Knowledge (XXG)

Finite sphere packing

Source 📝

105: 973: 117: 58: 93: 691: 968:{\displaystyle {\begin{aligned}V_{W}&=V_{\text{cylinder}}+2\cdot V_{\text{half-sphere}}\\&=V_{\text{cylinder}}+V_{\text{sphere}}\\&=\pi hr^{2}+{\frac {4}{3}}\pi r^{3}\\&=\pi 2r\cdot (n-1)\cdot r^{2}+{\frac {4}{3}}\pi r^{3}\\&=2\cdot \left(n-{\frac {1}{3}}\right)\pi r^{3}\end{aligned}}} 2067:
upwards it is always optimal to arrange the spheres along a straight line. That is, the sausage catastrophe no longer occurs once we go above 4 dimensions. The overall conjecture remains open. The best results so far are those of Ulrich Betke und Martin Henk, who proved the conjecture for dimensions
69:
refers to any arrangement of a set of spatially-connected, possibly differently-sized or differently-shaped objects in space such that none of them overlap. In the case of the finite sphere packing problem, these objects are restricted to equally-sized spheres. Such a packing of spheres determines a
2076:
While it may be proved that the sausage packing is not optimal for 56 spheres, and that there must be some other packing that is optimal, it is not known what the optimal packing looks like. It is difficult to find the optimal packing as there is no "simple" formula for the volume of an arbitrarily
454:
comes from the fact that the optimal packing shape suddenly shifts from the orderly sausage packing to the relatively unordered cluster packing and vice versa as one goes from one number to another, without a satisfying explanation as to why this happens. Even so, the transition in three dimensions
225:, which is defined as the ratio of the volume of the spheres to the volume of the total convex hull. The higher the packing density, the less empty space there is in the packing and thus the smaller the volume of the hull (in comparison to other packings with the same number and size of spheres). 228:
To pack the spheres efficiently, it might be asked which packing has the highest possible density. It is easy to see that such a packing should have the property that the spheres lie next to each other, that is, each sphere should touch another on the surface. A more exact phrasing is to form a
3113: 2385:
and others used it to formulate a unified theory of finite and infinite packings. In three dimensions, Wills gives a simple argument that such a unified theory is not possible based on this definition: The densest finite arrangement of coins in three dimensions is the sausage with
510:, the optimal packing is always either a sausage or a cluster, and never a pizza. It is an open problem whether this holds true for all dimensions. This result only concerns spheres and not other convex bodies; in fact Gritzmann and Arhelger observed that for any dimension 1196: 2089:. A crucial step towards a unified theory of both finite and infinite (lattice and non-lattice) sphere packings was the introduction of parametric densities by Jörg Wills in 1992. The parametric density takes into account the influence of the edges of the packing. 1679: 409:, a cluster packing exists that is more efficient that the sausage packing, as shown in 1992 by Jörg Wills and Pier Mario Gandini. It remains unknown what these most efficient cluster packings look like. For example, in the case 1833: 1445: 2898: 136:, as the convex hull has a sausage-like shape. An approximate example in real life is the packing of tennis balls in a tube, though the ends must be rounded for the tube to coincide with the actual convex hull. 2555: 2887: 2206: 1555: 237:
for each sphere and connects vertices with edges whenever the corresponding spheres if their surfaces touch. Then the highest-density packing must satisfy the property that the corresponding graph is
1028: 696: 213:
One or two spheres always make a sausage. With three, a pizza packing (that is not also a sausage) becomes possible, and with four or more, clusters (that are not also pizzas) become possible.
1287: 148:. Approximate real-life examples of this kind of packing include billiard balls being packed in a triangle as they are set up. This holds for packings in three-dimensional Euclidean space. 3283: 544:
In the following section it is shown that for 455 spheres the sausage packing is non-optimal, and that there instead exists a special cluster packing that occupies a smaller volume.
2794: 2732: 1333: 2436: 1941:, which would involve subtracting the excess volume at the corners and edges of the tetrahedron. This allows the sausage packing to be proved non-optimal for smaller values of 27:
can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by
381: 2438:, so the infinite value cannot be obtained as a limit of finite values. To solve this issue, Wills introduces a modification to the definition by adding a positive parameter 636: 3355: 331: 168:
By the given definitions, any sausage packing is technically also a pizza packing, and any pizza packing is technically also a cluster packing. In the more general case of
3319: 2690: 2654: 1730: 1587: 2376: 2410: 3199: 508: 407: 2618: 534: 3143: 2577: 2456: 2310: 2283: 2236: 1916: 1889: 1364: 683: 1863: 433: 3225: 2065: 1918:
is about 2845 for the tetrahedral packing and 2856 for the sausage packing, which implies that for this number of spheres the tetrahedron is more closely packed.
479: 287: 3747: 3163: 2814: 2752: 2330: 2256: 2110: 2039: 2019: 1979: 1959: 1939: 1703: 1579: 1488: 1468: 1243: 1223: 1020: 1000: 656: 585: 565: 267: 207: 186: 2332:). For a linear arrangement (sausage), the convex hull is a line segment through all the midpoints of the spheres. The plus sign in the formula refers to 3693: 1738: 2579:
allows the influence of the edges to be considered (giving the convex hull a certain thickness). This is then combined with methods from the theory of
1372: 3743: 49:
Sphere packing problems are distinguished between packings in given containers and free packings. This article primarily discusses free packings.
2001:
in 1975, which concerns a generalized version of the problem to spheres, convex hulls, and volume in higher dimensions. A generalized sphere in
978:
Similarly, it is possible to find the volume of the convex hull of a tetrahedral packing, in which the spheres are arranged so that they form a
2041:-dimensional body in which every boundary point lies equally far away from the midpoint. Fejes Tóth's sausage conjecture then states that from 3108:{\displaystyle {\frac {V(B^{d})}{2V(B^{d-1})}}{\rho _{c}(d)}^{1-d}\leq \delta (B^{d})\leq {\frac {V(B^{d})}{2V(B^{d-1})}}{\rho _{s}(d)}^{1-d}} 3515: 3452: 2464: 2819: 86:
There are many possible ways to arrange spheres, which can be classified into three basic groups: sausage, pizza, and cluster packing.
3901: 2118: 1496: 1191:{\displaystyle n=\sum _{i=1}^{x}\sum _{j=1}^{i}j=\sum _{i=1}^{x}{\frac {i\cdot (i+1)}{2}}={\frac {x\cdot (x+1)\cdot (x+2)}{6}}} 3880: 3812: 3686: 2077:
shaped cluster. Optimality (and non-optimality) is shown through appropriate estimates of the volume, using methods from
3807: 230: 104: 2082: 1251: 221:
The empty space between spheres varies depending on the type of packing. The amount of empty space is measured in the
1921:
It is also possible with some more effort to derive the exact formula for the volume of the tetrahedral convex hull
3797: 3751: 3739: 1994: 28: 3787: 3679: 2092:
The definition of density used earlier concerns the volume of the convex hull of the spheres (or convex bodies)
3802: 3230: 3469: 2757: 2695: 1299: 3761: 43: 2415: 2382: 249:
With three or four spheres, the sausage packing is optimal. It is believed that this holds true for any
234: 982:
shape, which only leads to completely filled tetrahedra for specific numbers of spheres. If there are
336: 34:
The similar problem for infinitely many spheres has a longer history of investigation, from which the
3628: 2086: 1674:{\displaystyle V<{\frac {2\cdot \left(x-1+{\sqrt {6}}\right)^{3}\cdot {\sqrt {2}}\cdot r^{3}}{3}}} 594: 3495: 3387:
Wills, J. M. (1998). "Spheres and Sausages, crystals and catastrophes- and a joint packing theory".
3324: 3854: 3716: 2584: 292: 3288: 2659: 2623: 1708: 132:
An arrangement in which the midpoint of all the spheres lie on a single straight line is called a
116: 3658: 3565: 3412: 2333: 440: 2339: 2389: 446:
The sudden transition in optimal packing shape is jokingly known by some mathematicians as the
92: 3859: 3756: 3650: 3606: 3557: 3511: 3448: 3404: 3168: 2588: 487: 386: 39: 35: 2597: 1561:
Substituting this value into the volume formula for the tetrahedron, we know that the volume
513: 3702: 3640: 3596: 3549: 3503: 3440: 3396: 3121: 2562: 2441: 2288: 2261: 2214: 1894: 1868: 1342: 661: 2078: 1842: 412: 238: 222: 210:-dimensional arrangements, and "pizzas" to those with an in-between number of dimensions. 156:
If the midpoints of the spheres are arranged throughout 3D space, the packing is termed a
3204: 2044: 458: 272: 3838: 3817: 3779: 3766: 3731: 3507: 3148: 2799: 2737: 2315: 2241: 2095: 2024: 2004: 1964: 1944: 1924: 1688: 1564: 1473: 1453: 1450:
In the case of many spheres being arranged inside a tetrahedron, the length of an edge
1228: 1208: 1005: 985: 641: 570: 550: 252: 192: 171: 3895: 3875: 3822: 3662: 3569: 3434: 3416: 2816:
the cluster is densest. These parameters are dimension-specific. In two dimensions,
3285:
and it is predicted that this holds for all dimensions, in which case the value of
2580: 160:. Real-life approximations include fruit being packed in multiple layers in a box. 1828:{\displaystyle V_{\text{W}}={\frac {x\cdot (x+1)\cdot (x+2)-2}{3}}\cdot \pi r^{3}} 1732:
of the convex hull of a sausage packing with the same number of spheres, we have
1440:{\displaystyle V_{T}={\frac {\sqrt {2}}{12}}\cdot a^{3}={\sqrt {192}}\cdot r^{3}} 481:
dimensions the sudden transition is conjectured to happen around 377000 spheres.
3721: 979: 436: 71: 2889:
so that there is a transition from sausages to clusters (sausage catastrophe).
1470:
increases by twice the radius of a sphere for each new layer, meaning that for
439:
packing like the classical packing of cannon balls, but is likely some kind of
3537: 3444: 75: 57: 3654: 3610: 3561: 3408: 2412:. However, the optimal infinite arrangement is a hexagonal arrangement with 188:
dimensions, "sausages" refer to one-dimensional arrangements, "clusters" to
3645: 1203: 588: 587:
is calculable with elementary geometry. The middle part of the hull is a
1581:
of the convex hull must be smaller than the tetrahedron itself, so that
3601: 3584: 3553: 3400: 1002:
spheres along one edge of the tetrahedron, the total number of spheres
2312:(instead of the sphere, we can also take an arbitrary convex body for 1705:
layers and substituting into the earlier expression to get the volume
536:
there exists a convex shape for which the closest packing is a pizza.
46:
and treated as infinite sphere packings thanks to their large number.
24: 3671: 2381:
This definition works in two dimensions, where Laszlo Fejes-Toth,
56: 2550:{\displaystyle \delta (K,C_{n})={\frac {nV(K)}{V(C_{n}+\rho K)}}} 2882:{\displaystyle \rho _{c}(2)=\rho _{s}(2)={\frac {\sqrt {3}}{2}}} 3675: 23:
concerns the question of how a finite number of equally-sized
2201:{\displaystyle \delta (K,C_{n})={\frac {nV(K)}{V(C_{n}+K)}}} 1550:{\displaystyle a=2\cdot \left(x-1+{\sqrt {6}}\right)\cdot r} 2378:
refers to the volume of the convex hull of the spheres.
638:
while the caps at the end are half-spheres with radius
2734:
the sausage is the densenst packing (for all integers
547:
The volume of a convex hull of a sausage packing with
144:
If all the midpoints lie on a plane, the packing is a
3327: 3291: 3233: 3207: 3171: 3151: 3124: 2901: 2822: 2802: 2760: 2740: 2698: 2662: 2626: 2600: 2565: 2467: 2444: 2418: 2392: 2342: 2318: 2291: 2264: 2244: 2217: 2121: 2098: 2047: 2027: 2007: 1967: 1947: 1927: 1897: 1871: 1845: 1741: 1711: 1691: 1590: 1567: 1499: 1476: 1456: 1375: 1345: 1302: 1254: 1231: 1211: 1031: 1008: 988: 694: 664: 644: 597: 573: 553: 516: 490: 461: 415: 389: 339: 295: 275: 255: 195: 174: 3868: 3847: 3831: 3778: 3730: 3709: 3633:
Mitteilungen der Deutschen Mathematiker-Vereinigung
3349: 3313: 3277: 3219: 3193: 3157: 3137: 3107: 2881: 2808: 2788: 2746: 2726: 2684: 2648: 2612: 2571: 2549: 2450: 2430: 2404: 2370: 2324: 2304: 2277: 2250: 2230: 2200: 2104: 2059: 2033: 2013: 1973: 1953: 1933: 1910: 1883: 1857: 1827: 1724: 1697: 1673: 1573: 1549: 1482: 1462: 1439: 1358: 1327: 1281: 1237: 1217: 1190: 1014: 994: 967: 677: 650: 630: 579: 559: 528: 502: 473: 427: 401: 375: 325: 281: 261: 201: 180: 1685:Taking the number of spheres in a tetrahedron of 1366:of the tetrahedron is then given by the formula 1282:{\displaystyle r={\frac {\sqrt {6}}{12}}\cdot a} 540:Example of the sausage packing being non-optimal 435:, it is known that the optimal packing is not a 3439:(in German). Wiesbaden: Vieweg+Teubner Verlag. 3428: 3426: 3687: 8: 3622: 3620: 3694: 3680: 3672: 3644: 3600: 3494:Gritzmann, Peter; Wills, Jörg M. (1993), 3338: 3326: 3296: 3290: 3278:{\displaystyle \rho _{s}(d)=\rho _{c}(d)} 3260: 3238: 3232: 3206: 3182: 3170: 3150: 3129: 3123: 3093: 3077: 3072: 3053: 3029: 3016: 3004: 2979: 2963: 2958: 2939: 2915: 2902: 2900: 2867: 2849: 2827: 2821: 2801: 2771: 2759: 2739: 2709: 2697: 2667: 2661: 2631: 2625: 2599: 2564: 2526: 2496: 2484: 2466: 2443: 2417: 2391: 2353: 2341: 2317: 2296: 2290: 2269: 2263: 2243: 2222: 2216: 2180: 2150: 2138: 2120: 2097: 2046: 2026: 2006: 1966: 1946: 1926: 1902: 1896: 1870: 1844: 1819: 1755: 1746: 1740: 1716: 1710: 1690: 1659: 1645: 1636: 1624: 1597: 1589: 1566: 1529: 1498: 1475: 1455: 1431: 1417: 1408: 1389: 1380: 1374: 1350: 1344: 1312: 1301: 1261: 1253: 1230: 1210: 1140: 1107: 1101: 1090: 1074: 1063: 1053: 1042: 1030: 1007: 987: 955: 933: 900: 883: 874: 824: 807: 798: 772: 759: 739: 720: 703: 695: 693: 669: 663: 643: 596: 572: 552: 515: 489: 460: 414: 388: 338: 294: 274: 254: 194: 173: 74:of the packing, defined as the smallest 3368: 88: 3382: 3380: 3378: 3376: 3374: 3372: 2789:{\displaystyle \rho \geq \rho _{c}(d)} 2727:{\displaystyle \rho \leq \rho _{s}(d)} 2072:Parametric density and related methods 164:Relationships between types of packing 3589:Discrete & Computational Geometry 3468:Gandini, P. M.; Wills, J. M. (1992). 1328:{\displaystyle a=2{\sqrt {6}}\cdot r} 7: 1891:spheres the coefficient in front of 3536:Hajnal, A.; Tóth, L. Fejes (1975). 3436:Kugelpackungen von Kepler bis heute 3508:10.1016/b978-0-444-89597-4.50008-1 3118:where the volume of the unit ball 2431:{\displaystyle \delta \approx 0.9} 1225:of a tetrahedral with side length 14: 3629:"Kugelpackungen- Altes und Neues" 376:{\displaystyle n=56,59,60,61,62} 115: 103: 91: 42:can be simplistically viewed as 3542:Periodica Mathematica Hungarica 1490:layers the side length becomes 631:{\displaystyle h=2r\cdot (n-1)} 450:(Wills, 1985). The designation 78:that includes all the spheres. 3823:Sphere-packing (Hamming) bound 3502:, Elsevier, pp. 861–897, 3389:The Mathematical Intelligencer 3350:{\displaystyle \delta (B^{d})} 3344: 3331: 3308: 3302: 3272: 3266: 3250: 3244: 3188: 3175: 3089: 3083: 3065: 3046: 3035: 3022: 3010: 2997: 2975: 2969: 2951: 2932: 2921: 2908: 2861: 2855: 2839: 2833: 2783: 2777: 2721: 2715: 2679: 2673: 2643: 2637: 2541: 2519: 2511: 2505: 2490: 2471: 2365: 2346: 2192: 2173: 2165: 2159: 2144: 2125: 2085:, mixed Minkowski volumes and 1794: 1782: 1776: 1764: 1179: 1167: 1161: 1149: 1128: 1116: 864: 852: 625: 613: 19:In mathematics, the theory of 1: 3627:Wills, Jörg M. (1995-01-01). 3496:"Finite Packing and Covering" 1993:comes from the mathematician 326:{\displaystyle n=57,58,63,64} 70:specific volume known as the 38:is most well-known. Atoms in 3585:"Finite Packings of Spheres" 3583:Betke, U.; Henk, M. (1998). 3314:{\displaystyle \rho _{c}(d)} 2685:{\displaystyle \rho _{c}(d)} 2649:{\displaystyle \rho _{s}(d)} 1725:{\displaystyle V_{\text{W}}} 3500:Handbook of Convex Geometry 3470:"On finite sphere-packings" 2892:There holds an inequality: 2620:there are parameter values 3918: 3321:can be found from that of 2371:{\displaystyle V(C_{n}+K)} 2238:is the convex hull of the 2083:Brunn-Minkowski inequality 3445:10.1007/978-3-322-80299-6 2405:{\displaystyle \delta =1} 3902:Euclidean solid geometry 3748:isosceles right triangle 3194:{\displaystyle V(B^{d})} 2796:and suffiricently large 503:{\displaystyle d\leq 10} 402:{\displaystyle n\geq 65} 53:Packing and convex hulls 3433:Leppmeier, Max (1997). 2613:{\displaystyle d\geq 2} 685:is therefore given by. 529:{\displaystyle d\geq 3} 455:is relatively tame; in 3762:Circle packing theorem 3646:10.1515/dmvm-1995-0407 3351: 3315: 3279: 3221: 3195: 3159: 3139: 3109: 2883: 2810: 2790: 2748: 2728: 2686: 2650: 2614: 2573: 2551: 2452: 2432: 2406: 2372: 2326: 2306: 2279: 2252: 2232: 2202: 2106: 2061: 2035: 2015: 1975: 1955: 1935: 1912: 1885: 1865:, which translates to 1859: 1829: 1726: 1699: 1675: 1575: 1551: 1484: 1464: 1441: 1360: 1329: 1283: 1239: 1219: 1192: 1106: 1079: 1058: 1016: 996: 969: 679: 652: 632: 581: 561: 530: 504: 475: 429: 403: 377: 327: 283: 263: 203: 182: 62: 44:closely-packed spheres 3477:Mathematica Pannonica 3352: 3316: 3280: 3222: 3196: 3160: 3140: 3138:{\displaystyle B^{d}} 3110: 2884: 2811: 2791: 2749: 2729: 2687: 2651: 2615: 2574: 2572:{\displaystyle \rho } 2552: 2453: 2451:{\displaystyle \rho } 2433: 2407: 2373: 2327: 2307: 2305:{\displaystyle K_{i}} 2280: 2278:{\displaystyle c_{i}} 2253: 2233: 2231:{\displaystyle C_{n}} 2203: 2107: 2062: 2036: 2016: 1976: 1956: 1936: 1913: 1911:{\displaystyle r^{3}} 1886: 1884:{\displaystyle n=455} 1860: 1830: 1727: 1700: 1676: 1576: 1552: 1485: 1465: 1442: 1361: 1359:{\displaystyle V_{T}} 1330: 1284: 1240: 1220: 1193: 1086: 1059: 1038: 1017: 997: 970: 680: 678:{\displaystyle V_{W}} 653: 633: 582: 562: 531: 505: 476: 430: 404: 378: 328: 284: 264: 204: 183: 60: 21:finite sphere packing 3744:equilateral triangle 3325: 3289: 3231: 3205: 3169: 3149: 3122: 2899: 2820: 2800: 2758: 2738: 2696: 2660: 2624: 2598: 2563: 2465: 2442: 2416: 2390: 2340: 2316: 2289: 2262: 2242: 2215: 2119: 2096: 2045: 2025: 2005: 1965: 1945: 1925: 1895: 1869: 1858:{\displaystyle x=13} 1843: 1739: 1709: 1689: 1588: 1565: 1497: 1474: 1454: 1373: 1343: 1300: 1252: 1229: 1209: 1029: 1006: 986: 692: 662: 642: 595: 571: 551: 514: 488: 459: 428:{\displaystyle n=56} 413: 387: 337: 293: 273: 253: 193: 172: 3881:Slothouber–Graatsma 3538:"Research problems" 3220:{\displaystyle d=2} 2594:For each dimension 2585:geometry of numbers 2060:{\displaystyle d=5} 658:. The total volume 474:{\displaystyle d=4} 448:sausage catastrophe 245:Sausage catastrophe 61:Convex hull in blue 16:Mathematical theory 3602:10.1007/PL00009341 3554:10.1007/BF02018822 3401:10.1007/bf03024394 3347: 3311: 3275: 3217: 3191: 3155: 3135: 3105: 2879: 2806: 2786: 2744: 2724: 2682: 2646: 2610: 2569: 2547: 2448: 2428: 2402: 2368: 2334:Minkowski addition 2322: 2302: 2275: 2248: 2228: 2198: 2102: 2057: 2031: 2011: 1999:sausage conjecture 1997:, who posited the 1985:Sausage conjecture 1971: 1951: 1931: 1908: 1881: 1855: 1825: 1722: 1695: 1671: 1571: 1547: 1480: 1460: 1437: 1356: 1325: 1293:From this we have 1279: 1235: 1215: 1188: 1012: 992: 965: 963: 675: 648: 628: 577: 567:spheres of radius 557: 526: 500: 471: 425: 399: 373: 323: 282:{\displaystyle 55} 279: 259: 199: 178: 63: 40:crystal structures 3889: 3888: 3848:Other 3-D packing 3832:Other 2-D packing 3757:Apollonian gasket 3517:978-0-444-89597-4 3454:978-3-528-06792-2 3158:{\displaystyle d} 3069: 2955: 2877: 2873: 2809:{\displaystyle n} 2747:{\displaystyle n} 2589:Hermann Minkowski 2545: 2336:of sets, so that 2325:{\displaystyle K} 2251:{\displaystyle n} 2196: 2105:{\displaystyle K} 2087:Steiner's formula 2034:{\displaystyle d} 2014:{\displaystyle d} 1995:László Fejes Tóth 1974:{\displaystyle n} 1954:{\displaystyle x} 1934:{\displaystyle V} 1807: 1749: 1719: 1698:{\displaystyle n} 1669: 1650: 1629: 1574:{\displaystyle V} 1534: 1483:{\displaystyle x} 1463:{\displaystyle a} 1422: 1399: 1395: 1317: 1271: 1267: 1238:{\displaystyle a} 1218:{\displaystyle r} 1186: 1135: 1015:{\displaystyle n} 995:{\displaystyle x} 941: 891: 815: 775: 762: 742: 723: 651:{\displaystyle r} 580:{\displaystyle r} 560:{\displaystyle n} 262:{\displaystyle n} 202:{\displaystyle d} 181:{\displaystyle d} 36:Kepler conjecture 29:László Fejes Tóth 3909: 3770: 3710:Abstract packing 3703:Packing problems 3696: 3689: 3682: 3673: 3667: 3666: 3648: 3624: 3615: 3614: 3604: 3580: 3574: 3573: 3533: 3527: 3526: 3525: 3524: 3491: 3485: 3484: 3474: 3465: 3459: 3458: 3430: 3421: 3420: 3384: 3356: 3354: 3353: 3348: 3343: 3342: 3320: 3318: 3317: 3312: 3301: 3300: 3284: 3282: 3281: 3276: 3265: 3264: 3243: 3242: 3226: 3224: 3223: 3218: 3200: 3198: 3197: 3192: 3187: 3186: 3164: 3162: 3161: 3156: 3144: 3142: 3141: 3136: 3134: 3133: 3114: 3112: 3111: 3106: 3104: 3103: 3092: 3082: 3081: 3070: 3068: 3064: 3063: 3038: 3034: 3033: 3017: 3009: 3008: 2990: 2989: 2978: 2968: 2967: 2956: 2954: 2950: 2949: 2924: 2920: 2919: 2903: 2888: 2886: 2885: 2880: 2878: 2869: 2868: 2854: 2853: 2832: 2831: 2815: 2813: 2812: 2807: 2795: 2793: 2792: 2787: 2776: 2775: 2753: 2751: 2750: 2745: 2733: 2731: 2730: 2725: 2714: 2713: 2691: 2689: 2688: 2683: 2672: 2671: 2655: 2653: 2652: 2647: 2636: 2635: 2619: 2617: 2616: 2611: 2578: 2576: 2575: 2570: 2556: 2554: 2553: 2548: 2546: 2544: 2531: 2530: 2514: 2497: 2489: 2488: 2457: 2455: 2454: 2449: 2437: 2435: 2434: 2429: 2411: 2409: 2408: 2403: 2377: 2375: 2374: 2369: 2358: 2357: 2331: 2329: 2328: 2323: 2311: 2309: 2308: 2303: 2301: 2300: 2284: 2282: 2281: 2276: 2274: 2273: 2257: 2255: 2254: 2249: 2237: 2235: 2234: 2229: 2227: 2226: 2207: 2205: 2204: 2199: 2197: 2195: 2185: 2184: 2168: 2151: 2143: 2142: 2111: 2109: 2108: 2103: 2066: 2064: 2063: 2058: 2040: 2038: 2037: 2032: 2021:dimensions is a 2020: 2018: 2017: 2012: 1980: 1978: 1977: 1972: 1960: 1958: 1957: 1952: 1940: 1938: 1937: 1932: 1917: 1915: 1914: 1909: 1907: 1906: 1890: 1888: 1887: 1882: 1864: 1862: 1861: 1856: 1834: 1832: 1831: 1826: 1824: 1823: 1808: 1803: 1756: 1751: 1750: 1747: 1731: 1729: 1728: 1723: 1721: 1720: 1717: 1704: 1702: 1701: 1696: 1680: 1678: 1677: 1672: 1670: 1665: 1664: 1663: 1651: 1646: 1641: 1640: 1635: 1631: 1630: 1625: 1598: 1580: 1578: 1577: 1572: 1556: 1554: 1553: 1548: 1540: 1536: 1535: 1530: 1489: 1487: 1486: 1481: 1469: 1467: 1466: 1461: 1446: 1444: 1443: 1438: 1436: 1435: 1423: 1418: 1413: 1412: 1400: 1391: 1390: 1385: 1384: 1365: 1363: 1362: 1357: 1355: 1354: 1334: 1332: 1331: 1326: 1318: 1313: 1288: 1286: 1285: 1280: 1272: 1263: 1262: 1244: 1242: 1241: 1236: 1224: 1222: 1221: 1216: 1197: 1195: 1194: 1189: 1187: 1182: 1141: 1136: 1131: 1108: 1105: 1100: 1078: 1073: 1057: 1052: 1021: 1019: 1018: 1013: 1001: 999: 998: 993: 974: 972: 971: 966: 964: 960: 959: 947: 943: 942: 934: 909: 905: 904: 892: 884: 879: 878: 833: 829: 828: 816: 808: 803: 802: 781: 777: 776: 773: 764: 763: 760: 748: 744: 743: 740: 725: 724: 721: 708: 707: 684: 682: 681: 676: 674: 673: 657: 655: 654: 649: 637: 635: 634: 629: 586: 584: 583: 578: 566: 564: 563: 558: 535: 533: 532: 527: 509: 507: 506: 501: 480: 478: 477: 472: 434: 432: 431: 426: 408: 406: 405: 400: 382: 380: 379: 374: 332: 330: 329: 324: 288: 286: 285: 280: 268: 266: 265: 260: 233:which assigns a 208: 206: 205: 200: 187: 185: 184: 179: 119: 107: 95: 3917: 3916: 3912: 3911: 3910: 3908: 3907: 3906: 3892: 3891: 3890: 3885: 3864: 3843: 3827: 3774: 3768: 3767:Tammes problem 3726: 3705: 3700: 3670: 3626: 3625: 3618: 3582: 3581: 3577: 3535: 3534: 3530: 3522: 3520: 3518: 3493: 3492: 3488: 3472: 3467: 3466: 3462: 3455: 3432: 3431: 3424: 3386: 3385: 3370: 3366: 3360: 3334: 3323: 3322: 3292: 3287: 3286: 3256: 3234: 3229: 3228: 3203: 3202: 3178: 3167: 3166: 3147: 3146: 3125: 3120: 3119: 3073: 3071: 3049: 3039: 3025: 3018: 3000: 2959: 2957: 2935: 2925: 2911: 2904: 2897: 2896: 2845: 2823: 2818: 2817: 2798: 2797: 2767: 2756: 2755: 2736: 2735: 2705: 2694: 2693: 2663: 2658: 2657: 2627: 2622: 2621: 2596: 2595: 2561: 2560: 2522: 2515: 2498: 2480: 2463: 2462: 2440: 2439: 2414: 2413: 2388: 2387: 2349: 2338: 2337: 2314: 2313: 2292: 2287: 2286: 2285:of the spheres 2265: 2260: 2259: 2240: 2239: 2218: 2213: 2212: 2176: 2169: 2152: 2134: 2117: 2116: 2094: 2093: 2079:convex geometry 2074: 2043: 2042: 2023: 2022: 2003: 2002: 1987: 1963: 1962: 1943: 1942: 1923: 1922: 1898: 1893: 1892: 1867: 1866: 1841: 1840: 1815: 1757: 1742: 1737: 1736: 1712: 1707: 1706: 1687: 1686: 1655: 1611: 1607: 1606: 1599: 1586: 1585: 1563: 1562: 1516: 1512: 1495: 1494: 1472: 1471: 1452: 1451: 1427: 1404: 1376: 1371: 1370: 1346: 1341: 1340: 1298: 1297: 1250: 1249: 1227: 1226: 1207: 1206: 1142: 1109: 1027: 1026: 1004: 1003: 984: 983: 962: 961: 951: 926: 922: 907: 906: 896: 870: 831: 830: 820: 794: 779: 778: 768: 755: 746: 745: 735: 716: 709: 699: 690: 689: 665: 660: 659: 640: 639: 593: 592: 569: 568: 549: 548: 542: 512: 511: 486: 485: 484:For dimensions 457: 456: 411: 410: 385: 384: 335: 334: 291: 290: 271: 270: 251: 250: 247: 223:packing density 219: 217:Optimal packing 191: 190: 170: 169: 166: 158:cluster packing 154: 152:Cluster packing 142: 134:sausage packing 130: 128:Sausage packing 123: 122:Cluster packing 120: 111: 108: 99: 98:Sausage packing 96: 84: 55: 17: 12: 11: 5: 3915: 3913: 3905: 3904: 3894: 3893: 3887: 3886: 3884: 3883: 3878: 3872: 3870: 3866: 3865: 3863: 3862: 3857: 3851: 3849: 3845: 3844: 3842: 3841: 3839:Square packing 3835: 3833: 3829: 3828: 3826: 3825: 3820: 3818:Kissing number 3815: 3810: 3805: 3800: 3795: 3790: 3784: 3782: 3780:Sphere packing 3776: 3775: 3773: 3772: 3764: 3759: 3754: 3736: 3734: 3732:Circle packing 3728: 3727: 3725: 3724: 3719: 3713: 3711: 3707: 3706: 3701: 3699: 3698: 3691: 3684: 3676: 3669: 3668: 3616: 3595:(2): 197–227. 3575: 3548:(2): 197–199. 3528: 3516: 3486: 3460: 3453: 3422: 3367: 3365: 3362: 3346: 3341: 3337: 3333: 3330: 3310: 3307: 3304: 3299: 3295: 3274: 3271: 3268: 3263: 3259: 3255: 3252: 3249: 3246: 3241: 3237: 3216: 3213: 3210: 3190: 3185: 3181: 3177: 3174: 3165:dimensions is 3154: 3132: 3128: 3116: 3115: 3102: 3099: 3096: 3091: 3088: 3085: 3080: 3076: 3067: 3062: 3059: 3056: 3052: 3048: 3045: 3042: 3037: 3032: 3028: 3024: 3021: 3015: 3012: 3007: 3003: 2999: 2996: 2993: 2988: 2985: 2982: 2977: 2974: 2971: 2966: 2962: 2953: 2948: 2945: 2942: 2938: 2934: 2931: 2928: 2923: 2918: 2914: 2910: 2907: 2876: 2872: 2866: 2863: 2860: 2857: 2852: 2848: 2844: 2841: 2838: 2835: 2830: 2826: 2805: 2785: 2782: 2779: 2774: 2770: 2766: 2763: 2743: 2723: 2720: 2717: 2712: 2708: 2704: 2701: 2692:such that for 2681: 2678: 2675: 2670: 2666: 2645: 2642: 2639: 2634: 2630: 2609: 2606: 2603: 2568: 2558: 2557: 2543: 2540: 2537: 2534: 2529: 2525: 2521: 2518: 2513: 2510: 2507: 2504: 2501: 2495: 2492: 2487: 2483: 2479: 2476: 2473: 2470: 2447: 2427: 2424: 2421: 2401: 2398: 2395: 2367: 2364: 2361: 2356: 2352: 2348: 2345: 2321: 2299: 2295: 2272: 2268: 2247: 2225: 2221: 2209: 2208: 2194: 2191: 2188: 2183: 2179: 2175: 2172: 2167: 2164: 2161: 2158: 2155: 2149: 2146: 2141: 2137: 2133: 2130: 2127: 2124: 2101: 2081:, such as the 2073: 2070: 2068:42 and above. 2056: 2053: 2050: 2030: 2010: 1986: 1983: 1970: 1961:and therefore 1950: 1930: 1905: 1901: 1880: 1877: 1874: 1854: 1851: 1848: 1837: 1836: 1822: 1818: 1814: 1811: 1806: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1754: 1745: 1715: 1694: 1683: 1682: 1668: 1662: 1658: 1654: 1649: 1644: 1639: 1634: 1628: 1623: 1620: 1617: 1614: 1610: 1605: 1602: 1596: 1593: 1570: 1559: 1558: 1546: 1543: 1539: 1533: 1528: 1525: 1522: 1519: 1515: 1511: 1508: 1505: 1502: 1479: 1459: 1448: 1447: 1434: 1430: 1426: 1421: 1416: 1411: 1407: 1403: 1398: 1394: 1388: 1383: 1379: 1353: 1349: 1337: 1336: 1324: 1321: 1316: 1311: 1308: 1305: 1291: 1290: 1278: 1275: 1270: 1266: 1260: 1257: 1234: 1214: 1200: 1199: 1185: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1139: 1134: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1104: 1099: 1096: 1093: 1089: 1085: 1082: 1077: 1072: 1069: 1066: 1062: 1056: 1051: 1048: 1045: 1041: 1037: 1034: 1011: 991: 976: 975: 958: 954: 950: 946: 940: 937: 932: 929: 925: 921: 918: 915: 912: 910: 908: 903: 899: 895: 890: 887: 882: 877: 873: 869: 866: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 834: 832: 827: 823: 819: 814: 811: 806: 801: 797: 793: 790: 787: 784: 782: 780: 771: 767: 758: 754: 751: 749: 747: 738: 734: 731: 728: 719: 715: 712: 710: 706: 702: 698: 697: 672: 668: 647: 627: 624: 621: 618: 615: 612: 609: 606: 603: 600: 576: 556: 541: 538: 525: 522: 519: 499: 496: 493: 470: 467: 464: 424: 421: 418: 398: 395: 392: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 322: 319: 316: 313: 310: 307: 304: 301: 298: 278: 258: 246: 243: 218: 215: 198: 177: 165: 162: 153: 150: 141: 138: 129: 126: 125: 124: 121: 114: 112: 109: 102: 100: 97: 90: 83: 82:Packing shapes 80: 65:In general, a 54: 51: 15: 13: 10: 9: 6: 4: 3: 2: 3914: 3903: 3900: 3899: 3897: 3882: 3879: 3877: 3874: 3873: 3871: 3867: 3861: 3858: 3856: 3853: 3852: 3850: 3846: 3840: 3837: 3836: 3834: 3830: 3824: 3821: 3819: 3816: 3814: 3813:Close-packing 3811: 3809: 3808:In a cylinder 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3789: 3786: 3785: 3783: 3781: 3777: 3771: 3765: 3763: 3760: 3758: 3755: 3753: 3749: 3745: 3741: 3738: 3737: 3735: 3733: 3729: 3723: 3720: 3718: 3715: 3714: 3712: 3708: 3704: 3697: 3692: 3690: 3685: 3683: 3678: 3677: 3674: 3664: 3660: 3656: 3652: 3647: 3642: 3638: 3634: 3630: 3623: 3621: 3617: 3612: 3608: 3603: 3598: 3594: 3590: 3586: 3579: 3576: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3539: 3532: 3529: 3519: 3513: 3509: 3505: 3501: 3497: 3490: 3487: 3482: 3478: 3471: 3464: 3461: 3456: 3450: 3446: 3442: 3438: 3437: 3429: 3427: 3423: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3383: 3381: 3379: 3377: 3375: 3373: 3369: 3363: 3361: 3358: 3339: 3335: 3328: 3305: 3297: 3293: 3269: 3261: 3257: 3253: 3247: 3239: 3235: 3214: 3211: 3208: 3183: 3179: 3172: 3152: 3130: 3126: 3100: 3097: 3094: 3086: 3078: 3074: 3060: 3057: 3054: 3050: 3043: 3040: 3030: 3026: 3019: 3013: 3005: 3001: 2994: 2991: 2986: 2983: 2980: 2972: 2964: 2960: 2946: 2943: 2940: 2936: 2929: 2926: 2916: 2912: 2905: 2895: 2894: 2893: 2890: 2874: 2870: 2864: 2858: 2850: 2846: 2842: 2836: 2828: 2824: 2803: 2780: 2772: 2768: 2764: 2761: 2754:), while for 2741: 2718: 2710: 2706: 2702: 2699: 2676: 2668: 2664: 2640: 2632: 2628: 2607: 2604: 2601: 2592: 2590: 2586: 2582: 2581:mixed volumes 2566: 2538: 2535: 2532: 2527: 2523: 2516: 2508: 2502: 2499: 2493: 2485: 2481: 2477: 2474: 2468: 2461: 2460: 2459: 2445: 2425: 2422: 2419: 2399: 2396: 2393: 2384: 2383:Claude Rogers 2379: 2362: 2359: 2354: 2350: 2343: 2335: 2319: 2297: 2293: 2270: 2266: 2245: 2223: 2219: 2189: 2186: 2181: 2177: 2170: 2162: 2156: 2153: 2147: 2139: 2135: 2131: 2128: 2122: 2115: 2114: 2113: 2099: 2090: 2088: 2084: 2080: 2071: 2069: 2054: 2051: 2048: 2028: 2008: 2000: 1996: 1992: 1984: 1982: 1968: 1948: 1928: 1919: 1903: 1899: 1878: 1875: 1872: 1852: 1849: 1846: 1820: 1816: 1812: 1809: 1804: 1800: 1797: 1791: 1788: 1785: 1779: 1773: 1770: 1767: 1761: 1758: 1752: 1743: 1735: 1734: 1733: 1713: 1692: 1666: 1660: 1656: 1652: 1647: 1642: 1637: 1632: 1626: 1621: 1618: 1615: 1612: 1608: 1603: 1600: 1594: 1591: 1584: 1583: 1582: 1568: 1544: 1541: 1537: 1531: 1526: 1523: 1520: 1517: 1513: 1509: 1506: 1503: 1500: 1493: 1492: 1491: 1477: 1457: 1432: 1428: 1424: 1419: 1414: 1409: 1405: 1401: 1396: 1392: 1386: 1381: 1377: 1369: 1368: 1367: 1351: 1347: 1322: 1319: 1314: 1309: 1306: 1303: 1296: 1295: 1294: 1276: 1273: 1268: 1264: 1258: 1255: 1248: 1247: 1246: 1232: 1212: 1205: 1183: 1176: 1173: 1170: 1164: 1158: 1155: 1152: 1146: 1143: 1137: 1132: 1125: 1122: 1119: 1113: 1110: 1102: 1097: 1094: 1091: 1087: 1083: 1080: 1075: 1070: 1067: 1064: 1060: 1054: 1049: 1046: 1043: 1039: 1035: 1032: 1025: 1024: 1023: 1009: 989: 981: 956: 952: 948: 944: 938: 935: 930: 927: 923: 919: 916: 913: 911: 901: 897: 893: 888: 885: 880: 875: 871: 867: 861: 858: 855: 849: 846: 843: 840: 837: 835: 825: 821: 817: 812: 809: 804: 799: 795: 791: 788: 785: 783: 769: 765: 756: 752: 750: 736: 732: 729: 726: 717: 713: 711: 704: 700: 688: 687: 686: 670: 666: 645: 622: 619: 616: 610: 607: 604: 601: 598: 590: 574: 554: 545: 539: 537: 523: 520: 517: 497: 494: 491: 482: 468: 465: 462: 453: 449: 444: 442: 438: 422: 419: 416: 396: 393: 390: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 320: 317: 314: 311: 308: 305: 302: 299: 296: 276: 256: 244: 242: 240: 236: 232: 226: 224: 216: 214: 211: 209: 196: 175: 163: 161: 159: 151: 149: 147: 146:pizza packing 140:Pizza packing 139: 137: 135: 127: 118: 113: 110:Pizza packing 106: 101: 94: 89: 87: 81: 79: 77: 73: 68: 59: 52: 50: 47: 45: 41: 37: 32: 30: 26: 22: 3792: 3750: / 3746: / 3742: / 3636: 3632: 3592: 3588: 3578: 3545: 3541: 3531: 3521:, retrieved 3499: 3489: 3480: 3476: 3463: 3435: 3395:(1): 16–21. 3392: 3388: 3359: 3117: 2891: 2593: 2559: 2380: 2210: 2091: 2075: 1998: 1990: 1988: 1920: 1838: 1684: 1560: 1449: 1338: 1292: 1201: 1022:is given by 977: 591:with length 546: 543: 483: 451: 447: 445: 248: 227: 220: 212: 189: 167: 157: 155: 145: 143: 133: 131: 85: 66: 64: 48: 33: 20: 18: 3855:Tetrahedron 3798:In a sphere 3769:(on sphere) 3740:In a circle 3483:(1): 19–29. 1339:The volume 980:tetrahedral 741:half-sphere 452:catastrophe 437:tetrahedral 289:along with 72:convex hull 3788:Apollonian 3523:2022-04-17 3364:References 3227:, we have 2258:midpoints 441:octahedral 76:convex set 3860:Ellipsoid 3803:In a cube 3663:179051027 3655:0942-5977 3611:0179-5376 3570:189833485 3562:0031-5303 3417:122751296 3409:0343-6993 3329:δ 3294:ρ 3258:ρ 3236:ρ 3098:− 3075:ρ 3058:− 3014:≤ 2995:δ 2992:≤ 2984:− 2961:ρ 2944:− 2847:ρ 2825:ρ 2769:ρ 2765:≥ 2762:ρ 2707:ρ 2703:≤ 2700:ρ 2665:ρ 2629:ρ 2605:≥ 2567:ρ 2536:ρ 2469:δ 2446:ρ 2423:≈ 2420:δ 2394:δ 2123:δ 1989:The term 1813:π 1810:⋅ 1798:− 1780:⋅ 1762:⋅ 1653:⋅ 1643:⋅ 1616:− 1604:⋅ 1542:⋅ 1521:− 1510:⋅ 1425:⋅ 1402:⋅ 1320:⋅ 1274:⋅ 1165:⋅ 1147:⋅ 1114:⋅ 1088:∑ 1061:∑ 1040:∑ 949:π 931:− 920:⋅ 894:π 868:⋅ 859:− 850:⋅ 841:π 818:π 789:π 733:⋅ 620:− 611:⋅ 521:≥ 495:≤ 394:≥ 239:connected 3896:Category 1204:inradius 1202:Now the 761:cylinder 722:cylinder 589:cylinder 3869:Puzzles 1991:sausage 443:shape. 67:packing 25:spheres 3876:Conway 3793:Finite 3752:square 3661:  3653:  3609:  3568:  3560:  3514:  3451:  3415:  3407:  3201:. For 2211:where 774:sphere 333:. For 269:up to 235:vertex 3659:S2CID 3639:(4). 3566:S2CID 3473:(PDF) 3413:S2CID 231:graph 3651:ISSN 3607:ISSN 3558:ISSN 3512:ISBN 3449:ISBN 3405:ISSN 2656:and 2583:and 1839:For 1595:< 383:and 3722:Set 3717:Bin 3641:doi 3597:doi 3550:doi 3504:doi 3441:doi 3397:doi 3145:in 2587:by 2426:0.9 1879:455 1420:192 1245:is 3898:: 3657:. 3649:. 3635:. 3631:. 3619:^ 3605:. 3593:19 3591:. 3587:. 3564:. 3556:. 3544:. 3540:. 3510:, 3498:, 3479:. 3475:. 3447:. 3425:^ 3411:. 3403:. 3393:20 3391:. 3371:^ 3357:. 2591:. 2458:: 2112:: 1981:. 1853:13 1397:12 1269:12 498:10 423:56 397:65 371:62 365:61 359:60 353:59 347:56 321:64 315:63 309:58 303:57 277:55 241:. 31:. 3695:e 3688:t 3681:v 3665:. 3643:: 3637:3 3613:. 3599:: 3572:. 3552:: 3546:6 3506:: 3481:3 3457:. 3443:: 3419:. 3399:: 3345:) 3340:d 3336:B 3332:( 3309:) 3306:d 3303:( 3298:c 3273:) 3270:d 3267:( 3262:c 3254:= 3251:) 3248:d 3245:( 3240:s 3215:2 3212:= 3209:d 3189:) 3184:d 3180:B 3176:( 3173:V 3153:d 3131:d 3127:B 3101:d 3095:1 3090:) 3087:d 3084:( 3079:s 3066:) 3061:1 3055:d 3051:B 3047:( 3044:V 3041:2 3036:) 3031:d 3027:B 3023:( 3020:V 3011:) 3006:d 3002:B 2998:( 2987:d 2981:1 2976:) 2973:d 2970:( 2965:c 2952:) 2947:1 2941:d 2937:B 2933:( 2930:V 2927:2 2922:) 2917:d 2913:B 2909:( 2906:V 2875:2 2871:3 2865:= 2862:) 2859:2 2856:( 2851:s 2843:= 2840:) 2837:2 2834:( 2829:c 2804:n 2784:) 2781:d 2778:( 2773:c 2742:n 2722:) 2719:d 2716:( 2711:s 2680:) 2677:d 2674:( 2669:c 2644:) 2641:d 2638:( 2633:s 2608:2 2602:d 2542:) 2539:K 2533:+ 2528:n 2524:C 2520:( 2517:V 2512:) 2509:K 2506:( 2503:V 2500:n 2494:= 2491:) 2486:n 2482:C 2478:, 2475:K 2472:( 2400:1 2397:= 2366:) 2363:K 2360:+ 2355:n 2351:C 2347:( 2344:V 2320:K 2298:i 2294:K 2271:i 2267:c 2246:n 2224:n 2220:C 2193:) 2190:K 2187:+ 2182:n 2178:C 2174:( 2171:V 2166:) 2163:K 2160:( 2157:V 2154:n 2148:= 2145:) 2140:n 2136:C 2132:, 2129:K 2126:( 2100:K 2055:5 2052:= 2049:d 2029:d 2009:d 1969:n 1949:x 1929:V 1904:3 1900:r 1876:= 1873:n 1850:= 1847:x 1835:. 1821:3 1817:r 1805:3 1801:2 1795:) 1792:2 1789:+ 1786:x 1783:( 1777:) 1774:1 1771:+ 1768:x 1765:( 1759:x 1753:= 1748:W 1744:V 1718:W 1714:V 1693:n 1681:. 1667:3 1661:3 1657:r 1648:2 1638:3 1633:) 1627:6 1622:+ 1619:1 1613:x 1609:( 1601:2 1592:V 1569:V 1557:. 1545:r 1538:) 1532:6 1527:+ 1524:1 1518:x 1514:( 1507:2 1504:= 1501:a 1478:x 1458:a 1433:3 1429:r 1415:= 1410:3 1406:a 1393:2 1387:= 1382:T 1378:V 1352:T 1348:V 1335:. 1323:r 1315:6 1310:2 1307:= 1304:a 1289:. 1277:a 1265:6 1259:= 1256:r 1233:a 1213:r 1198:. 1184:6 1180:) 1177:2 1174:+ 1171:x 1168:( 1162:) 1159:1 1156:+ 1153:x 1150:( 1144:x 1138:= 1133:2 1129:) 1126:1 1123:+ 1120:i 1117:( 1111:i 1103:x 1098:1 1095:= 1092:i 1084:= 1081:j 1076:i 1071:1 1068:= 1065:j 1055:x 1050:1 1047:= 1044:i 1036:= 1033:n 1010:n 990:x 957:3 953:r 945:) 939:3 936:1 928:n 924:( 917:2 914:= 902:3 898:r 889:3 886:4 881:+ 876:2 872:r 865:) 862:1 856:n 853:( 847:r 844:2 838:= 826:3 822:r 813:3 810:4 805:+ 800:2 796:r 792:h 786:= 770:V 766:+ 757:V 753:= 737:V 730:2 727:+ 718:V 714:= 705:W 701:V 671:W 667:V 646:r 626:) 623:1 617:n 614:( 608:r 605:2 602:= 599:h 575:r 555:n 524:3 518:d 492:d 469:4 466:= 463:d 420:= 417:n 391:n 368:, 362:, 356:, 350:, 344:= 341:n 318:, 312:, 306:, 300:= 297:n 257:n 197:d 176:d

Index

spheres
László Fejes Tóth
Kepler conjecture
crystal structures
closely-packed spheres

convex hull
convex set
Sausage packing
Pizza packing
Cluster packing
packing density
graph
vertex
connected
tetrahedral
octahedral
cylinder
tetrahedral
inradius
László Fejes Tóth
convex geometry
Brunn-Minkowski inequality
Steiner's formula
Minkowski addition
Claude Rogers
mixed volumes
geometry of numbers
Hermann Minkowski

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.