744: 1736: 1735: 1730: 1720: 1719: 1712: 1711: 1695: 1694: 1687: 1680: 1673: 1666: 1659: 1652: 1645: 1638: 1630: 1629: 1622: 1615: 1608: 1601: 1594: 1587: 1580: 1573: 1565: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1524: 1519: 1513: 1512: 1509: 1504: 1499: 1494: 1488: 1487: 1476: 1475: 1466: 1450: 1445: 1440: 1439: 1438: 1400: 1394: 1382: 1381:External links 1379: 1377: 1376: 1370: 1348: 1339: 1327:Poinsot, Louis 1323: 1317: 1304: 1298: 1283: 1269: 1254: 1248: 1226: 1220: 1197: 1195: 1192: 1190: 1189: 1159: 1140: 1138:, p. 259. 1125: 1095: 1083: 1071: 1067:Wheeler (1924) 1059: 1047: 1035: 1033:, p. 259. 1027:Poinsot (1810) 1019: 1002: 1000: 997: 957: 950: 949: 945: 938: 937: 936: 935: 934: 932: 929: 917: 911: 907: 903: 898: 893: 890: 887: 884: 881: 878: 854: 848: 844: 840: 835: 830: 827: 824: 819: 816: 811: 808: 782: 760: 755: 750: 746: 725: 720: 716: 695: 692: 672: 659: 658: 649: 636: 625: 613: 612: 609: 606: 603: 599: 598: 595: 592: 589: 569: 562: 556: 551: 548: 545: 541: 535: 532: 524: 517: 511: 506: 503: 500: 496: 490: 487: 479: 472: 466: 461: 458: 454: 448: 445: 406: 403: 363:Main article: 360: 357: 355: 352: 320: 284:Wheeler (1924) 220: 217: 161: 160: 150: 146: 145: 138: 128: 126:Symmetry group 122: 121: 61: 55: 54: 48: 44: 43: 38:Two symmetric 37: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1745: 1734: 1731: 1729: 1726: 1725: 1723: 1716: 1709: 1705: 1701: 1696: 1692: 1688: 1685: 1681: 1678: 1674: 1671: 1667: 1664: 1660: 1657: 1653: 1650: 1643: 1639: 1636: 1632: 1631: 1627: 1623: 1620: 1616: 1613: 1609: 1606: 1602: 1599: 1595: 1592: 1588: 1585: 1578: 1574: 1571: 1567: 1566: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1514: 1508: 1505: 1503: 1498: 1493: 1490: 1489: 1486: 1485: 1479: 1474: 1470: 1467: 1465: 1461: 1458: 1454: 1451: 1449: 1446: 1444: 1441: 1434: 1433: 1428: 1425: 1420: 1419: 1415: 1414: 1409: 1406: 1401: 1398: 1395: 1392: 1388: 1385: 1384: 1380: 1373: 1367: 1363: 1359: 1358: 1353: 1349: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1314: 1310: 1305: 1301: 1299:0-521-66405-5 1295: 1291: 1290: 1284: 1280: 1276: 1272: 1266: 1262: 1261: 1255: 1251: 1249:0-486-61480-8 1245: 1241: 1237: 1236: 1231: 1227: 1223: 1217: 1213: 1209: 1208: 1203: 1202:Brückner, Max 1199: 1198: 1193: 1184: 1183: 1178: 1175: 1168: 1166: 1164: 1160: 1156: 1152: 1149: 1148:Echidnahedron 1144: 1141: 1137: 1132: 1130: 1126: 1122: 1116: 1113: 1109: 1105: 1104:echidnahedron 1099: 1096: 1093:, p. 65. 1092: 1087: 1084: 1080: 1075: 1072: 1068: 1063: 1060: 1056: 1051: 1048: 1044: 1039: 1036: 1032: 1028: 1023: 1020: 1017:, p. 65. 1016: 1012: 1007: 1004: 998: 996: 994: 990: 986: 981: 979: 975: 971: 960: 954: 942: 930: 928: 915: 909: 905: 896: 891: 888: 885: 879: 876: 868: 865: 852: 846: 842: 833: 828: 825: 817: 814: 809: 806: 798: 796: 780: 758: 753: 748: 744: 723: 718: 714: 693: 690: 670: 654: 650: 648: 641: 637: 635: 630: 626: 624: 619: 615: 610: 607: 604: 601: 600: 596: 593: 590: 587: 586: 580: 567: 560: 554: 549: 546: 543: 539: 533: 530: 522: 515: 509: 504: 501: 498: 494: 488: 485: 477: 470: 464: 459: 456: 452: 446: 443: 431: 427: 425: 416: 411: 404: 402: 400: 396: 392: 388: 384: 380: 371: 366: 358: 353: 351: 349: 345: 341: 337: 333: 332:echidnahedron 329: 324: 318: 317: 312: 307: 306: 301: 297: 293: 289: 285: 281: 277: 269: 265: 263: 259: 255: 251: 247: 246:Louis Poinsot 243: 239: 235: 231: 230: 225: 218: 216: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 168: 159: 155: 151: 147: 141: 137: 132: 129: 127: 123: 118: 111: 104: 97: 88: 81: 74: 67: 62: 60: 56: 52: 49: 45: 41: 35: 30: 25: 20: 1715: 1561: 1507:Regular star 1481: 1430: 1411: 1356: 1343: 1334: 1330: 1308: 1288: 1259: 1239: 1234: 1211: 1206: 1180: 1143: 1103: 1098: 1086: 1074: 1062: 1050: 1038: 1022: 1006: 982: 974:star polygon 967: 869: 866: 799: 795:golden ratio 662: 623:Dodecahedron 611:92 vertices 608:60 vertices 605:12 vertices 602:20 vertices 432: 428: 420: 398: 394: 382: 376: 331: 325: 314: 303: 300:J. F. Petrie 287: 279: 274: 232:applied the 227: 222: 201:Max Brückner 184: 180: 174: 139: 135: 116: 109: 102: 95: 86: 79: 72: 65: 867:and volume 634:Icosahedron 387:icosahedron 193:icosahedron 131:icosahedral 89:= −10 59:Euler char. 53:, 8th of 59 1722:Categories 1194:References 959:2-isogonal 644:Nonuniform 597:All three 379:stellation 334:after the 234:stellation 219:Background 189:stellation 149:Properties 1733:Polyhedra 1704:compounds 1700:polyhedra 1432:MathWorld 1413:MathWorld 1289:Polyhedra 1182:MathWorld 1108:developer 1102:The name 989:isohedral 978:enneagram 961:9/4 faces 834:174306161 781:φ 745:φ 715:φ 691:φ 311:Wenninger 296:P. du Val 1482:Notable 1460:Archived 1354:(1971). 1337:: 16–48. 1232:(1973). 1204:(1900). 1151:Archived 993:isogonal 313:'s book 181:complete 177:geometry 1511:Others 1492:Regular 1455:model: 1279:0676126 1110:of the 793:is the 773:(where 591:Middle 336:echidna 226:in his 191:of the 1469:Netlib 1368:  1315:  1296:  1277:  1267:  1246:  1218:  1112:netlib 594:Outer 588:Inner 426:of 2. 348:spines 340:mammal 328:Netlib 211:, and 209:simple 179:, the 1706:with 1210:[ 999:Notes 976:, or 826:13211 105:= 270 98:= 180 1702:and 1453:VRML 1391:.doc 1366:ISBN 1313:ISBN 1294:ISBN 1265:ISBN 1244:ISBN 1216:ISBN 736:and 377:The 346:and 344:hair 252:and 240:and 119:= 2) 112:= 92 82:= 60 75:= 90 68:= 20 47:Type 886:210 183:or 175:In 1724:: 1710:. 1471:: 1429:. 1410:. 1364:. 1360:. 1333:. 1275:MR 1273:. 1179:. 1162:^ 1128:^ 1029:; 892:90 818:20 706:, 683:, 550:43 544:97 505:11 499:25 413:A 323:. 321:42 294:, 290:. 282:. 264:. 215:. 156:, 107:, 100:, 77:, 70:, 1435:. 1416:. 1389:( 1374:. 1335:9 1321:. 1302:. 1281:. 1252:. 1224:. 1185:. 1117:: 1081:. 1069:. 1057:. 916:. 910:3 906:a 902:) 897:5 889:+ 883:( 880:= 877:V 853:, 847:2 843:a 839:) 829:+ 823:( 815:1 810:= 807:S 759:2 754:a 749:2 724:a 719:2 694:a 671:a 568:. 561:) 555:5 547:+ 540:( 534:2 531:1 523:: 516:) 510:5 502:+ 495:( 489:2 486:1 478:: 471:) 465:5 460:+ 457:3 453:( 447:2 444:3 399:H 144:) 140:h 136:I 133:( 117:χ 114:( 110:V 103:E 96:F 91:) 87:χ 84:( 80:V 73:E 66:F

Index



orthographic projections
Stellated icosahedron
Euler char.
Symmetry group
icosahedral
vertex-transitive
face-transitive

geometry
stellation
icosahedron
stellation diagram
Max Brückner
Kepler–Poinsot polyhedron
simple
star polyhedron
Johannes Kepler
Harmonices Mundi
stellation
small stellated dodecahedron
great stellated dodecahedron
Louis Poinsot
great icosahedron
great dodecahedron
Augustin-Louis Cauchy
Kepler–Poinsot polyhedron

Brückner (1900)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.