Knowledge (XXG)

Flavour (particle physics)

Source 📝

2076: 169: 2139:”, a term that ignores their differences. Although the proton has a positive electric charge, and the neutron is neutral, they are almost identical in all other aspects, and their nuclear binding-force interactions (old name for the residual color force) are so strong compared to the electrical force between some, that there is very little point in paying much attention to their differences. 45: 176: 183: 160: 146: 153: 1050:
is more useful: electronic lepton number (+1 for electrons and electron neutrinos), muonic lepton number (+1 for muons and muon neutrinos), and tauonic lepton number (+1 for tau leptons and tau neutrinos). However, even these numbers are not absolutely conserved, as neutrinos of different generations
1926:
scale of 250 MeV), the masses of quarks do not substantially contribute to the system's behavior, and to zeroth approximation the masses of the lightest quarks can be ignored for most purposes, as if they had zero mass. The simplified behavior of flavour transformations can then be successfully
1745:
The terms "strange" and "strangeness" predate the discovery of the quark, but continued to be used after its discovery for the sake of continuity (i.e. the strangeness of each type of hadron remained the same); strangeness of anti-particles being referred to as +1, and particles as −1 as per the
1879:
masses and their mixing angles - appear to be specifically tuned. Understanding the reason for such tuning would be the solution to the flavor puzzle. There are very fundamental questions involved in this puzzle such as why there are three generations of
1769:
For first-order weak decays, that is processes involving only one quark decay, these quantum numbers (e.g. charm) can only vary by 1, that is, for a decay involving a charmed quark or antiquark either as the incident particle or as a decay byproduct,
789:
If there are two or more particles which have identical interactions, then they may be interchanged without affecting the physics. All (complex) linear combinations of these two particles give the same physics, as long as the combinations are
1819:
of a fixed mass (an eigenstate of the kinetic and strong interaction parts of the Hamiltonian) is an eigenstate of flavour. The transformation from the former basis to the flavour-eigenstate/mass-eigenstate basis for quarks underlies the
1910:. However, their masses differ and as a result they are not strictly interchangeable with each other. The up and down flavours are close to having equal masses, and the theory of these two quarks possesses an approximate SU(2) symmetry ( 1654:
i.e. an antiquark is counted with the minus sign). They are conserved by both the electromagnetic and strong interactions (but not the weak interaction). From them can be built the derived quantum numbers:
1046:). These are conserved in strong and electromagnetic interactions, but violated by weak interactions. Therefore, such flavour quantum numbers are not of great use. A separate quantum number for each 2150:
and treated as different states of the same particle, because they both have nearly the same mass and interact in nearly the same way, if the (much weaker) electromagnetic interaction is neglected.
2285:
became better understood, it started to become clear that these, too, seemed to be a part of an enlarged symmetry that contained isospin as a subgroup. The larger symmetry was named the
833: 1868: 1060: 475: 1927:
modeled as acting independently on the left- and right-handed parts of each quark field. This approximate description of the flavour symmetry is described by a chiral group
1867:
flavour physics to explain why the free parameters of particles in the Standard Model have the values they have, and why there are specified values for mixing angles in the
594:, however, allows interactions that can alter other facets of a particle's nature described by non dynamical, discrete quantum numbers. In particular, the action of the 506: 606:
of both quarks and leptons from one discrete type to another. This is known as a flavour change, or flavour transmutation. Due to their quantum description, flavour
1637:
These five quantum numbers, together with baryon number (which is not a flavour quantum number), completely specify numbers of all 6 quark flavours separately (as
2241:, one could simply assume that it does not depend on isospin, although the total isospin should be conserved. The concept of isospin proved useful in classifying 62: 2153:
Heisenberg noted that the mathematical formulation of this symmetry was in certain respects similar to the mathematical formulation of non-relativistic
2367: 2142:
The strength of the strong interaction between any pair of nucleons is the same, independent of whether they are interacting as protons or as neutrons.
1872: 1821: 470: 2362: 1824:(CKM matrix). This matrix is analogous to the PMNS matrix for neutrinos, and quantifies flavour changes under charged weak interactions of quarks. 1236:
For all the quark flavour quantum numbers listed below, the convention is that the flavour charge and the electric charge of a quark have the same
2111:
Isospin, strangeness and hypercharge predate the quark model. The first of those quantum numbers, Isospin, was introduced as a concept in 1932 by
1746:
original definition. Strangeness was introduced to explain the rate of decay of newly discovered particles, such as the kaon, and was used in the
2417: 1034:
Leptons may be assigned the six flavour quantum numbers: electron number, muon number, tau number, and corresponding numbers for the neutrinos (
2227: 499: 1888:(electron, muon and tau neutrino), as well as how and why the mass and mixing hierarchy arises among different flavours of these fermions. 1792:
Since first-order processes are more common than second-order processes (involving two quark decays), this can be used as an approximate "
2859: 1609:
represents the number of top antiquarks. However, because of the extremely short half-life of the top quark (predicted lifetime of only
109: 2037:
are much larger than the current quark mass. This indicates that QCD has spontaneous chiral symmetry breaking with the formation of a
81: 128: 480: 492: 2270: 1738: 88: 2874: 2778: 2698: 2310: 1855:. The relations between the hypercharge, electric charge and other flavour quantum numbers hold for hadrons as well as quarks. 1808: 2282: 653:) can characterize the quantum state of quarks, by the degree to which it exhibits six distinct flavours (u, d, c, s, t, b). 66: 2013:
Analysis of experiments indicate that the current quark masses of the lighter flavours of quarks are much smaller than the
2579:
Alonso, Rodrigo; Carmona, Adrian; Dillon, Barry M.; Kamenik, Jernej F.; Camalich, Jorge Martin; Zupan, Jure (2018-10-16).
1994: 1230: 1047: 1003: 845: 95: 2269:
led to a new quantum number that was conserved by the strong interaction: strangeness (or equivalently hypercharge). The
2864: 1977: 1759: 77: 2884: 2176: 2026: 1982: 668:, each possessing unique aggregate characteristics, such as different masses, electric charges, and decay modes. A 55: 2649: 2231: 2381: 2001:(as it does in low-energy QCD). This gives rise to an effective mass for the quarks, often identified with the 1923: 800: 2297:. To better understand the origin of this symmetry, Gell-Mann proposed the existence of up, down and strange 2869: 2395: 2286: 2058: 1747: 778: 31: 2022: 1903: 1403: 886: 642: 237: 1617:), by the time it can interact strongly it has already decayed to another flavour of quark (usually to a 2879: 2325:
was indeed found in 1974, which confirmed the existence of charm quarks. This discovery is known as the
1052: 879: 753:, the individual baryon and lepton number conservation can be violated, if the difference between them ( 692:
that commute with the Hamiltonian. Thus, the eigenvalues of the various charge operators are conserved.
611: 2430: 102: 2787: 2746: 2707: 2658: 2602: 2545: 2470: 2230:) of SU(2). Though there is a difference from the theory of spin: The group action does not preserve 1056: 902: 750: 591: 2273:
was identified in 1953, which relates strangeness and hypercharge with isospin and electric charge.
2376: 1897: 1020: 536: 2674: 2626: 2592: 2561: 2535: 2460: 2425: 2179:) of SU(2), with the proton and neutron being then associated with different isospin projections 2002: 1987: 1755: 1237: 894: 774: 559: 2735:
S.L. Glashow; J. Iliopoulos; L. Maiani (1970). "Weak Interactions with Lepton–Hadron Symmetry".
777:
conserve all flavours, but all flavour quantum numbers are violated (changed, non-conserved) by
2737: 2644: 2618: 2504: 2486: 2372: 2262: 2158: 2112: 2038: 1998: 1035: 673: 563: 1400:. This definition gives the strange quark a strangeness of −1 for the above-mentioned reason. 2827: 2805: 2795: 2754: 2715: 2666: 2610: 2553: 2494: 2478: 2290: 2135:) are almost identical: They are nearly degenerate, and both are thus often referred to as “ 1804: 1763: 1397: 1007: 897:, on the other hand, this symmetry is broken, and flavour changing processes exist, such as 685: 684:
All of the various charges discussed above are conserved by the fact that the corresponding
595: 520: 402: 204: 2062: 1696: 890: 703: 603: 319: 2791: 2750: 2711: 2662: 2606: 2549: 2474: 1961:
If all quarks had non-zero but equal masses, then this chiral symmetry is broken to the
2831: 2523: 2499: 2448: 2154: 1922:
Under some circumstances (for instance when the quark masses are much smaller than the
1864: 1812: 1793: 1028: 970: 863: 767: 696: 626: 618: 599: 579: 554: 540: 212: 2075: 2853: 2678: 2630: 2482: 2314: 2238: 1848: 1622: 1348: 1244:
has the same sign as its charge. Quarks have the following flavour quantum numbers:
1076: 1039: 923: 738: 728: 607: 294: 285: 2157:, whence the name "isospin" derives. The neutron and the proton are assigned to the 2565: 2385: 2342: 2301:
which would belong to the fundamental representation of the SU(3) flavor symmetry.
2246: 2219: 2042: 2030: 1863:
The flavour problem (also known as the flavour puzzle) is the inability of current
1840: 1828: 1618: 1510: 1131: 1043: 1024: 933: 713: 630: 303: 2524:"Supersymmetry, Local Horizontal Unification, and a Solution to the Flavor Puzzle" 2614: 2557: 2322: 2318: 2066: 2034: 1852: 1751: 1659: 1439: 1312: 867: 638: 348: 246: 168: 44: 17: 1800: 1470: 791: 646: 328: 264: 2622: 2490: 2293:, and was promptly recognized to correspond to the adjoint representation of 755: 445: 2758: 2391: 2329:. The flavor quantum number associated with the charm quark became known as 2250: 2014: 1581: 1196:
the negatively charged quarks (down, strange, and bottom quarks) are called
871: 2508: 175: 2580: 182: 2317:
was proposed in 1970, which introduced the charm quark and predicted the
1467:
represents the number of charm antiquarks. The charm quark's value is +1.
993:. Each doublet of a charged lepton and a neutrino consisting of opposite 990: 962: 622: 587: 583: 1900:. This part of the article is best read along with the one on chirality. 2800: 2773: 2720: 2693: 2670: 2540: 2242: 2147: 2136: 2116: 2054: 1911: 1876: 1816: 1541: 1249: 650: 634: 255: 221: 159: 2810: 1843:
have flavour equal in magnitude to the particle but opposite in sign.
797:
In other words, the theory possesses symmetry transformations such as
2341:
The bottom and top quarks were predicted in 1973 in order to explain
2128: 1885: 1844: 1630: 1163:
The positively charged quarks (up, charm, and top quarks) are called
919: 669: 665: 657: 548: 2234:(in fact, the group action is specifically an exchange of flavour). 598:
is such that it allows the conversion of quantum numbers describing
145: 2597: 2465: 2249:), where particles with similar mass are assigned an SU(2) isospin 2033:
spring from this fact. The valence quark masses extracted from the
1059:. The strength of such mixings is specified by a matrix called the 2298: 2294: 1986:. The strength of explicit symmetry breaking is controlled by the 1907: 1881: 1815:(charged weak interactions violate flavour). On the other hand, a 1626: 1241: 1072: 898: 875: 661: 633:
of the whole atom. Analogously, the five flavour quantum numbers (
575: 544: 656:
Composite particles can be created from multiple quarks, forming
2266: 2124: 966: 2774:"CP-Violation in the Renormalizable Theory of Weak Interaction" 152: 2070: 38: 1006:
of leptons. In addition, one defines a quantum number called
1993:
Even if quarks are massless, chiral flavour symmetry can be
1781:
likewise, for a decay involving a bottom quark or antiquark
672:'s overall flavour quantum numbers depend on the numbers of 2086: with: Add history of lepton flavours. You can help by 2021:, hence chiral flavour symmetry is a good approximation to 1811:, so will interact in a particularly simple way with the 2418:"Neutrino Masses: How to add them to the Standard Model" 1229:
Each doublet of up and down type quarks constitutes one
2087: 2045:
may break the chiral flavour symmetries in other ways.
1980:
of the quarks. This reduction of symmetry is a form of
2844: 2345:, which also implied two new flavor quantum numbers: 2115:, to explain symmetries of the then newly discovered 803: 2025:
for the up, down and strange quarks. The success of
1884:(up-down, charm-strange, and top-bottom quarks) and 69:. Unsourced material may be challenged and removed. 827: 1851:: this is the basis of the classification in the 1976:, which applies the same transformation to both 1847:inherit their flavour quantum number from their 1023:leptons. Weak isospin and weak hypercharge are 2146:Protons and neutrons were grouped together as 1376:represents the number of strange antiquarks ( 843:are the two fields (representing the various 551:. They are conventionally parameterized with 500: 8: 2522:Babu, K. S.; Mohapatra, R. N. (1999-09-27). 2218:respectively. The pions are assigned to the 1839:Flavour quantum numbers are additive. Hence 1754:. These quantum numbers are preserved under 1750:classification of hadrons and in subsequent 695:Absolutely conserved quantum numbers in the 562:. They can also be described by some of the 2694:"Charge Independence Theory of V Particles" 2581:"A clockwork solution to the flavor puzzle" 1538:represents the number of bottom antiquarks. 882:). This is an example of flavour symmetry. 566:proposed for the quark-lepton generations. 1799:A special mixture of quark flavours is an 629:in which it resides, which determines the 507: 493: 195: 2834:, University of Wisconsin, 18th Dec. 2009 2809: 2799: 2719: 2596: 2539: 2498: 2464: 2363:Standard Model (mathematical formulation) 1831:if there are at least three generations. 1621:). For that reason the top quark doesn't 1396:). This quantum number was introduced by 1055:; that is, a neutrino of one flavour can 828:{\displaystyle M\left({u \atop d}\right)} 811: 802: 129:Learn how and when to remove this message 1240:. Thus any flavour carried by a charged 189: 2407: 2245:discovered in the 1950s and 1960s (see 2237:When constructing a physical theory of 1997:if the vacuum of the theory contains a 1896:Flavour symmetry is closely related to 1875:matrices. These free parameters - the 849:of leptons and quarks, see below), and 462: 340: 277: 210: 198: 2647:(1932). "Über den Bau der Atomkerne". 1061:Pontecorvo–Maki–Nakagawa–Sakata matrix 2281:Once the kaons and their property of 7: 961:for the three charged leptons (i.e. 67:adding citations to reliable sources 2772:Kobayashi, M.; Maskawa, T. (1973). 2447:Feruglio, Ferruccio (August 2015). 2309:To explain the observed absence of 794:, or perpendicular, to each other. 621:the principal quantum number of an 812: 25: 2398:in experimental particle physics. 2277:The eightfold way and quark model 2368:Cabibbo–Kobayashi–Maskawa matrix 2311:flavor-changing neutral currents 2074: 1965:of the "diagonal flavour group" 1822:Cabibbo–Kobayashi–Maskawa matrix 181: 174: 167: 158: 151: 144: 43: 2779:Progress of Theoretical Physics 2699:Progress of Theoretical Physics 2453:The European Physical Journal C 2390:Quark flavour tagging, such as 1906:(QCD) contains six flavours of 78:"Flavour" particle physics 54:needs additional citations for 2585:Journal of High Energy Physics 2483:10.1140/epjc/s10052-015-3576-5 2449:"Pieces of the Flavour Puzzle" 1057:transform into another flavour 749:In some theories, such as the 586:'s dynamical state, i.e., its 140: 27:Species of elementary particle 1: 1625:, that is it never forms any 932:. In addition, leptons carry 1760:electromagnetic interactions 676:of each particular flavour. 2828:Lessons in Particle Physics 2558:10.1103/PhysRevLett.83.2522 2416:S. Raby, R. Slanky (1997). 2271:Gell-Mann–Nishijima formula 2257:Strangeness and hypercharge 1957:Vector symmetry description 1918:Chiral symmetry description 1739:Gell-Mann–Nishijima formula 1002:are said to constitute one 2901: 2860:Flavour (particle physics) 2177:fundamental representation 2052: 2027:chiral perturbation theory 1983:explicit symmetry breaking 1895: 1827:The CKM matrix allows for 1252:(usually just "isospin") ( 574:In classical mechanics, a 29: 1835:Antiparticles and hadrons 1580:represents the number of 1509:represents the number of 1438:represents the number of 1347:represents the number of 1104:and all anti-quarks have 989:for the three associated 889:, flavour is a conserved 590:, angular momentum, etc. 558:that are assigned to all 2845:The particle data group. 2429:(25): 64. Archived from 2382:Chiral symmetry breaking 2029:and the even more naive 1924:chiral symmetry breaking 779:electroweak interactions 690:generators of symmetries 190:Six flavours of leptons 2759:10.1103/PhysRevD.2.1285 2615:10.1007/JHEP10(2018)099 2528:Physical Review Letters 2396:particle identification 2305:GIM-Mechanism and charm 2127:of the neutron and the 2059:Eightfold way (physics) 1248:The third component of 909:Flavour quantum numbers 870:. Such matrices form a 543:counts six flavours of 481:Flavour complementarity 278:Related quantum numbers 32:Flavor (disambiguation) 2875:Quantum chromodynamics 2650:Zeitschrift fĂŒr Physik 2337:Bottomness and topness 2228:adjoint representation 2055:Isospin § History 1904:Quantum chromodynamics 1892:Quantum chromodynamics 1019:, which is −1 for all 887:quantum chromodynamics 829: 2830:Luis Anchordoqui and 2692:Nishijima, K (1955). 1284:for the up quark and 903:neutrino oscillations 880:special unitary group 830: 688:can be understood as 612:quantum superposition 1995:spontaneously broken 1988:current quark masses 1130:They also all carry 801: 765:) is conserved (see 751:grand unified theory 592:Quantum field theory 547:and six flavours of 63:improve this article 30:For other uses, see 2865:Physical quantities 2792:1973PThPh..49..652K 2751:1970PhRvD...2.1285G 2712:1955PThPh..13..285N 2663:1932ZPhy...77....1H 2607:2018JHEP...10..099A 2550:1999PhRvL..83.2522B 2475:2015EPJC...75..373F 2394:, is an example of 2377:chirality (physics) 2327:November Revolution 2043:Other phases of QCD 1796:" for weak decays. 1309:for the down quark. 1259:), which has value 775:Strong interactions 582:can only alter the 580:point-like particle 560:subatomic particles 537:elementary particle 2801:10.1143/PTP.49.652 2721:10.1143/PTP.13.285 2671:10.1007/BF01342433 2426:Los Alamos Science 2003:valence quark mass 895:electroweak theory 825: 674:constituent quarks 2885:Conservation laws 2738:Physical Review D 2534:(13): 2522–2525. 2373:Strong CP problem 2263:strange particles 2261:The discovery of 2113:Werner Heisenberg 2104: 2103: 2039:chiral condensate 2009:Symmetries of QCD 1999:chiral condensate 1764:weak interactions 1036:electron neutrino 819: 680:Conservation laws 610:may also undergo 564:family symmetries 517: 516: 194: 193: 139: 138: 131: 113: 16:(Redirected from 2892: 2816: 2815: 2813: 2803: 2769: 2763: 2762: 2732: 2726: 2725: 2723: 2689: 2683: 2682: 2641: 2635: 2634: 2600: 2576: 2570: 2569: 2543: 2519: 2513: 2512: 2502: 2468: 2444: 2438: 2437: 2435: 2422: 2412: 2291:Murray Gell-Mann 2217: 2216: 2212: 2209: 2203: 2202: 2201: 2197: 2194: 2185: 2170: 2169: 2165: 2134: 2099: 2096: 2078: 2071: 1975: 1952: 1947: 1936: 1805:weak interaction 1791: 1789: 1780: 1778: 1762:, but not under 1736: 1735: 1731: 1729: 1728: 1725: 1722: 1702: 1693: 1692: 1665: 1653: 1648: 1641: 1616: 1614: 1605: 1601: 1600: 1599: 1592: 1591: 1576: 1572: 1567: 1560: 1556: 1551: 1534: 1530: 1529: 1528: 1521: 1520: 1505: 1501: 1496: 1489: 1485: 1480: 1463: 1459: 1458: 1457: 1450: 1449: 1434: 1430: 1425: 1418: 1414: 1409: 1398:Murray Gell-Mann 1395: 1394: 1393: 1387: 1384: 1383: 1372: 1368: 1367: 1366: 1359: 1358: 1343: 1339: 1334: 1327: 1323: 1318: 1308: 1307: 1305: 1304: 1301: 1298: 1288: 1283: 1282: 1280: 1279: 1276: 1273: 1263: 1255: 1228: 1226: 1224: 1223: 1220: 1217: 1213: 1204: 1198:down-type quarks 1195: 1193: 1191: 1190: 1187: 1184: 1180: 1171: 1162: 1160: 1158: 1157: 1154: 1151: 1147: 1138: 1129: 1127: 1125: 1124: 1121: 1118: 1114: 1108: 1103: 1101: 1099: 1098: 1095: 1092: 1088: 1082: 1018: 1008:weak hypercharge 1001: 988: 986: 985: 982: 979: 960: 958: 957: 954: 951: 944: 931: 862: 861: 858: 852: 842: 838: 834: 832: 831: 826: 824: 820: 785:Flavour symmetry 764: 744: 734: 724: 709: 686:charge operators 521:particle physics 509: 502: 495: 403:Weak hypercharge 205:particle physics 196: 185: 178: 171: 162: 155: 148: 141: 134: 127: 123: 120: 114: 112: 71: 47: 39: 21: 18:Flavour symmetry 2900: 2899: 2895: 2894: 2893: 2891: 2890: 2889: 2850: 2849: 2841: 2824: 2822:Further reading 2819: 2771: 2770: 2766: 2734: 2733: 2729: 2691: 2690: 2686: 2643: 2642: 2638: 2578: 2577: 2573: 2521: 2520: 2516: 2446: 2445: 2441: 2433: 2420: 2415: 2413: 2409: 2405: 2359: 2339: 2307: 2279: 2259: 2214: 2210: 2207: 2205: 2199: 2195: 2192: 2190: 2188: 2181: 2180: 2167: 2163: 2162: 2132: 2109: 2100: 2094: 2091: 2084:needs expansion 2069: 2063:Chiral symmetry 2051: 2020: 2011: 1973: 1966: 1963:vector symmetry 1959: 1950: 1945: 1943: 1939: 1934: 1932: 1928: 1920: 1901: 1898:chiral symmetry 1894: 1861: 1859:Flavour problem 1837: 1783: 1782: 1772: 1771: 1726: 1723: 1720: 1719: 1717: 1715: 1705: 1704: 1700: 1697:Electric charge 1668: 1667: 1663: 1651: 1646: 1644: 1639: 1638: 1612: 1610: 1608: 1603: 1598: 1596: 1595: 1594: 1590: 1588: 1587: 1586: 1585: 1579: 1574: 1570: 1565: 1563: 1558: 1554: 1553: 1549: 1537: 1532: 1527: 1525: 1524: 1523: 1519: 1517: 1516: 1515: 1514: 1508: 1503: 1499: 1494: 1492: 1487: 1483: 1482: 1478: 1466: 1461: 1456: 1454: 1453: 1452: 1448: 1446: 1445: 1444: 1443: 1437: 1432: 1428: 1423: 1421: 1416: 1412: 1411: 1407: 1392: 1390: 1389: 1388: 1385: 1382: 1380: 1379: 1378: 1377: 1375: 1370: 1365: 1363: 1362: 1361: 1357: 1355: 1354: 1353: 1352: 1346: 1341: 1337: 1332: 1330: 1325: 1321: 1320: 1316: 1302: 1299: 1296: 1295: 1293: 1291: 1286: 1285: 1277: 1274: 1271: 1270: 1268: 1266: 1261: 1260: 1258: 1253: 1221: 1218: 1215: 1214: 1211: 1209: 1207: 1202: 1201: 1188: 1185: 1182: 1181: 1178: 1176: 1174: 1169: 1168: 1155: 1152: 1149: 1148: 1145: 1143: 1141: 1136: 1135: 1122: 1119: 1116: 1115: 1112: 1110: 1106: 1105: 1096: 1093: 1090: 1089: 1086: 1084: 1080: 1079: 1069: 1063:(PMNS matrix). 1017: 1011: 1000: 994: 983: 980: 977: 976: 974: 955: 952: 949: 948: 946: 943: 937: 926: 916: 911: 891:global symmetry 859: 856: 854: 850: 840: 836: 807: 799: 798: 787: 754: 742: 732: 723: 717: 707: 704:electric charge 682: 604:electric charge 572: 570:Quantum numbers 555:quantum numbers 513: 443: 430: 419: 411: 396: 320:Electric charge 316: 234: 213:quantum numbers 203: 135: 124: 118: 115: 72: 70: 60: 48: 35: 28: 23: 22: 15: 12: 11: 5: 2898: 2896: 2888: 2887: 2882: 2877: 2872: 2870:Standard Model 2867: 2862: 2852: 2851: 2848: 2847: 2840: 2839:External links 2837: 2836: 2835: 2832:Francis Halzen 2823: 2820: 2818: 2817: 2786:(2): 652–657. 2764: 2727: 2706:(3): 285–304. 2684: 2645:Heisenberg, W. 2636: 2571: 2541:hep-ph/9906271 2514: 2439: 2436:on 2011-08-31. 2406: 2404: 2401: 2400: 2399: 2388: 2379: 2370: 2365: 2358: 2355: 2338: 2335: 2306: 2303: 2278: 2275: 2258: 2255: 2239:nuclear forces 2186: 2144: 2143: 2140: 2108: 2105: 2102: 2101: 2081: 2079: 2050: 2047: 2018: 2010: 2007: 1971: 1958: 1955: 1948: 1941: 1937: 1930: 1919: 1916: 1893: 1890: 1865:Standard Model 1860: 1857: 1849:valence quarks 1836: 1833: 1794:selection rule 1743: 1742: 1713: 1694: 1649: 1642: 1635: 1634: 1606: 1597: 1589: 1577: 1568: 1561: 1552:): Defined as 1539: 1535: 1526: 1518: 1506: 1497: 1490: 1481:): Defined as 1468: 1464: 1455: 1447: 1435: 1426: 1419: 1410:): Defined as 1401: 1391: 1381: 1373: 1364: 1356: 1349:strange quarks 1344: 1335: 1328: 1319:): Defined as 1310: 1289: 1264: 1256: 1210:⁠− 1205: 1172: 1165:up-type quarks 1139: 1111:⁠− 1068: 1065: 1029:Standard Model 1015: 998: 941: 915: 912: 910: 907: 864:unitary matrix 823: 818: 815: 810: 806: 786: 783: 768:Chiral anomaly 747: 746: 736: 726: 721: 711: 697:Standard Model 681: 678: 627:electron shell 625:specifies the 619:atomic physics 571: 568: 541:Standard Model 531:refers to the 515: 514: 512: 511: 504: 497: 489: 486: 485: 484: 483: 478: 473: 465: 464: 463:Flavour mixing 460: 459: 458: 457: 456: 455: 441: 432: 428: 417: 409: 400: 399: 398: 394: 381: 343: 342: 338: 337: 336: 335: 326: 317: 314: 301: 292: 280: 279: 275: 274: 273: 272: 262: 253: 244: 235: 232: 216: 215: 208: 207: 192: 191: 187: 186: 179: 172: 164: 163: 156: 149: 137: 136: 51: 49: 42: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2897: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2857: 2855: 2846: 2843: 2842: 2838: 2833: 2829: 2826: 2825: 2821: 2812: 2807: 2802: 2797: 2793: 2789: 2785: 2781: 2780: 2775: 2768: 2765: 2760: 2756: 2752: 2748: 2744: 2740: 2739: 2731: 2728: 2722: 2717: 2713: 2709: 2705: 2701: 2700: 2695: 2688: 2685: 2680: 2676: 2672: 2668: 2664: 2660: 2657:(1–2): 1–11. 2656: 2653:(in German). 2652: 2651: 2646: 2640: 2637: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2599: 2594: 2590: 2586: 2582: 2575: 2572: 2567: 2563: 2559: 2555: 2551: 2547: 2542: 2537: 2533: 2529: 2525: 2518: 2515: 2510: 2506: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2467: 2462: 2458: 2454: 2450: 2443: 2440: 2432: 2428: 2427: 2419: 2414:See table in 2411: 2408: 2402: 2397: 2393: 2389: 2387: 2383: 2380: 2378: 2374: 2371: 2369: 2366: 2364: 2361: 2360: 2356: 2354: 2352: 2348: 2344: 2336: 2334: 2332: 2328: 2324: 2320: 2316: 2315:GIM mechanism 2312: 2304: 2302: 2300: 2296: 2292: 2288: 2287:Eightfold Way 2284: 2276: 2274: 2272: 2268: 2264: 2256: 2254: 2252: 2248: 2244: 2240: 2235: 2233: 2229: 2225: 2222:(the spin-1, 2221: 2184: 2178: 2174: 2160: 2156: 2151: 2149: 2141: 2138: 2130: 2126: 2122: 2121: 2120: 2118: 2114: 2106: 2098: 2089: 2085: 2082:This section 2080: 2077: 2073: 2072: 2068: 2064: 2060: 2056: 2048: 2046: 2044: 2040: 2036: 2032: 2031:chiral models 2028: 2024: 2016: 2008: 2006: 2004: 2000: 1996: 1991: 1989: 1985: 1984: 1979: 1970: 1964: 1956: 1954: 1925: 1917: 1915: 1913: 1909: 1905: 1899: 1891: 1889: 1887: 1883: 1878: 1874: 1870: 1866: 1858: 1856: 1854: 1850: 1846: 1842: 1841:antiparticles 1834: 1832: 1830: 1825: 1823: 1818: 1814: 1810: 1806: 1802: 1797: 1795: 1787: 1776: 1767: 1765: 1761: 1757: 1753: 1749: 1748:Eightfold Way 1740: 1734: 1712: 1708: 1698: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1661: 1658: 1657: 1656: 1632: 1628: 1624: 1620: 1583: 1547: 1543: 1540: 1512: 1511:bottom quarks 1476: 1472: 1469: 1441: 1405: 1402: 1399: 1350: 1314: 1311: 1251: 1247: 1246: 1245: 1243: 1239: 1234: 1232: 1199: 1166: 1133: 1078: 1077:baryon number 1074: 1066: 1064: 1062: 1058: 1054: 1049: 1045: 1041: 1040:muon neutrino 1037: 1032: 1030: 1026: 1022: 1014: 1009: 1005: 997: 992: 972: 968: 964: 940: 935: 929: 925: 924:lepton number 921: 913: 908: 906: 904: 900: 896: 892: 888: 883: 881: 877: 873: 869: 865: 848: 847: 821: 816: 813: 808: 804: 795: 793: 784: 782: 780: 776: 772: 770: 769: 763: 762: 758: 752: 740: 739:lepton number 737: 730: 729:baryon number 727: 720: 715: 712: 705: 702: 701: 700: 698: 693: 691: 687: 679: 677: 675: 671: 667: 663: 659: 654: 652: 648: 644: 640: 636: 632: 628: 624: 620: 615: 613: 609: 605: 601: 597: 593: 589: 585: 581: 577: 569: 567: 565: 561: 557: 556: 550: 546: 542: 538: 534: 530: 526: 522: 510: 505: 503: 498: 496: 491: 490: 488: 487: 482: 479: 477: 474: 472: 469: 468: 467: 466: 461: 453: 452: 448: 440: 436: 433: 427: 423: 416: 413: 412: 408: 404: 401: 393: 389: 385: 382: 379: 375: 371: 367: 363: 359: 356: 355: 354: 350: 347: 346: 345: 344: 339: 334: 330: 327: 325: 321: 318: 313: 309: 305: 302: 300: 296: 295:Lepton number 293: 291: 287: 286:Baryon number 284: 283: 282: 281: 276: 270: 266: 263: 261: 257: 254: 252: 248: 245: 243: 239: 236: 231: 227: 223: 220: 219: 218: 217: 214: 209: 206: 201: 197: 188: 184: 180: 177: 173: 170: 166: 165: 161: 157: 154: 150: 147: 143: 142: 133: 130: 122: 111: 108: 104: 101: 97: 94: 90: 87: 83: 80: â€“  79: 75: 74:Find sources: 68: 64: 58: 57: 52:This article 50: 46: 41: 40: 37: 33: 19: 2880:Quark matter 2783: 2777: 2767: 2742: 2736: 2730: 2703: 2697: 2687: 2654: 2648: 2639: 2588: 2584: 2574: 2531: 2527: 2517: 2456: 2452: 2442: 2431:the original 2424: 2410: 2386:quark matter 2350: 2346: 2343:CP violation 2340: 2330: 2326: 2308: 2280: 2260: 2247:particle zoo 2236: 2223: 2182: 2172: 2152: 2145: 2119:(symbol n): 2110: 2092: 2088:adding to it 2083: 2012: 1992: 1981: 1968: 1962: 1960: 1921: 1902: 1862: 1838: 1829:CP violation 1826: 1807:part of the 1798: 1785: 1774: 1768: 1752:quark models 1744: 1732: 1710: 1706: 1689: 1685: 1681: 1677: 1673: 1669: 1636: 1619:bottom quark 1545: 1474: 1440:charm quarks 1235: 1197: 1164: 1132:weak isospin 1070: 1044:tau neutrino 1033: 1012: 995: 945:, which is − 938: 934:weak isospin 927: 917: 884: 866:with a unit 844: 796: 788: 773: 766: 760: 756: 748: 718: 714:weak isospin 694: 689: 683: 655: 631:energy level 616: 578:acting on a 573: 552: 532: 528: 524: 518: 450: 446: 438: 434: 425: 421: 414: 406: 391: 387: 383: 377: 373: 369: 365: 361: 357: 352: 341:Combinations 332: 323: 311: 307: 304:Weak isospin 298: 289: 268: 259: 250: 241: 229: 225: 199: 125: 119:October 2015 116: 106: 99: 92: 85: 73: 61:Please help 56:verification 53: 36: 2745:(7): 1285. 2323:J/psi meson 2319:J/psi meson 2283:strangeness 2067:J/psi meson 2035:quark model 1914:symmetry). 1853:quark model 1809:Hamiltonian 1660:Hypercharge 1313:Strangeness 1233:of quarks. 1021:left-handed 899:quark decay 868:determinant 846:generations 639:strangeness 476:PMNS matrix 349:Hypercharge 247:Strangeness 2854:Categories 2811:2433/66179 2598:1807.09792 2591:(10): 99. 2466:1503.04071 2459:(8): 373. 2403:References 2347:bottomness 2161:(the spin- 2095:March 2017 2053:See also: 1978:helicities 1801:eigenstate 1582:top quarks 1471:Bottomness 1231:generation 1048:generation 1004:generation 792:orthogonal 660:, such as 647:bottomness 596:weak force 471:CKM matrix 376:′ + 265:Bottomness 89:newspapers 2679:186218053 2631:119410222 2623:1029-8479 2491:1434-6044 2392:B-tagging 2265:like the 2251:multiplet 2015:QCD scale 1623:hadronize 1615:10 s 1486:= − 1324:= − 1292:= − 1200:and have 1167:and have 991:neutrinos 893:. In the 872:Lie group 2509:26300692 2357:See also 2148:nucleons 2137:nucleons 2131:(symbol 2005:in QCD. 1990:in QCD. 1813:W bosons 1786:B′ 1686:B′ 1484:B′ 1479:B′ 1177:⁠+ 1144:⁠± 1085:⁠+ 1075:carry a 963:electron 922:carry a 835:, where 623:electron 588:momentum 584:particle 553:flavour 329:X-charge 211:Flavour 2788:Bibcode 2747:Bibcode 2708:Bibcode 2659:Bibcode 2603:Bibcode 2566:1081641 2546:Bibcode 2500:4538584 2471:Bibcode 2351:topness 2243:hadrons 2220:triplet 2213:⁄ 2198:⁄ 2166:⁄ 2159:doublet 2117:neutron 2107:Isospin 2049:History 1912:isospin 1886:leptons 1877:fermion 1845:Hadrons 1817:fermion 1803:of the 1779: ; 1730:⁠ 1718:⁠ 1650:q̅ 1607:t̅ 1569:t̅ 1542:Topness 1536:b̅ 1498:b̅ 1465:c̅ 1427:c̅ 1374:s̅ 1336:s̅ 1306:⁠ 1294:⁠ 1281:⁠ 1269:⁠ 1250:isospin 1225:⁠ 1194: ; 1192:⁠ 1159:⁠ 1126:⁠ 1100:⁠ 1027:in the 987:⁠ 975:⁠ 973:) and + 959:⁠ 947:⁠ 920:leptons 914:Leptons 874:called 853:is any 666:baryons 658:hadrons 651:topness 635:isospin 549:leptons 533:species 525:flavour 271:′ 256:Topness 222:Isospin 200:Flavour 103:scholar 2677:  2629:  2621:  2564:  2507:  2497:  2489:  2321:. The 2313:, the 2299:quarks 2232:flavor 2129:proton 2065:, and 1940:) × SU 1908:quarks 1882:quarks 1756:strong 1631:baryon 1602:) and 1573:where 1531:) and 1502:where 1475:beauty 1460:) and 1431:where 1369:) and 1340:where 1073:quarks 1067:Quarks 1025:gauged 670:hadron 662:mesons 608:states 545:quarks 539:. The 535:of an 529:flavor 105:  98:  91:  84:  76:  2675:S2CID 2627:S2CID 2593:arXiv 2562:S2CID 2536:arXiv 2461:arXiv 2434:(PDF) 2421:(PDF) 2331:charm 2295:SU(3) 2226:, or 2175:, or 1737:(see 1627:meson 1546:truth 1404:Charm 1242:meson 878:(see 876:SU(2) 699:are: 643:charm 576:force 444:= 5 ( 420:= 2 ( 386:= 2 ( 238:Charm 110:JSTOR 96:books 2619:ISSN 2589:2018 2505:PMID 2487:ISSN 2384:and 2375:and 2349:and 2267:kaon 2204:and 2155:spin 2125:mass 2123:The 1871:and 1869:PMNS 1788:= ±1 1777:= ±1 1758:and 1544:(or 1473:(or 1238:sign 1071:All 1051:can 1042:and 969:and 967:muon 918:All 839:and 664:and 602:and 600:mass 82:news 2806:hdl 2796:doi 2755:doi 2716:doi 2667:doi 2611:doi 2554:doi 2495:PMC 2479:doi 2289:by 2090:. 2023:QCD 2019:QCD 2017:, Λ 1967:SU( 1873:CKM 1703:): 1666:): 1629:or 1548:) ( 1477:) ( 1053:mix 971:tau 930:= 1 901:or 885:In 771:). 649:or 617:In 527:or 519:In 437:+ 2 360:= ( 310:or 228:or 65:by 2856:: 2804:. 2794:. 2784:49 2782:. 2776:. 2753:. 2741:. 2714:. 2704:13 2702:. 2696:. 2673:. 2665:. 2655:77 2625:. 2617:. 2609:. 2601:. 2587:. 2583:. 2560:. 2552:. 2544:. 2532:83 2530:. 2526:. 2503:. 2493:. 2485:. 2477:. 2469:. 2457:75 2455:. 2451:. 2423:. 2353:. 2333:. 2253:. 2189:= 2171:, 2061:, 2057:, 2041:. 1953:. 1929:SU 1766:. 1716:+ 1709:= 1688:+ 1684:+ 1680:+ 1676:+ 1672:= 1645:− 1564:− 1557:= 1493:+ 1422:− 1415:= 1331:+ 1267:= 1208:= 1175:= 1142:= 1134:, 1109:= 1083:= 1038:, 1031:. 1010:, 965:, 936:, 905:. 781:. 759:− 645:, 641:, 637:, 614:. 523:, 449:− 424:− 405:: 390:− 372:+ 368:+ 364:+ 351:: 331:: 322:: 306:: 297:: 288:: 267:: 258:: 249:: 240:: 224:: 202:in 2814:. 2808:: 2798:: 2790:: 2761:. 2757:: 2749:: 2743:2 2724:. 2718:: 2710:: 2681:. 2669:: 2661:: 2633:. 2613:: 2605:: 2595:: 2568:. 2556:: 2548:: 2538:: 2511:. 2481:: 2473:: 2463:: 2224:3 2215:2 2211:1 2208:+ 2206:− 2200:2 2196:1 2193:+ 2191:+ 2187:3 2183:I 2173:2 2168:2 2164:1 2133:p 2097:) 2093:( 1974:) 1972:f 1969:N 1951:) 1949:f 1946:N 1944:( 1942:R 1938:f 1935:N 1933:( 1931:L 1790:. 1784:Δ 1775:C 1773:Δ 1741:) 1733:Y 1727:2 1724:/ 1721:1 1714:3 1711:I 1707:Q 1701:Q 1699:( 1690:T 1682:C 1678:S 1674:B 1670:Y 1664:Y 1662:( 1652:, 1647:n 1643:q 1640:n 1633:. 1613:× 1611:5 1604:n 1593:t 1584:( 1578:t 1575:n 1571:, 1566:n 1562:t 1559:n 1555:T 1550:T 1533:n 1522:b 1513:( 1507:b 1504:n 1500:, 1495:n 1491:b 1488:n 1462:n 1451:c 1442:( 1436:c 1433:n 1429:, 1424:n 1420:c 1417:n 1413:C 1408:C 1406:( 1386:s 1371:n 1360:s 1351:( 1345:s 1342:n 1338:, 1333:n 1329:s 1326:n 1322:S 1317:S 1315:( 1303:2 1300:/ 1297:1 1290:3 1287:I 1278:2 1275:/ 1272:1 1265:3 1262:I 1257:3 1254:I 1227:. 1222:2 1219:/ 1216:1 1212:+ 1206:3 1203:T 1189:2 1186:/ 1183:1 1179:+ 1173:3 1170:T 1161:. 1156:2 1153:/ 1150:1 1146:+ 1140:3 1137:T 1128:. 1123:3 1120:/ 1117:1 1113:+ 1107:B 1102:, 1097:3 1094:/ 1091:1 1087:+ 1081:B 1016:W 1013:Y 999:3 996:T 984:2 981:/ 978:1 956:2 953:/ 950:1 942:3 939:T 928:L 860:2 857:× 855:2 851:M 841:d 837:u 822:) 817:d 814:u 809:( 805:M 761:L 757:B 745:) 743:L 741:( 735:) 733:B 731:( 725:) 722:3 719:T 716:( 710:) 708:Q 706:( 508:e 501:t 494:v 454:) 451:L 447:B 442:W 439:Y 435:X 431:) 429:3 426:T 422:Q 418:W 415:Y 410:W 407:Y 397:) 395:3 392:I 388:Q 384:Y 380:) 378:T 374:B 370:C 366:S 362:B 358:Y 353:Y 333:X 324:Q 315:3 312:T 308:T 299:L 290:B 269:B 260:T 251:S 242:C 233:3 230:I 226:I 132:) 126:( 121:) 117:( 107:· 100:· 93:· 86:· 59:. 34:. 20:)

Index

Flavour symmetry
Flavor (disambiguation)

verification
improve this article
adding citations to reliable sources
"Flavour" particle physics
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message






Flavour
particle physics
quantum numbers
Isospin
Charm
Strangeness
Topness
Bottomness
Baryon number
Lepton number
Weak isospin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑