Knowledge (XXG)

Floer homology

Source 📝

812:). It may be viewed as the Morse homology of the Chern–Simons–Dirac functional on U(1) connections on the three-manifold. The associated gradient flow equation corresponds to the Seiberg–Witten equations on the 3-manifold crossed with the real line. Equivalently, the generators of the chain complex are translation-invariant solutions to Seiberg–Witten equations (known as monopoles) on the product of a 3-manifold and the real line, and the differential counts solutions to the Seiberg–Witten equations on the product of a three-manifold and the real line, which are asymptotic to invariant solutions at infinity and negative infinity. 731:. Kronheimer and Mrowka first introduced the contact element in the Seiberg–Witten case. Ozsvath and Szabo constructed it for Heegaard Floer homology using Giroux's relation between contact manifolds and open book decompositions, and it comes for free, as the homology class of the empty set, in embedded contact homology. (Which, unlike the other three, requires a contact structure for its definition. For embedded contact homology see 1213:
the graph of the symplectomorphism. The construction of Heegaard Floer homology is based on a variant of Lagrangian Floer homology for totally real submanifolds defined using a Heegaard splitting of a three-manifold. Seidel–Smith and Manolescu constructed a link invariant as a certain case of Lagrangian Floer homology, which conjecturally agrees with
701:. The 3-manifold Floer homologies should also be the targets of relative invariants for four-manifolds with boundary, related by gluing constructions to the invariants of a closed 4-manifold obtained by gluing together bounded 3-manifolds along their boundaries. (This is closely related to the notion of a 1657:
Floer homologies are generally difficult to compute explicitly. For instance, the symplectic Floer homology for all surface symplectomorphisms was completed only in 2007. The Heegaard Floer homology has been a success story in this regard: researchers have exploited its algebraic structure to compute
1576:
over closed Reeb orbits. It further includes a linear homology theory, called cylindrical or linearized contact homology (sometimes, by abuse of notation, just contact homology), whose chain groups are vector spaces generated by closed orbits and whose differentials count only holomorphic cylinders.
738:
These theories all come equipped with a priori relative gradings; these have been lifted to absolute gradings (by homotopy classes of oriented 2-plane fields) by Kronheimer and Mrowka (for SWF), Gripp and Huang (for HF), and Hutchings (for ECH). Cristofaro-Gardiner has shown that Taubes' isomorphism
1012:
An analog of embedded contact homology may be defined for mapping tori of symplectomorphisms of a surface (possibly with boundary) and is known as periodic Floer homology, generalizing the symplectic Floer homology of surface symplectomorphisms. More generally, it may be defined with respect to any
1212:
Several kinds of Floer homology are special cases of Lagrangian Floer homology. The symplectic Floer homology of a symplectomorphism of M can be thought of as a case of Lagrangian Floer homology in which the ambient manifold is M crossed with M and the Lagrangian submanifolds are the diagonal and
1017:
on the 3-manifold; like contact structures, stable Hamiltonian structures define a nonvanishing vector field (the Reeb vector field), and Hutchings and Taubes have proven an analogue of the Weinstein conjecture for them, namely that they always have closed orbits (unless they are mapping tori of a
684:
These homologies are closely related to the Donaldson and Seiberg invariants of 4-manifolds, as well as to Taubes's Gromov invariant of symplectic 4-manifolds; the differentials of the corresponding three-manifold homologies to these theories are studied by considering solutions to the relevant
1001:
that a contact 3-manifold has a closed Reeb orbit for any contact form holds on any manifold whose ECH is nontrivial, and was proved by Taubes using techniques closely related to ECH; extensions of this work yielded the isomorphism between ECH and SWF. Many constructions in ECH (including its
120:
The gradient flow line equation, in a situation where Floer's ideas can be successfully applied, is typically a geometrically meaningful and analytically tractable equation. For symplectic Floer homology, the gradient flow equation for a path in the loopspace is (a perturbed version of) the
1603:
of symplectic manifolds with symplectomorphisms. While the cylindrical contact homology is well-defined and given by the symplectic Floer homologies of powers of the symplectomorphism, (rational) symplectic field theory and contact homology can be considered as generalized symplectic Floer
133:
is then used to show that the counts of flow lines defining the differential are finite, so that the differential is well-defined and squares to zero. Thus the Floer homology is defined. For instanton Floer homology, the gradient flow equation is exactly the Yang–Mills equation on the
1628:
and for the symplectic Floer homology of cotangent bundles by Cohen. This approach was the basis of Manolescu's 2013 construction of Pin (2)-equivariant Seiberg–Witten Floer homology, with which he disproved the Triangulation Conjecture for manifolds of dimension 5 and higher.
1577:
However, cylindrical contact homology is not always defined due to the presence of holomorphic discs and a lack of regularity and transversality results. In situations where cylindrical contact homology makes sense, it may be seen as the (slightly modified)
237:
of the free loop space of M (proofs of various versions of this statement are due to Viterbo, Salamon–Weber, Abbondandolo–Schwarz, and Cohen). There are more complicated operations on the Floer homology of a cotangent bundle that correspond to the
1386:
as a Lagrangian submanifold. One can consider the Lagrangian intersection Floer homology. Alternately, we can consider the Instanton Floer homology of the 3-manifold Y. The Atiyah–Floer conjecture asserts that these two invariants are isomorphic.
985:
and its differential counts certain holomorphic curves with ends at certain collections of Reeb orbits. It differs from SFT in technical conditions on the collections of Reeb orbits that generate it—and in not counting all holomorphic curves with
1658:
it for various classes of 3-manifolds and have found combinatorial algorithms for computation of much of the theory. It is also connected to existing invariants and structures and many insights into 3-manifold topology have resulted.
1434:
on the mirror Calabi–Yau manifold. In this situation, one should not focus on the Floer homology groups but on the Floer chain groups. Similar to the pair-of-pants product, one can construct multi-compositions using pseudo-holomorphic
1205:" of Lalonde and Cornea offer a different approach to it. The Floer homology of a pair of Lagrangian submanifolds may not always exist; when it does, it provides an obstruction to isotoping one Lagrangian away from the other using a 1193: 1637:
Many of these Floer homologies have not been completely and rigorously constructed, and many conjectural equivalences have not been proved. Technical difficulties come up in the analysis involved, especially in constructing
677:. A knot in a three-manifold induces a filtration on the chain complex of each theory, whose chain homotopy type is a knot invariant. (Their homologies satisfy similar formal properties to the combinatorially-defined 173:
Here, nondegeneracy means that 1 is not an eigenvalue of the derivative of the symplectomorphism at any of its fixed points. This condition implies that the fixed points are isolated. SFH is the homology of the
202:
corresponding to fixed points of the symplectomorphism. A relative index may be defined between pairs of fixed points, and the differential counts the number of holomorphic cylinders with relative index 1.
1568:. The symplectic field theory as well as its subcomplexes, rational symplectic field theory and contact homology, are defined as homologies of differential algebras, which are generated by closed orbits of the 384: 66:. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds. 980:
to certain non-compact symplectic 4-manifolds (namely, a contact three-manifold cross R). Its construction is analogous to symplectic field theory, in that it is generated by certain collections of closed
542: 1604:
homologies. In the important case when the symplectomorphism is the time-one map of a time-dependent Hamiltonian, it was however shown that these higher invariants do not contain any further information.
829:, where it is known as monopole Floer homology. Taubes has shown that it is isomorphic to embedded contact homology. Alternate constructions of SWF for rational homology 3-spheres have been given by 858: 716:). These are related to the invariants for closed 3-manifolds by gluing formulas for the Floer homology of a 3-manifold described as the union along the boundary of two 3-manifolds with boundary. 631: 1198:
which is defined by counting holomorphic triangles (that is, holomorphic maps of a triangle whose vertices and edges map to the appropriate intersection points and Lagrangian submanifolds).
69:
Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the symplectic version, this is the free
1572:
of a chosen contact form. The differential counts certain holomorphic curves in the cylinder over the contact manifold, where the trivial examples are the branched coverings of (trivial)
451: 1592:. Its generators are Reeb chords, which are trajectories of the Reeb vector field beginning and ending on a Lagrangian, and its differential counts certain holomorphic strips in the 956:, is an invariant of 3-manifolds (with a distinguished second homology class, corresponding to the choice of a spin structure in Seiberg–Witten Floer homology) isomorphic (by work of 1581:
of the action functional on the free loop space, which sends a loop to the integral of the contact form alpha over the loop. Reeb orbits are the critical points of this functional.
315:
and for the definition of both Floer homology and quantum cohomology. The semi-positive condition means that one of the following holds (note that the three cases are not disjoint):
233:
of a manifold M, the Floer homology depends on the choice of Hamiltonian due to its noncompactness. For Hamiltonians that are quadratic at infinity, the Floer homology is the
206:
The symplectic Floer homology of a Hamiltonian symplectomorphism of a compact manifold is isomorphic to the singular homology of the underlying manifold. Thus, the sum of the
785:
Soon after Floer's introduction of Floer homology, Donaldson realized that cobordisms induce maps. This was the first instance of the structure that came to be known as a
1491: 1464: 1384: 1303: 1355: 1335: 1274: 1250: 1974: 2028: 1877: 1649:
and a "general Fredholm theory". While the polyfold project is not yet fully completed, in some important cases transversality was shown using simpler methods.
1530: 1424: 937:. The "plus" and "minus" versions of Heegaard Floer homology, and the related Ozsváth–Szabó four-manifold invariants, can be described combinatorially as well ( 2308: 1067: 130: 1645:
of pseudoholomorphic curves. Hofer, in collaboration with Kris Wysocki and Eduard Zehnder, has developed new analytic foundations via their theory of
1030:
of a symplectic manifold is the homology of a chain complex generated by the intersection points of the two submanifolds and whose differential counts
774:, i.e. anti-self-dual connections on the three-manifold crossed with the real line. Instanton Floer homology may be viewed as a generalization of the 705:.) For Heegaard Floer homology, the 3-manifold homology was defined first, and an invariant for closed 4-manifolds was later defined in terms of it. 190:
of the symplectomorphism. This itself is a symplectic manifold of dimension two greater than the original manifold. For an appropriate choice of
1225:
The Atiyah–Floer conjecture connects the instanton Floer homology with the Lagrangian intersection Floer homology. Consider a 3-manifold Y with a
2054: 2988: 1925: 1858: 1832: 1802: 1771: 1745: 884:
announced a proof that the plus-version of Heegaard Floer homology (with reverse orientation) is isomorphic to embedded contact homology.
323: 1951: 1357:
bounds two different 3-manifolds; the space of flat connections modulo gauge equivalence on each 3-manifold with boundary embeds into
2598: 2396:
Kutluhan, Cagatay; Lee, Yi-Jen; Taubes, Clifford Henry (2020). "HF=HM I: Heegaard Floer homology and Seiberg–Witten Floer homology".
1786: 869: 481: 2922: 1719: 953: 887:
A knot in a three-manifold induces a filtration on the Heegaard Floer homology groups, and the filtered homotopy type is a powerful
89:
functional. Loosely speaking, Floer homology is the Morse homology of the function on the infinite-dimensional manifold. A Floer
2099: 786: 702: 690: 125:
for a map of a cylinder (the total space of the path of loops) to the symplectic manifold of interest; solutions are known as
2261: 1639: 214:
for the number of fixed points for a nondegenerate symplectomorphism. The SFH of a Hamiltonian symplectomorphism also has a
1009:
The contact element of ECH has a particularly nice form: it is the cycle associated to the empty collection of Reeb orbits.
2979:
Piunikhin, Sergey; Salamon, Dietmar; Schwarz, Matthias (1996). "Symplectic Floer–Donaldson theory and quantum cohomology".
3045: 3015: 1943: 1620:
to such a spectrum could yield other interesting invariants. This strategy was proposed by Ralph Cohen, John Jones, and
973: 694: 566: 3070: 969: 98: 122: 3010: 1396: 246: 215: 62:. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the 2649:———; Szabo (2004). "Holomorphic disks and three-manifold invariants: properties and applications". 257:
In 1996 S. Piunikhin, D. Salamon and M. Schwarz summarized the results about the relation between Floer homology and
1824: 1794: 1763: 1737: 1613: 817: 1508:
in homage to the underlying physics. The Homological Mirror Symmetry conjecture states there is a type of derived
1014: 2223: 1589: 179: 2306:; Wysocki, Kris; Zehnder, Eduard (2007). "A General Fredholm Theory I: A Splicing-Based Differential Geometry". 968:) to the plus-version of Heegaard Floer homology (with reverse orientation). It may be seen as an extension of 3065: 2266: 756: 651: 639: 411: 191: 126: 82: 1466:-relations making the category of all (unobstructed) Lagrangian submanifolds in a symplectic manifold into an 1404: 752: 3005: 708:
There are also extensions of the 3-manifold homologies to 3-manifolds with boundary: sutured Floer homology (
3055: 2741: 2702: 1850: 919: 258: 183: 39: 2582:
Manolescu, Ciprian; OzsvĂĄth, Peter; Thurston, Dylan (2009). "Grid diagrams and Heegaard Floer invariants".
2492: 2357: 1585: 1027: 114: 113:
vector field connecting fixed pairs of critical points (or collections thereof). Floer homology is the
59: 55: 50:
introduced the first version of Floer homology, now called symplectic Floer homology, in his proof of the
26: 2192: 2087: 686: 63: 3060: 2603: 2536: 1612:
One conceivable way to construct a Floer homology theory of some object would be to construct a related
1202: 3050: 2902: 2760: 2668: 2621: 2554: 2327: 2275: 2163: 2062: 1983: 998: 896: 779: 2848:
Sarkar, Sucharit; Wang, Jiajun (2010). "An algorithm for computing some Heegaard Floer homologies".
1970:"Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions" 1505: 1314: 1206: 880:
announced a proof that Heegaard Floer homology is isomorphic to Seiberg–Witten Floer homology, and
655: 298: 291: 167: 143: 74: 31: 908: 2967: 2949: 2928: 2892: 2875: 2857: 2836: 2818: 2791: 2778: 2750: 2711: 2684: 2658: 2637: 2611: 2583: 2570: 2544: 2518: 2500: 2466: 2448: 2423: 2405: 2384: 2366: 2343: 2317: 2291: 2249: 2231: 2179: 2078: 1561: 1509: 1469: 1442: 1230: 1226: 873: 312: 223: 1699: 1360: 1279: 766:-bundle over the three-manifold (more precisely, homology 3-spheres). Its critical points are 2984: 2918: 2478: 2011: 1947: 1921: 1854: 1828: 1798: 1767: 1741: 1715: 1646: 1617: 1569: 1214: 1031: 923: 728: 678: 234: 211: 195: 155: 151: 147: 102: 51: 1340: 1320: 1259: 1235: 86: 2959: 2910: 2867: 2828: 2768: 2721: 2676: 2629: 2562: 2510: 2458: 2436: 2415: 2376: 2335: 2283: 2241: 2207: 2171: 2138: 2107: 2070: 2036: 2001: 1991: 1886: 1812: 1782: 1729: 1707: 1573: 1557: 1549: 1537: 1431: 1400: 892: 865: 850: 822: 809: 775: 760: 748: 245:
The symplectic version of Floer homology figures in a crucial way in the formulation of the
230: 2121: 1900: 911:
for the Heegaard splittings, knot Floer homology was given a combinatorial construction by
558:
can be defined as the tensor products of the ordinary cohomology with Novikov ring Λ, i.e.
2806: 2531: 2117: 1896: 1755: 1593: 1494: 1253: 957: 767: 670: 667: 239: 163: 159: 1061:
of a symplectic manifold, there is a product structure on the Lagrangian Floer homology:
990:
1 with given ends, but only those that also satisfy a topological condition given by the
815:
One version of Seiberg–Witten–Floer homology was constructed rigorously in the monograph
2906: 2764: 2672: 2625: 2558: 2331: 2279: 2167: 2066: 1987: 723:
Floer homologies also come equipped with a distinguished element of the homology if the
3028: 2006: 1969: 1695: 1515: 1501: 1409: 987: 888: 724: 720: 674: 43: 2439:; Thurston, Dylan (2008). "Bordered Heegaard Floer homology: Invariance and pairing". 3039: 2971: 2940:
Taubes, Clifford (2007). "The Seiberg–Witten equations and the Weistein conjecture".
2840: 2641: 2470: 2427: 2183: 2082: 2023: 1917: 1816: 1600: 1500:
To be more precise, one must add additional data to the Lagrangian – a grading and a
1034: 826: 199: 187: 175: 94: 90: 47: 2879: 2782: 2574: 2388: 2347: 2221:
FrĂžyshov, Kim A. (2010). "Monopole Floer homology for rational homology 3-spheres".
1910: 2932: 2688: 2601:(2004). "Holomorphic disks and topological invariants for closed three-manifolds". 2522: 2303: 2295: 2253: 1642: 1621: 1565: 739:
between ECH and Seiberg–Witten Floer cohomology preserves these absolute gradings.
647: 638:
This construction of Floer homology explains the independence on the choice of the
287: 207: 3023: 1891: 1872: 1188:{\displaystyle HF(L_{0},L_{1})\otimes HF(L_{1},L_{2})\rightarrow HF(L_{0},L_{2}),} 301:
structure on the cohomology of M with the pair-of-pants product on Floer homology.
2871: 2680: 2633: 2151: 2129:——— (1989). "Cuplength estimates on Lagrangian intersections". 2049: 1711: 1201:
Papers on this subject are due to Fukaya, Oh, Ono, and Ohta; the recent work on "
2566: 1935: 1868: 1842: 1533: 994:, which in particular implies that the curves considered are (mainly) embedded. 982: 307:
The above condition of semi-positive and the compactness of symplectic manifold
219: 20: 1706:. Proceedings of Symposia in Pure Mathematics. Vol. 48. pp. 285–299. 1403:
predicts an equality between the Lagrangian Floer homology of Lagrangians in a
872:
of a closed 3-manifold equipped with a spin structure. It is computed using a
2773: 2736: 2726: 2697: 2245: 977: 933:
The "hat" version of Heegaard Floer homology was described combinatorially by
805: 279: 198:(of finite energy) in it have cylindrical ends asymptotic to the loops in the 106: 70: 2212: 2112: 2094: 2963: 2914: 2419: 1996: 1553: 1427: 960:) to Seiberg–Witten Floer cohomology and consequently (by work announced by 771: 78: 2832: 2481:(2003). "Seiberg–Witten–Floer stable homotopy type of three-manifolds with 2380: 2142: 2040: 2015: 101:
of the function (or possibly certain collections of critical points). The
54:
in symplectic geometry. Floer also developed a closely related theory for
2514: 226:. A version of the product also exists for non-exact symplectomorphisms. 242:
operations on the homology of the loop space of the underlying manifold.
110: 35: 2809:(2008). "Instanton Floer homology with Lagrangian boundary conditions". 2755: 2716: 2462: 2322: 1624:, and carried out in certain cases for Seiberg–Witten–Floer homology by 1596:
of the contact manifold whose ends are asymptotic to given Reeb chords.
876:
of the space via a construction analogous to Lagrangian Floer homology.
210:
of that manifold yields the lower bound predicted by one version of the
2287: 2175: 2074: 1616:
whose ordinary homology is the desired Floer homology. Applying other
2339: 42:
that arises as an infinite-dimensional analogue of finite-dimensional
2954: 2891:. CRM Proceedings and Lecture Notes. Vol. 49. pp. 263–297. 2862: 2823: 2796: 2663: 2616: 2549: 2505: 2371: 142:
Symplectic Floer Homology (SFH) is a homology theory associated to a
2355:
JuhĂĄsz, AndrĂĄs (2008). "Floer homology and surface decompositions".
2026:(1988). "The unregularized gradient flow of the symplectic action". 2887:
Hutchings (2009). "The embedded contact homology index revisited".
1504:. A Lagrangian with a choice of these structures is often called a 182:
of such a symplectomorphism, where the differential counts certain
2897: 2588: 2453: 2410: 2236: 763: 379:{\displaystyle \langle ,A\rangle =\lambda \langle c_{1},A\rangle } 922:
of S^3 branched over a knot is related by a spectral sequence to
673:. Each yields three types of homology groups, which fit into an 646:
and the isomorphism to Floer homology provided from the ideas of
2790:
Rasmussen, Jacob (2003). "Floer homology and knot complements".
1026:
The Lagrangian Floer homology of two transversely intersecting
537:{\displaystyle \langle c_{1},\pi _{2}(M)\rangle =N\mathbb {Z} } 2534:(2009). "A combinatorial description of knot Floer homology". 2264:(1985). "Pseudo holomorphic curves in symplectic manifolds". 666:
There are several equivalent Floer homologies associated to
2889:
New Perspectives and Challenges in Symplectic Field Theory
2737:"On the Heegaard Floer homology of branched double-covers" 1791:
Floer Homology, Gauge Theory, And Low-dimensional Topology
2193:"Witten's complex and infinite dimensional Morse Theory" 938: 782:
of the Floer homology agrees with the Casson invariant.
81:) version for three-manifolds, it is the space of SU(2)- 751:
introduced by Floer himself. It is obtained using the
713: 262: 912: 1518: 1472: 1445: 1412: 1363: 1343: 1323: 1282: 1262: 1238: 1070: 569: 484: 414: 326: 554:
The quantum cohomology group of symplectic manifold
1968:Colin, Vincent; Ghiggini, Paolo; Honda, Ko (2011). 1540:of coherent sheaves of the mirror, and vice versa. 658:between homology and cohomology as the background. 626:{\displaystyle QH_{*}(M)=H_{*}(M)\otimes \Lambda .} 270:The Floer cohomology groups of the loop space of a 1909: 1762:. Cambridge Tracts in Mathematics. Vol. 147. 1700:"New invariants of 3- and 4-dimensional manifolds" 1524: 1485: 1458: 1418: 1378: 1349: 1329: 1297: 1276:modulo gauge equivalence is a symplectic manifold 1268: 1244: 1187: 965: 881: 625: 536: 445: 378: 166:of a symplectic manifold. SFH is invariant under 2152:"Symplectic fixed points and holomorphic spheres" 961: 877: 2983:. Cambridge University Press. pp. 171–200. 1599:In SFT the contact manifolds can be replaced by 747:This is a three-manifold invariant connected to 105:of the chain complex is defined by counting the 77:with the symplectic action functional. For the ( 1584:SFT also associates a relative invariant of a 1512:between the Fukaya category of the Calabi–Yau 1002:well-definedness) rely upon this isomorphism ( 1940:Fukaya Categories and Picard Lefschetz Theory 1878:Bulletin of the American Mathematical Society 1793:. Clay Mathematics Proceedings. Vol. 5. 697:, respectively) on the 3-manifold cross  278:,ω) are naturally isomorphic to the ordinary 8: 2441:Memoirs of the American Mathematical Society 2309:Journal of the European Mathematical Society 1217:, a combinatorially-defined link invariant. 927: 900: 520: 485: 434: 415: 373: 354: 345: 327: 2095:"Morse theory for Lagrangian intersections" 1873:"Floer theory and low dimensional topology" 907:. It is known to detect knot genus. Using 134:three-manifold crossed with the real line. 1916:. Progress in Mathematics. Vol. 111. 1760:Floer homology groups in Yang–Mills theory 934: 2953: 2896: 2861: 2822: 2795: 2772: 2754: 2725: 2715: 2662: 2615: 2587: 2548: 2504: 2452: 2409: 2370: 2321: 2235: 2211: 2111: 2005: 1995: 1890: 1704:The Mathematical Heritage of Hermann Weyl 1625: 1517: 1477: 1471: 1450: 1444: 1411: 1362: 1342: 1322: 1281: 1261: 1237: 1173: 1160: 1135: 1122: 1097: 1084: 1069: 904: 830: 732: 599: 577: 568: 530: 529: 505: 492: 483: 446:{\displaystyle \langle c_{1},A\rangle =0} 422: 413: 361: 325: 85:on a three-dimensional manifold with the 2050:"An instanton-invariant for 3-manifolds" 834: 186:in the product of the real line and the 154:, the homology arises from studying the 2698:"Holomorphic disks and knot invariants" 2530:Manolescu, Ciprian; OzsvĂĄth, Peter S.; 1672: 263:Piunikhin, Salamon & Schwarz (1996) 2735:OzsvĂĄth, Peter; SzabĂł, ZoltĂĄn (2005). 2696:OzsvĂĄth, Peter; SzabĂł, ZoltĂĄn (2004). 1679: 1439:-gons. These compositions satisfy the 1022:Lagrangian intersection Floer homology 1003: 939:Manolescu, OzsvĂĄth & Thurston 2009 913:Manolescu, OzsvĂĄth & Sarkar (2009) 709: 899:. Knot Floer homology was defined by 714:Lipshitz, OzsvĂĄth & Thurston 2008 7: 1040:Given three Lagrangian submanifolds 150:of it. If the symplectomorphism is 1847:Introduction to Symplectic Topology 918:The Heegaard Floer homology of the 1758:; M. Furuta; D. Kotschick (2002). 1478: 1451: 1370: 1344: 1324: 1289: 1263: 1239: 882:Colin, Ghiggini & Honda (2011) 617: 14: 891:, called knot Floer homology. It 878:Kutluhan, Lee & Taubes (2020) 662:Floer homology of three-manifolds 297:This isomorphism intertwines the 1556:between them, originally due to 972:, known to be equivalent to the 966:Colin, Ghiggini & Honda 2011 849: 804:is a homology theory for smooth 787:topological quantum field theory 703:topological quantum field theory 261:and formulated as the following. 2981:Contact and Symplectic Geometry 1588:of a contact manifold known as 962:Kutluhan, Lee & Taubes 2020 712:) and bordered Floer homology ( 2191:——— (1989). 2150:——— (1989). 2093:——— (1988). 2048:——— (1988). 1373: 1367: 1292: 1286: 1179: 1153: 1144: 1141: 1115: 1103: 1077: 654:, where we must recognize the 611: 605: 589: 583: 517: 511: 336: 330: 1: 1944:European Mathematical Society 1892:10.1090/S0273-0979-05-01080-3 1821:Monopoles and Three-Manifolds 1544:Symplectic field theory (SFT) 1337:. In the Heegaard splitting, 818:Monopoles and Three-manifolds 798:Seiberg–Witten Floer homology 793:Seiberg–Witten Floer homology 311:is required for us to obtain 38:. Floer homology is a novel 3024:Heegaard Floer Knot Homology 2872:10.4007/annals.2010.171.1213 2681:10.4007/annals.2004.159.1159 2634:10.4007/annals.2004.159.1027 1391:Relations to mirror symmetry 1015:stable Hamiltonian structure 544:is greater than or equal to 3011:Encyclopedia of Mathematics 2567:10.4007/annals.2009.169.633 1908:Schwarz, Matthias (2012) . 1845:; Salamon, Dietmar (1998). 1486:{\displaystyle A_{\infty }} 1459:{\displaystyle A_{\infty }} 1397:homological mirror symmetry 837:; they are known to agree. 755:functional on the space of 247:homological mirror symmetry 218:product that is a deformed 3087: 1825:Cambridge University Press 1795:Clay Mathematics Institute 1764:Cambridge University Press 1738:Kluwer Academic Publishers 1734:Lectures on Morse Homology 1732:; David Hurtubise (2004). 1379:{\displaystyle M(\Sigma )} 1298:{\displaystyle M(\Sigma )} 901:OzsvĂĄth & SzabĂł (2004) 478: â‰„ 0 defined by 170:of the symplectomorphism. 131:Gromov compactness theorem 3006:"Atiyah-Floer conjecture" 2774:10.1016/j.aim.2004.05.008 2727:10.1016/j.aim.2003.05.001 2246:10.1215/00127094-2010-060 1590:relative contact homology 976:, from closed symplectic 970:Taubes's Gromov invariant 950:Embedded contact homology 945:Embedded contact homology 286:, tensored by a suitable 138:Symplectic Floer homology 2267:Inventiones Mathematicae 1712:10.1090/pspum/048/974342 1548:This is an invariant of 974:Seiberg–Witten invariant 935:Sarkar & Wang (2010) 928:OzsvĂĄth & SzabĂł 2005 743:Instanton Floer homology 685:differential equations ( 652:pseudoholomorphic curves 640:almost complex structure 292:covering transformations 290:associated the group of 192:almost complex structure 184:pseudoholomorphic curves 127:pseudoholomorphic curves 16:Symplectic topology tool 2964:10.2140/gt.2007.11.2117 2811:Geometry & Topology 2742:Advances in Mathematics 2703:Advances in Mathematics 2420:10.2140/gt.2020.24.2829 2398:Geometry & Topology 2358:Geometry & Topology 1997:10.1073/pnas.1018734108 1851:Oxford University Press 1785:; Stipsicz, AndrĂĄs I.; 1536:underlying the bounded 1350:{\displaystyle \Sigma } 1330:{\displaystyle \Sigma } 1269:{\displaystyle \Sigma } 1245:{\displaystyle \Sigma } 1221:Atiyah–Floer conjecture 1028:Lagrangian submanifolds 864:is an invariant due to 846:Heegaard Floer homology 841:Heegaard Floer homology 802:monopole Floer homology 770:and its flow lines are 123:Cauchy–Riemann equation 117:of this chain complex. 56:Lagrangian submanifolds 30:is a tool for studying 2833:10.2140/gt.2008.12.747 2381:10.2140/gt.2008.12.299 2213:10.4310/jdg/1214443291 2143:10.1002/cpa.3160420402 2113:10.4310/jdg/1214442477 2041:10.1002/cpa.3160410603 2029:Comm. Pure Appl. Math. 1586:Legendrian submanifold 1526: 1493:-category, called the 1487: 1460: 1420: 1380: 1351: 1331: 1309: âˆ’ 6, where 1299: 1270: 1246: 1189: 627: 538: 447: 380: 2515:10.2140/gt.2003.7.889 2131:Comm. Pure Appl. Math 2100:J. Differential Geom. 1527: 1488: 1461: 1421: 1381: 1352: 1332: 1300: 1271: 1247: 1190: 903:and independently by 628: 539: 448: 381: 274:symplectic manifold ( 64:Yang–Mills functional 3046:Mathematical physics 1633:Analytic foundations 1516: 1470: 1443: 1410: 1361: 1341: 1321: 1280: 1260: 1252:. Then the space of 1236: 1068: 999:Weinstein conjecture 897:Alexander polynomial 780:Euler characteristic 567: 482: 473:minimal Chern Number 412: 324: 146:and a nondegenerate 34:and low-dimensional 3071:Symplectic topology 2915:10.1090/crmp/049/10 2907:2008arXiv0805.1240H 2765:2003math......9170O 2673:2001math......5202O 2626:2001math......1206O 2559:2006math......7691M 2332:2006math.....12604H 2280:1985InMat..82..307G 2168:1988CMaPh.120..575F 2067:1988CMaPh.118..215F 1988:2011PNAS..108.8100C 1781:Ellwood, David A.; 1405:Calabi–Yau manifold 1207:Hamiltonian isotopy 727:is equipped with a 299:quantum cup product 168:Hamiltonian isotopy 158:functional on the ( 144:symplectic manifold 93:is formed from the 75:symplectic manifold 32:symplectic geometry 2805:Salamon, Dietmar; 2479:Manolescu, Ciprian 2435:Lipshitz, Robert; 2288:10.1007/BF01388806 2176:10.1007/BF01260388 2075:10.1007/BF01218578 1562:Alexander Givental 1522: 1510:Morita equivalence 1483: 1456: 1416: 1376: 1347: 1327: 1295: 1266: 1242: 1227:Heegaard splitting 1185: 623: 534: 443: 376: 259:quantum cohomology 224:quantum cohomology 196:holomorphic curves 109:of the function's 2990:978-0-521-57086-2 2463:10.1090/memo/1216 2055:Comm. Math. Phys. 1982:(20): 8100–8105. 1962:Research articles 1927:978-3-0348-8577-5 1860:978-0-19-850451-1 1834:978-0-521-88022-0 1813:Kronheimer, Peter 1804:978-0-8218-3845-7 1783:OzsvĂĄth, Peter S. 1773:978-0-521-80803-3 1747:978-1-4020-2695-9 1689:Books and surveys 1618:homology theories 1570:Reeb vector field 1550:contact manifolds 1525:{\displaystyle X} 1419:{\displaystyle X} 1215:Khovanov homology 1032:pseudoholomorphic 954:Michael Hutchings 924:Khovanov homology 808:(equipped with a 729:contact structure 679:Khovanov homology 235:singular homology 212:Arnold conjecture 178:generated by the 156:symplectic action 148:symplectomorphism 52:Arnold conjecture 3078: 3019: 2994: 2975: 2957: 2948:(4): 2117–2202. 2936: 2900: 2883: 2865: 2856:(2): 1213–1236. 2844: 2826: 2807:Wehrheim, Katrin 2801: 2799: 2786: 2776: 2758: 2731: 2729: 2719: 2692: 2666: 2657:(3): 1159–1245. 2645: 2619: 2610:(3): 1027–1158. 2597:OzsvĂĄth, Peter; 2593: 2591: 2578: 2552: 2532:Sarkar, Sucharit 2526: 2508: 2474: 2456: 2431: 2413: 2404:(6): 2829–2854. 2392: 2374: 2351: 2325: 2299: 2257: 2239: 2217: 2215: 2197: 2187: 2156:Comm. Math. Phys 2146: 2125: 2115: 2086: 2044: 2019: 2009: 1999: 1957: 1931: 1915: 1904: 1894: 1864: 1838: 1808: 1777: 1751: 1730:Augustin Banyaga 1725: 1682: 1677: 1626:Manolescu (2003) 1558:Yakov Eliashberg 1538:derived category 1531: 1529: 1528: 1523: 1492: 1490: 1489: 1484: 1482: 1481: 1465: 1463: 1462: 1457: 1455: 1454: 1432:coherent sheaves 1425: 1423: 1422: 1417: 1401:Maxim Kontsevich 1385: 1383: 1382: 1377: 1356: 1354: 1353: 1348: 1336: 1334: 1333: 1328: 1304: 1302: 1301: 1296: 1275: 1273: 1272: 1267: 1254:flat connections 1251: 1249: 1248: 1243: 1203:cluster homology 1194: 1192: 1191: 1186: 1178: 1177: 1165: 1164: 1140: 1139: 1127: 1126: 1102: 1101: 1089: 1088: 905:Rasmussen (2003) 874:Heegaard diagram 863: 862: 861: 860: 853: 831:Manolescu (2003) 823:Peter Kronheimer 776:Casson invariant 768:flat connections 749:Donaldson theory 733:Hutchings (2009) 656:PoincarĂ© duality 632: 630: 629: 624: 604: 603: 582: 581: 543: 541: 540: 535: 533: 510: 509: 497: 496: 460: 452: 450: 449: 444: 427: 426: 385: 383: 382: 377: 366: 365: 231:cotangent bundle 58:of a symplectic 3086: 3085: 3081: 3080: 3079: 3077: 3076: 3075: 3066:Homology theory 3036: 3035: 3004: 3001: 2991: 2978: 2939: 2925: 2886: 2847: 2804: 2789: 2756:math.GT/0209056 2734: 2717:math.GT/0209056 2695: 2648: 2596: 2581: 2529: 2489: 2477: 2434: 2395: 2354: 2340:10.4171/JEMS/99 2323:math.FA/0612604 2302: 2262:Gromov, Mikhail 2260: 2220: 2195: 2190: 2149: 2128: 2092: 2047: 2022: 1967: 1964: 1954: 1934: 1928: 1907: 1867: 1861: 1841: 1835: 1811: 1805: 1789:, eds. (2006). 1780: 1774: 1756:Simon Donaldson 1754: 1748: 1728: 1722: 1696:Atiyah, Michael 1694: 1691: 1686: 1685: 1678: 1674: 1669: 1664: 1655: 1635: 1610: 1594:symplectization 1552:and symplectic 1546: 1514: 1513: 1495:Fukaya category 1473: 1468: 1467: 1446: 1441: 1440: 1408: 1407: 1393: 1359: 1358: 1339: 1338: 1319: 1318: 1317:of the surface 1278: 1277: 1258: 1257: 1234: 1233: 1223: 1169: 1156: 1131: 1118: 1093: 1080: 1066: 1065: 1060: 1053: 1046: 1024: 958:Clifford Taubes 947: 857: 856: 855: 848: 843: 835:FrĂžyshov (2010) 795: 745: 671:three-manifolds 664: 595: 573: 565: 564: 548: âˆ’ 2. 501: 488: 480: 479: 463: 458: 418: 410: 409: 393: 357: 322: 321: 255: 253:PSS isomorphism 240:string topology 164:free loop space 160:universal cover 140: 99:critical points 97:spanned by the 17: 12: 11: 5: 3084: 3082: 3074: 3073: 3068: 3063: 3058: 3056:Gauge theories 3053: 3048: 3038: 3037: 3034: 3033: 3029:The Knot Atlas 3020: 3000: 2999:External links 2997: 2996: 2995: 2989: 2976: 2937: 2923: 2884: 2845: 2817:(2): 747–918. 2802: 2787: 2732: 2693: 2646: 2594: 2579: 2543:(2): 633–660. 2527: 2499:(2): 889–932. 2485: 2475: 2437:OzsvĂĄth, Peter 2432: 2393: 2365:(1): 299–350. 2352: 2316:(4): 841–876. 2300: 2274:(2): 307–347. 2258: 2230:(3): 519–576. 2218: 2206:(1): 202–221. 2188: 2162:(4): 575–611. 2147: 2137:(4): 335–356. 2126: 2106:(3): 513–547. 2090: 2088:Project Euclid 2061:(2): 215–240. 2045: 2035:(6): 775–813. 2024:Floer, Andreas 2020: 1963: 1960: 1959: 1958: 1953:978-3037190630 1952: 1932: 1926: 1912:Morse Homology 1905: 1865: 1859: 1839: 1833: 1817:Mrowka, Tomasz 1809: 1803: 1778: 1772: 1752: 1746: 1726: 1720: 1690: 1687: 1684: 1683: 1671: 1670: 1668: 1665: 1663: 1660: 1654: 1651: 1634: 1631: 1609: 1608:Floer homotopy 1606: 1579:Morse homology 1545: 1542: 1521: 1502:spin structure 1480: 1476: 1453: 1449: 1415: 1399:conjecture of 1392: 1389: 1375: 1372: 1369: 1366: 1346: 1326: 1305:of dimension 6 1294: 1291: 1288: 1285: 1265: 1241: 1222: 1219: 1196: 1195: 1184: 1181: 1176: 1172: 1168: 1163: 1159: 1155: 1152: 1149: 1146: 1143: 1138: 1134: 1130: 1125: 1121: 1117: 1114: 1111: 1108: 1105: 1100: 1096: 1092: 1087: 1083: 1079: 1076: 1073: 1058: 1051: 1044: 1023: 1020: 988:Fredholm index 946: 943: 889:knot invariant 842: 839: 810:spin structure 794: 791: 744: 741: 725:three-manifold 721:three-manifold 695:Cauchy–Riemann 691:Seiberg–Witten 675:exact triangle 663: 660: 636: 635: 634: 633: 622: 619: 616: 613: 610: 607: 602: 598: 594: 591: 588: 585: 580: 576: 572: 552: 551: 550: 549: 532: 528: 525: 522: 519: 516: 513: 508: 504: 500: 495: 491: 487: 469: 461: 442: 439: 436: 433: 430: 425: 421: 417: 407: 391: 375: 372: 369: 364: 360: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 305: 304: 303: 302: 295: 254: 251: 222:equivalent to 139: 136: 44:Morse homology 15: 13: 10: 9: 6: 4: 3: 2: 3083: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3043: 3041: 3031: 3030: 3025: 3021: 3017: 3013: 3012: 3007: 3003: 3002: 2998: 2992: 2986: 2982: 2977: 2973: 2969: 2965: 2961: 2956: 2951: 2947: 2943: 2938: 2934: 2930: 2926: 2924:9780821843567 2920: 2916: 2912: 2908: 2904: 2899: 2894: 2890: 2885: 2881: 2877: 2873: 2869: 2864: 2859: 2855: 2851: 2846: 2842: 2838: 2834: 2830: 2825: 2820: 2816: 2812: 2808: 2803: 2798: 2793: 2788: 2784: 2780: 2775: 2770: 2766: 2762: 2757: 2752: 2748: 2744: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2710:(1): 58–116. 2709: 2705: 2704: 2699: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2665: 2660: 2656: 2652: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2618: 2613: 2609: 2606: 2605: 2604:Ann. of Math. 2600: 2599:Szabo, ZoltĂĄn 2595: 2590: 2585: 2580: 2576: 2572: 2568: 2564: 2560: 2556: 2551: 2546: 2542: 2539: 2538: 2537:Ann. of Math. 2533: 2528: 2524: 2520: 2516: 2512: 2507: 2502: 2498: 2495: 2494: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2455: 2450: 2446: 2442: 2438: 2433: 2429: 2425: 2421: 2417: 2412: 2407: 2403: 2399: 2394: 2390: 2386: 2382: 2378: 2373: 2368: 2364: 2360: 2359: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2324: 2319: 2315: 2311: 2310: 2305: 2304:Hofer, Helmut 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2268: 2263: 2259: 2255: 2251: 2247: 2243: 2238: 2233: 2229: 2226: 2225: 2224:Duke Math. J. 2219: 2214: 2209: 2205: 2201: 2200:J. Diff. Geom 2194: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2148: 2144: 2140: 2136: 2132: 2127: 2123: 2119: 2114: 2109: 2105: 2102: 2101: 2096: 2091: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2057: 2056: 2051: 2046: 2042: 2038: 2034: 2031: 2030: 2025: 2021: 2017: 2013: 2008: 2003: 1998: 1993: 1989: 1985: 1981: 1977: 1976: 1971: 1966: 1965: 1961: 1955: 1949: 1945: 1941: 1937: 1933: 1929: 1923: 1919: 1914: 1913: 1906: 1902: 1898: 1893: 1888: 1884: 1880: 1879: 1874: 1870: 1866: 1862: 1856: 1852: 1848: 1844: 1840: 1836: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1800: 1796: 1792: 1788: 1787:SzabĂł, ZoltĂĄn 1784: 1779: 1775: 1769: 1765: 1761: 1757: 1753: 1749: 1743: 1739: 1735: 1731: 1727: 1723: 1721:9780821814826 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1692: 1688: 1681: 1676: 1673: 1666: 1661: 1659: 1652: 1650: 1648: 1644: 1643:moduli spaces 1641: 1632: 1630: 1627: 1623: 1619: 1615: 1607: 1605: 1602: 1597: 1595: 1591: 1587: 1582: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1543: 1541: 1539: 1535: 1519: 1511: 1507: 1503: 1498: 1496: 1474: 1447: 1438: 1433: 1429: 1413: 1406: 1402: 1398: 1390: 1388: 1364: 1316: 1312: 1308: 1283: 1255: 1232: 1228: 1220: 1218: 1216: 1210: 1208: 1204: 1199: 1182: 1174: 1170: 1166: 1161: 1157: 1150: 1147: 1136: 1132: 1128: 1123: 1119: 1112: 1109: 1106: 1098: 1094: 1090: 1085: 1081: 1074: 1071: 1064: 1063: 1062: 1057: 1050: 1043: 1038: 1036: 1035:Whitney discs 1033: 1029: 1021: 1019: 1016: 1010: 1007: 1005: 1000: 995: 993: 989: 984: 979: 975: 971: 967: 963: 959: 955: 951: 944: 942: 940: 936: 931: 929: 925: 921: 916: 914: 910: 909:grid diagrams 906: 902: 898: 894: 890: 885: 883: 879: 875: 871: 867: 866:Peter OzsvĂĄth 859: 852: 847: 840: 838: 836: 832: 828: 827:Tomasz Mrowka 824: 820: 819: 813: 811: 807: 803: 799: 792: 790: 788: 783: 781: 777: 773: 769: 765: 762: 758: 754: 750: 742: 740: 736: 734: 730: 726: 722: 717: 715: 711: 706: 704: 700: 696: 692: 688: 682: 680: 676: 672: 669: 661: 659: 657: 653: 649: 645: 641: 620: 614: 608: 600: 596: 592: 586: 578: 574: 570: 563: 562: 561: 560: 559: 557: 547: 526: 523: 514: 506: 502: 498: 493: 489: 477: 474: 470: 467: 456: 440: 437: 431: 428: 423: 419: 408: 405: 401: 398:) where λ≄0 ( 397: 389: 370: 367: 362: 358: 351: 348: 342: 339: 333: 320: 319: 318: 317: 316: 314: 310: 300: 296: 293: 289: 285: 281: 277: 273: 272:semi-positive 269: 268: 267: 266: 265: 264: 260: 252: 250: 248: 243: 241: 236: 232: 227: 225: 221: 217: 216:pair of pants 213: 209: 208:Betti numbers 204: 201: 200:mapping torus 197: 193: 189: 188:mapping torus 185: 181: 177: 176:chain complex 171: 169: 165: 161: 157: 153: 149: 145: 137: 135: 132: 128: 124: 118: 116: 112: 108: 104: 100: 96: 95:abelian group 92: 91:chain complex 88: 84: 80: 76: 72: 67: 65: 61: 57: 53: 49: 48:Andreas Floer 45: 41: 37: 33: 29: 28: 22: 3061:Morse theory 3027: 3009: 2980: 2955:math/0611007 2945: 2941: 2888: 2863:math/0607777 2853: 2850:Ann. of Math 2849: 2824:math/0607318 2814: 2810: 2797:math/0306378 2746: 2740: 2707: 2701: 2664:math/0105202 2654: 2651:Ann. of Math 2650: 2617:math/0101206 2607: 2602: 2550:math/0607691 2540: 2535: 2506:math/0104024 2496: 2493:Geom. Topol. 2491: 2486: 2482: 2444: 2440: 2401: 2397: 2372:math/0609779 2362: 2356: 2313: 2307: 2271: 2265: 2227: 2222: 2203: 2199: 2159: 2155: 2134: 2130: 2103: 2098: 2058: 2053: 2032: 2027: 1979: 1973: 1939: 1936:Seidel, Paul 1911: 1882: 1876: 1869:McDuff, Dusa 1846: 1843:McDuff, Dusa 1820: 1790: 1759: 1733: 1703: 1675: 1656: 1640:compactified 1636: 1622:Graeme Segal 1611: 1601:mapping tori 1598: 1583: 1578: 1566:Helmut Hofer 1547: 1499: 1436: 1394: 1310: 1306: 1224: 1211: 1200: 1197: 1055: 1048: 1041: 1039: 1025: 1011: 1008: 996: 991: 949: 948: 932: 920:double cover 917: 893:categorifies 886: 870:ZoltĂĄn SzabĂł 845: 844: 816: 814: 801: 797: 796: 784: 778:because the 753:Chern–Simons 746: 737: 718: 707: 698: 683: 665: 648:Morse theory 643: 637: 555: 553: 545: 475: 472: 465: 454: 403: 399: 395: 387: 313:Novikov ring 308: 306: 288:Novikov ring 283: 275: 271: 256: 249:conjecture. 244: 228: 205: 194:, punctured 180:fixed points 172: 141: 119: 103:differential 87:Chern–Simons 68: 24: 18: 3051:3-manifolds 2942:Geom. Topol 2749:(1): 1–33. 1680:Atiyah 1988 1653:Computation 1534:dg category 1004:Taubes 2007 983:Reeb orbits 978:4-manifolds 806:3-manifolds 757:connections 710:JuhĂĄsz 2008 220:cup product 152:Hamiltonian 83:connections 21:mathematics 3040:Categories 1918:BirkhĂ€user 1662:References 1554:cobordisms 1428:Ext groups 1018:2-torus). 772:instantons 687:Yang–Mills 453:for every 386:for every 280:cohomology 107:flow lines 71:loop space 3016:EMS Press 2972:119680690 2898:0805.1240 2841:119680541 2642:119143219 2589:0910.0078 2471:115166724 2454:0810.0687 2428:118772589 2411:1007.1979 2237:0809.4842 2184:123345003 2083:122096068 1885:: 25–42. 1667:Footnotes 1647:polyfolds 1574:cylinders 1479:∞ 1452:∞ 1371:Σ 1345:Σ 1325:Σ 1290:Σ 1264:Σ 1240:Σ 1145:→ 1107:⊗ 992:ECH index 952:, due to 761:principal 618:Λ 615:⊗ 601:∗ 579:∗ 521:⟩ 503:π 486:⟨ 435:⟩ 416:⟨ 374:⟩ 355:⟨ 352:λ 346:⟩ 334:ω 328:⟨ 79:instanton 40:invariant 2880:55279928 2783:17245314 2575:15427272 2447:(1216). 2389:56418423 2348:14716262 2016:21525415 1938:(2008). 1871:(2005). 1819:(2007). 1698:(1988). 1614:spectrum 1426:and the 1229:along a 404:monotone 229:For the 162:of the) 115:homology 111:gradient 60:manifold 36:topology 27:homology 3018:, 2001 2933:7751880 2903:Bibcode 2761:Bibcode 2689:8154024 2669:Bibcode 2622:Bibcode 2555:Bibcode 2523:9130339 2328:Bibcode 2296:4983969 2276:Bibcode 2254:8073050 2164:Bibcode 2122:0965228 2063:Bibcode 2007:3100941 1984:Bibcode 1901:2188174 1313:is the 1231:surface 129:. The 2987:  2970:  2931:  2921:  2878:  2839:  2781:  2687:  2640:  2573:  2521:  2490:= 0". 2469:  2426:  2387:  2346:  2294:  2252:  2182:  2120:  2081:  2014:  2004:  1950:  1924:  1899:  1857:  1831:  1801:  1770:  1744:  1718:  1532:and a 1054:, and 693:, and 668:closed 25:Floer 2968:S2CID 2950:arXiv 2929:S2CID 2893:arXiv 2876:S2CID 2858:arXiv 2837:S2CID 2819:arXiv 2792:arXiv 2779:S2CID 2751:arXiv 2712:arXiv 2685:S2CID 2659:arXiv 2638:S2CID 2612:arXiv 2584:arXiv 2571:S2CID 2545:arXiv 2519:S2CID 2501:arXiv 2467:S2CID 2449:arXiv 2424:S2CID 2406:arXiv 2385:S2CID 2367:arXiv 2344:S2CID 2318:arXiv 2292:S2CID 2250:S2CID 2232:arXiv 2196:(PDF) 2180:S2CID 2079:S2CID 1506:brane 1315:genus 854: 764:SU(2) 759:on a 73:of a 2985:ISBN 2919:ISBN 2012:PMID 1975:PNAS 1948:ISBN 1922:ISBN 1855:ISBN 1829:ISBN 1799:ISBN 1768:ISBN 1742:ISBN 1716:ISBN 1564:and 1395:The 997:The 964:and 895:the 868:and 833:and 825:and 719:The 650:and 471:The 390:in π 3026:", 2960:doi 2911:doi 2868:doi 2854:171 2829:doi 2769:doi 2747:194 2722:doi 2708:186 2677:doi 2655:159 2630:doi 2608:159 2563:doi 2541:169 2511:doi 2459:doi 2445:254 2416:doi 2377:doi 2336:doi 2284:doi 2242:doi 2228:155 2208:doi 2172:doi 2160:120 2139:doi 2108:doi 2071:doi 2059:118 2037:doi 2002:PMC 1992:doi 1980:108 1887:doi 1708:doi 1430:of 1256:on 1006:). 941:). 930:). 821:by 800:or 681:.) 642:on 457:in 402:is 282:of 46:. 19:In 3042:: 3014:, 3008:, 2966:. 2958:. 2946:11 2944:. 2927:. 2917:. 2909:. 2901:. 2874:. 2866:. 2852:. 2835:. 2827:. 2815:12 2813:. 2777:. 2767:. 2759:. 2745:. 2739:. 2720:. 2706:. 2700:. 2683:. 2675:. 2667:. 2653:. 2636:. 2628:. 2620:. 2569:. 2561:. 2553:. 2517:. 2509:. 2465:. 2457:. 2443:. 2422:. 2414:. 2402:24 2400:. 2383:. 2375:. 2363:12 2361:. 2342:. 2334:. 2326:. 2312:. 2290:. 2282:. 2272:82 2270:. 2248:. 2240:. 2204:30 2202:. 2198:. 2178:. 2170:. 2158:. 2154:. 2135:42 2133:. 2118:MR 2116:. 2104:28 2097:. 2077:. 2069:. 2052:. 2033:41 2010:. 2000:. 1990:. 1978:. 1972:. 1946:. 1942:. 1920:. 1897:MR 1895:. 1883:43 1881:. 1875:. 1853:. 1849:. 1827:. 1823:. 1815:; 1797:. 1766:. 1740:. 1736:. 1714:. 1702:. 1560:, 1497:. 1209:. 1047:, 1037:. 915:. 851:// 789:. 735:. 689:, 468:). 406:). 23:, 3032:. 3022:" 2993:. 2974:. 2962:: 2952:: 2935:. 2913:: 2905:: 2895:: 2882:. 2870:: 2860:: 2843:. 2831:: 2821:: 2800:. 2794:: 2785:. 2771:: 2763:: 2753:: 2730:. 2724:: 2714:: 2691:. 2679:: 2671:: 2661:: 2644:. 2632:: 2624:: 2614:: 2592:. 2586:: 2577:. 2565:: 2557:: 2547:: 2525:. 2513:: 2503:: 2497:7 2487:1 2483:b 2473:. 2461:: 2451:: 2430:. 2418:: 2408:: 2391:. 2379:: 2369:: 2350:. 2338:: 2330:: 2320:: 2314:9 2298:. 2286:: 2278:: 2256:. 2244:: 2234:: 2216:. 2210:: 2186:. 2174:: 2166:: 2145:. 2141:: 2124:. 2110:: 2085:. 2073:: 2065:: 2043:. 2039:: 2018:. 1994:: 1986:: 1956:. 1930:. 1903:. 1889:: 1863:. 1837:. 1807:. 1776:. 1750:. 1724:. 1710:: 1520:X 1475:A 1448:A 1437:n 1414:X 1374:) 1368:( 1365:M 1311:g 1307:g 1293:) 1287:( 1284:M 1183:, 1180:) 1175:2 1171:L 1167:, 1162:0 1158:L 1154:( 1151:F 1148:H 1142:) 1137:2 1133:L 1129:, 1124:1 1120:L 1116:( 1113:F 1110:H 1104:) 1099:1 1095:L 1091:, 1086:0 1082:L 1078:( 1075:F 1072:H 1059:2 1056:L 1052:1 1049:L 1045:0 1042:L 926:( 699:R 644:M 621:. 612:) 609:M 606:( 597:H 593:= 590:) 587:M 584:( 575:H 571:Q 556:M 546:n 531:Z 527:N 524:= 518:) 515:M 512:( 507:2 499:, 494:1 490:c 476:N 466:M 464:( 462:2 459:π 455:A 441:0 438:= 432:A 429:, 424:1 420:c 400:M 396:M 394:( 392:2 388:A 371:A 368:, 363:1 359:c 349:= 343:A 340:, 337:] 331:[ 309:M 294:. 284:M 276:M

Index

mathematics
homology
symplectic geometry
topology
invariant
Morse homology
Andreas Floer
Arnold conjecture
Lagrangian submanifolds
manifold
Yang–Mills functional
loop space
symplectic manifold
instanton
connections
Chern–Simons
chain complex
abelian group
critical points
differential
flow lines
gradient
homology
Cauchy–Riemann equation
pseudoholomorphic curves
Gromov compactness theorem
symplectic manifold
symplectomorphism
Hamiltonian
symplectic action

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑