Knowledge (XXG)

Symplectic manifold

Source 📝

6902: 6351: 950: 3821: 5244: 5592: 1803: 5055: 3875:
The cotangent bundle of a manifold is locally modeled on a space similar to the first example. It can be shown that we can glue these affine symplectic forms hence this bundle forms a symplectic manifold. A less trivial example of a Lagrangian submanifold is the zero section of the cotangent bundle
755: 3590: 6694: 5092: 5448: 4150: 1640: 4856: 3151: 5379: 3394: 3223: 4770: 5806: 945:{\displaystyle {\mathcal {L}}_{V_{H}}(\omega )=0\;\Leftrightarrow \;\mathrm {d} (\iota _{V_{H}}\omega )+\iota _{V_{H}}\mathrm {d} \omega =\mathrm {d} (\mathrm {d} \,H)+\mathrm {d} \omega (V_{H})=\mathrm {d} \omega (V_{H})=0} 1924: 5741: 3816:{\displaystyle \omega (X,Y)=\omega (f(x)\partial _{x},g(x)\partial _{x})={\frac {1}{2}}f(x)g(x)(\mathrm {d} x(\partial _{x})\mathrm {d} y(\partial _{x})-\mathrm {d} y(\partial _{x})\mathrm {d} x(\partial _{x}))} 6340: 3047: 2912: 2277:. Upper and lower indexes transform contra and covariantly under a change of coordinate frames. The phrase "fibrewise coordinates with respect to the cotangent vectors" is meant to convey that the momenta 5239:{\displaystyle {\frac {\partial }{\partial u_{i}}}={\frac {\partial q_{k}}{\partial u_{i}}}{\frac {\partial }{\partial q_{k}}}+{\frac {\partial p_{k}}{\partial u_{i}}}{\frac {\partial }{\partial p_{k}}}} 5879: 5587:{\displaystyle \omega \left({\frac {\partial }{\partial q_{k}}},{\frac {\partial }{\partial p_{k}}}\right)=-\omega \left({\frac {\partial }{\partial p_{k}}},{\frac {\partial }{\partial q_{k}}}\right)=1} 3964: 2084: 6563: 4529: 3582: 2996: 3540: 4243: 2813: 4005: 4405: 617: 3279: 1798:{\displaystyle \omega (v_{i},v_{j})={\begin{cases}1&j-i=n{\text{ with }}1\leqslant i\leqslant n\\-1&i-j=n{\text{ with }}1\leqslant j\leqslant n\\0&{\text{otherwise}}\end{cases}}} 5604:
on a symplectic manifold take on the canonical form, this example suggests that Lagrangian submanifolds are relatively unconstrained. The classification of symplectic manifolds is done via
5050:{\displaystyle =\sum _{k}{\frac {\partial q_{k}}{\partial u_{i}}}{\frac {\partial p_{k}}{\partial u_{j}}}-{\frac {\partial p_{k}}{\partial u_{i}}}{\frac {\partial q_{k}}{\partial u_{j}}}=0} 3865: 4189: 3055: 5616:
for maps between Lagrangian submanifolds. In physics, the action describes the time evolution of a physical system; here, it can be taken as the description of the dynamics of branes.
2397: 1593: 537: 6277: 6127:
predicts that the existence of a special Lagrangian submanifolds on Calabi–Yau manifolds in Hamiltonian isotopy classes of Lagrangians is equivalent to stability with respect to a
4633: 2263: 2211: 2139: 121:
of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's
5301: 412: 342: 237: 5663: 4351: 1628: 5440: 4581: 4445: 2436: 4305: 4274: 3435: 2764: 2640:
of the ambient manifold's tangent space. Similarly, if each tangent subspace to a submanifold is co-isotropic (the dual of an isotropic subspace), the submanifold is called
1269: 5683: 2608: 6763: 6051: 6004: 5953: 5926: 2680: 2523: 1435: 1305: 1228: 2726: 2576: 743: 6787: 3284: 3243: 3159: 2700: 2467: 1475: 1399: 1355: 1192: 1113: 685: 661: 637: 432: 362: 95: 3997: 2336: 2005: 1172: 1139: 296: 8341: 6883: 2302: 1027: 1000: 712: 486: 7532: 5408: 5084: 4848: 3461: 1331: 5293: 459: 263: 178: 6091: 6071: 6024: 5973: 5899: 5267: 4549: 2628: 2550: 2159: 1972: 1952: 1515: 1495: 1455: 1375: 1090: 1047: 973: 198: 66: 4822: 8336: 2338:. The soldering is an expression of the idea that velocity and momentum are colinear, in that both move in the same direction, and differ by a scale factor. 4641: 5746: 7623: 7647: 1850: 7842: 5688: 7712: 7367: 1002:
span the tangent space at each point the argument is applied at, we see that the requirement for the vanishing Lie derivative along flows of
7938: 7991: 7519: 6790: 1054: 69: 8275: 6935: 6282: 3001: 2866: 7306: 7284: 7231: 7109: 7068: 6689:{\displaystyle \tau \circ i_{1}=i_{2}\circ \sigma ,\ \nu \circ \pi _{1}=\pi _{2}\circ \tau ,\ \tau ^{*}\omega _{2}=\omega _{1}\,,} 8040: 6710: 5833: 7632: 3882: 2016: 8023: 6113: 4450: 4307:, giving us the zero section. This example can be repeated for any manifold defined by the vanishing locus of smooth functions 3545: 2917: 3466: 8389: 8384: 7001: 6128: 4194: 2269:
of classical mechanics. The point of distinguishing upper and lower indexes is driven by the case of the manifold having a
8235: 7435: 7268: 4145:{\displaystyle T^{*}X=\{(x,y,\mathrm {d} x,\mathrm {d} y)\in \mathbb {R} ^{4}:y^{2}-x=0,2y\mathrm {d} y-\mathrm {d} x=0\}} 2769: 8399: 8220: 7943: 7717: 8265: 7430: 4356: 542: 3248: 3146:{\displaystyle \omega =\mathrm {d} x_{1}\wedge \mathrm {d} y_{1}+\dotsb +\mathrm {d} x_{n}\wedge \mathrm {d} y_{n}.} 8270: 8240: 7948: 7904: 7885: 7652: 7596: 7027: 6916: 6124: 3829: 2350:
is a symplectic manifold equipped with a compatible integrable complex structure. They form a particular class of
8394: 7807: 7672: 6809: 6794: 4158: 2008: 5827: 2364: 8192: 8057: 7749: 7591: 6886: 6813: 2470: 1543: 491: 5374:{\displaystyle \omega \left({\frac {\partial }{\partial u_{i}}},{\frac {\partial }{\partial u_{j}}}\right)=0} 7889: 7859: 7783: 7773: 7729: 7559: 7512: 7325: 7102:
The Classification of Critical Points, Caustics and Wave Fronts: Singularities of Differentiable Maps, Vol 1
6980: 6817: 6805: 6366: 6240: 6098: 2474: 1535: 1334: 715: 45: 7657: 4586: 2216: 2164: 2092: 8230: 7849: 7744: 7564: 7425: 2851:
as a lower bound for the number of self intersections of a smooth Lagrangian submanifold, rather than the
371: 365: 301: 203: 5634: 4310: 7879: 7874: 7442: 7159: 6992: 6448: 1598: 150: 118: 33: 6901: 5413: 4554: 4418: 2409: 2843:
is Lagrangian. Their intersections display rigidity properties not possessed by smooth manifolds; the
8210: 8148: 7996: 7700: 7690: 7662: 7637: 7547: 7294: 7181: 6850: 6227: 6192: 4279: 4248: 3399: 2852: 2446: 110: 7257: 2731: 1684: 1233: 8348: 8321: 8030: 7893: 7822: 7581: 7093: 6971: 6550: 6219: 5812: 2400: 2274: 1378: 138: 106: 102: 98: 5668: 2581: 8290: 8245: 8142: 8013: 7817: 7642: 7505: 7484: 7450: 7393: 7272: 7253: 7197: 7171: 6919: – differentiable manifold equipped with a nondegenerate (but not necessarily closed) 2‐form 6907: 6736: 6029: 5982: 5931: 5904: 2653: 2637: 2496: 2359: 2355: 1408: 1274: 1197: 266: 146: 72: 7827: 5823: 3389:{\displaystyle X=f_{i}({\textbf {x}})\partial _{x_{i}},Y=g_{i}({\textbf {x}})\partial _{x_{i}},} 3218:{\displaystyle \mathbb {R} _{\mathbf {x} }^{n}\to \mathbb {R} _{\mathbf {x} ,\mathbf {y} }^{2n}} 2705: 2555: 2347: 721: 8225: 8205: 8200: 8107: 8018: 7832: 7812: 7667: 7606: 7373: 7363: 7302: 7280: 7227: 7105: 7097: 7064: 6986: 6965: 6793:. For example, the cotangent bundle of a smooth manifold is an exact symplectic manifold. The 2844: 2820: 75: 6772: 3228: 2685: 2452: 1460: 1384: 1340: 1177: 1098: 670: 646: 622: 417: 347: 80: 8363: 8157: 8112: 8035: 8006: 7864: 7797: 7792: 7787: 7777: 7569: 7552: 7355: 7334: 7189: 7138: 6959: 6944: 6925: 6824: 6235: 6223: 5613: 5601: 5270: 4776: 3972: 2636:
are submanifolds where the symplectic form restricts to zero, i.e. each tangent space is an
2404: 2351: 2311: 1980: 1975: 1147: 1118: 746: 640: 271: 240: 122: 114: 6856: 2280: 1005: 978: 690: 464: 8306: 8215: 8045: 8001: 7767: 7089: 6953: 6132: 1827: 435: 5387: 5063: 4827: 3440: 1310: 7185: 6995: – canonical differential form defined on the cotangent bundle of a smooth manifold 5275: 441: 245: 160: 8172: 8097: 8067: 7965: 7958: 7898: 7869: 7739: 7734: 7695: 7421: 7412: 7316: 6535: 6109: 6076: 6056: 6009: 5958: 5884: 5629: 5605: 5252: 4534: 2613: 2535: 2144: 1957: 1937: 1809: 1500: 1480: 1440: 1360: 1075: 1032: 958: 664: 183: 51: 7193: 7042: 4781: 4765:{\displaystyle q_{i}=q_{i}(u_{1},\dotsc ,u_{n})\quad p_{i}=p_{i}(u_{1},\dotsc ,u_{n})} 17: 8378: 8358: 8182: 8177: 8162: 8152: 8102: 8079: 7953: 7913: 7854: 7802: 7601: 7349: 7339: 7320: 7201: 6801: 2270: 1142: 539:. Since one desires the Hamiltonian to be constant along flow lines, one should have 5801:{\displaystyle M\cap \mathbb {V} (\varepsilon \cdot \mathrm {d} f)={\text{Crit}}(f)} 2481:. That is, they do not necessarily arise from a complex structure on the manifold. 8285: 8280: 8122: 8089: 8062: 7970: 7611: 7354:. Mathematics and Its Applications. Vol. 62. Dordrecht: Springer Netherlands. 7241: 6156: 5625: 5609: 2848: 1841: 154: 8128: 8117: 8074: 7975: 7576: 7468: 7464: 7245: 7219: 2490: 2305: 2266: 1919:{\displaystyle \Omega ={\begin{pmatrix}0&I_{n}\\-I_{n}&0\end{pmatrix}}.} 142: 126: 37: 8353: 8311: 8137: 8050: 7682: 7586: 7392:
Dunin-Barkowski, Petr (2022). "Symplectic duality for topological recursion".
7359: 7143: 7126: 6897: 2478: 8167: 8132: 7837: 7724: 7377: 6152: 7407: 6350: 5736:{\displaystyle \mathbb {V} (\varepsilon \cdot \mathrm {d} f)\subset T^{*}M} 6938: – Formalism in classical field theory based on Hamiltonian mechanics 5743:. For a generic Morse function we have a Lagrangian intersection given by 97:, called the symplectic form. The study of symplectic manifolds is called 8331: 8326: 8316: 7707: 7528: 1070: 7043:"Why symplectic geometry is the natural setting for classical mechanics" 5685:
one can construct a Lagrangian submanifold given by the vanishing locus
5410:. Simplify the result by making use of the canonical symplectic form on 7497: 7176: 6093:. The following examples are known as special Lagrangian submanifolds, 7483:
Hitchin, Nigel (1999). "Lectures on Special Lagrangian Submanifolds".
7923: 7489: 6230:
or the canonical two-form. Using this set-up we can locally think of
1093: 7398: 6947: – symplectic manifold equipped with a torsion-free connection 2007:
has a natural symplectic form, called the Poincaré two-form or the
955:
so that, on repeating this argument for different smooth functions
105:. Symplectic manifolds arise naturally in abstract formulations of 7455: 6349: 6974: – Branch of differential geometry and differential topology 5979:
if in addition to the above Lagrangian condition the restriction
2815:. Lagrangian submanifolds are the maximal isotropic submanifolds. 149:
allow one to derive the time evolution of a system from a set of
2213:
are fibrewise coordinates with respect to the cotangent vectors
7501: 6335:{\displaystyle \pi :T^{*}\mathbb {R} ^{n}\to \mathbb {R} ^{n}.} 3042:{\displaystyle \mathbb {R} _{{\textbf {x}},{\textbf {y}}}^{2n}} 2907:{\displaystyle \mathbb {R} _{{\textbf {x}},{\textbf {y}}}^{2n}} 7445:(2009). "Fibre bundles, jet manifolds and Lagrangian theory". 2682:
are submanifolds where the restriction of the symplectic form
2477:. They generalize Kähler manifolds, in that they need not be 7162:(1999). "Covariant Hamiltonian equations for field theory". 762: 643:
and hence a 2-form. Finally, one makes the requirement that
6932:—an odd-dimensional counterpart of the symplectic manifold. 6112:
deals with the study of special Lagrangian submanifolds in
5874:{\displaystyle \Omega =\Omega _{1}+\mathrm {i} \Omega _{2}} 1830:
then the matrix, Ω, of this quadratic form is given by the
1791: 1377:
has an even dimension. The closed condition means that the
3959:{\displaystyle X=\{(x,y)\in \mathbb {R} ^{2}:y^{2}-x=0\}.} 2079:{\displaystyle \omega =\sum _{i=1}^{n}dp_{i}\wedge dq^{i}} 6104:
fixed points of a real structure of Calabi–Yau manifolds.
5624:
Another useful class of Lagrangian submanifolds occur in
4524:{\displaystyle (q_{1},\dotsc ,q_{n},p_{1},\dotsc ,p_{n})} 3577:{\displaystyle \omega =\mathrm {d} x\wedge \mathrm {d} y} 2991:{\displaystyle (x_{1},\dotsc ,x_{n},y_{1},\dotsc ,y_{n})} 7321:"Symplectic manifolds and their lagrangian submanifolds" 3535:{\displaystyle X=f(x)\partial _{x},Y=g(x)\partial _{x},} 157:
describing the flow of the system from the differential
6976:
Pages displaying short descriptions of redirect targets
6940:
Pages displaying short descriptions of redirect targets
6930:
Pages displaying short descriptions of redirect targets
6549:
such that both sides of the diagram given on the right
6361:
be a Lagrangian submanifold of a symplectic manifold (
6279:
and the Lagrangian fibration as the trivial fibration
5269:. This is that the symplectic form must vanish on the 4238:{\displaystyle \mathbb {R} ^{4}=T^{*}\mathbb {R} ^{2}} 2785: 2399:
has a symplectic form which is the restriction of the
1865: 1194:
is non-degenerate. That is to say, if there exists an
6859: 6775: 6739: 6566: 6285: 6243: 6079: 6059: 6032: 6012: 5985: 5961: 5934: 5907: 5887: 5836: 5749: 5691: 5671: 5637: 5451: 5416: 5390: 5304: 5278: 5255: 5095: 5066: 4859: 4830: 4784: 4644: 4589: 4557: 4537: 4453: 4421: 4359: 4313: 4282: 4251: 4197: 4161: 4008: 3975: 3885: 3832: 3593: 3548: 3469: 3443: 3402: 3287: 3251: 3231: 3162: 3058: 3004: 2920: 2869: 2772: 2734: 2708: 2688: 2656: 2616: 2584: 2558: 2552:(potentially of any even dimension) are submanifolds 2538: 2499: 2455: 2412: 2367: 2314: 2283: 2219: 2167: 2147: 2095: 2019: 1983: 1960: 1940: 1853: 1808:
In this case the symplectic form reduces to a simple
1643: 1601: 1546: 1503: 1483: 1477:
is a symplectic form. Assigning a symplectic form to
1463: 1443: 1411: 1387: 1363: 1343: 1313: 1277: 1236: 1200: 1180: 1150: 1121: 1101: 1078: 1035: 1008: 981: 961: 758: 724: 693: 673: 649: 625: 545: 494: 467: 444: 420: 374: 350: 304: 274: 248: 206: 186: 163: 83: 54: 7006:
Pages displaying wikidata descriptions as a fallback
6997:
Pages displaying wikidata descriptions as a fallback
6949:
Pages displaying wikidata descriptions as a fallback
6921:
Pages displaying wikidata descriptions as a fallback
3156:
There is a standard Lagrangian submanifold given by
2808:{\displaystyle {\text{dim }}L={\tfrac {1}{2}}\dim M} 8299: 8258: 8191: 8088: 7984: 7931: 7922: 7758: 7681: 7620: 7540: 7348:Arnold, V. I. (1990). "Ch.1, Symplectic geometry". 6838:is a manifold equipped with a closed nondegenerate 5295:; that is, it must vanish for all tangent vectors: 4245:. We can consider the subset where the coordinates 153:, the symplectic form should allow one to obtain a 7469:"Symplectic Structures—A New Approach to Geometry" 6877: 6781: 6757: 6688: 6334: 6271: 6163:is even-dimensional we can take local coordinates 6085: 6065: 6045: 6018: 5998: 5967: 5947: 5920: 5893: 5873: 5800: 5735: 5677: 5657: 5586: 5434: 5402: 5373: 5287: 5261: 5238: 5078: 5049: 4842: 4816: 4764: 4627: 4575: 4543: 4523: 4439: 4399: 4345: 4299: 4268: 4237: 4183: 4144: 3991: 3958: 3859: 3815: 3576: 3534: 3455: 3429: 3388: 3273: 3237: 3217: 3145: 3041: 2990: 2906: 2807: 2758: 2720: 2694: 2674: 2622: 2602: 2570: 2544: 2517: 2461: 2430: 2391: 2330: 2296: 2257: 2205: 2153: 2133: 2078: 1999: 1966: 1946: 1918: 1797: 1622: 1587: 1509: 1489: 1469: 1449: 1429: 1393: 1369: 1349: 1325: 1299: 1263: 1222: 1186: 1166: 1133: 1115:. Here, non-degenerate means that for every point 1107: 1084: 1041: 1021: 994: 967: 944: 737: 706: 679: 663:should not change under flow lines, i.e. that the 655: 631: 611: 531: 480: 453: 426: 406: 356: 336: 290: 257: 231: 192: 172: 141:; in particular, they are a generalization of the 89: 60: 4775:This manifold is a Lagrangian submanifold if the 7125:Cantrijn, F.; Ibort, L. A.; de León, M. (1999). 4400:{\displaystyle \mathrm {d} f_{1},\dotsc ,df_{k}} 612:{\displaystyle \omega (V_{H},V_{H})=dH(V_{H})=0} 3274:{\displaystyle \mathbb {R} _{\mathbf {x} }^{n}} 2489:There are several natural geometric notions of 7279:. London: Benjamin-Cummings. See Section 3.2. 7127:"On the Geometry of Multisymplectic Manifolds" 6853:provided with a polysymplectic tangent-valued 5249:in the condition for a Lagrangian submanifold 2354:. A large class of examples come from complex 7513: 6557:preserves the symplectic form. Symbolically: 461:there is a unique corresponding vector field 8: 6823:Symplectic manifolds are special cases of a 6812:in the sense that the tangent bundle has an 6026:is vanishing. In other words, the real part 4583:is one that is parameterized by coordinates 4139: 4025: 3950: 3892: 3860:{\displaystyle \mathrm {d} y(\partial _{x})} 1582: 1547: 6989: – Isomorphism of symplectic manifolds 4184:{\displaystyle \mathrm {d} x,\mathrm {d} y} 7928: 7520: 7506: 7498: 6956: – Operation in Hamiltonian mechanics 3281:because given any pair of tangent vectors 2392:{\displaystyle V\subset \mathbb {CP} ^{n}} 1337:are always singular, the requirement that 799: 795: 7488: 7454: 7397: 7351:Singularities of Caustics and Wave Fronts 7338: 7299:Symplectic Geometry and Quantum Mechanics 7175: 7142: 7061:Symplectic Geometry and Quantum Mechanics 6858: 6774: 6738: 6682: 6676: 6663: 6653: 6631: 6618: 6590: 6577: 6565: 6323: 6319: 6318: 6308: 6304: 6303: 6296: 6284: 6260: 6256: 6255: 6248: 6242: 6078: 6058: 6037: 6031: 6011: 5990: 5984: 5960: 5939: 5933: 5912: 5906: 5886: 5865: 5856: 5847: 5835: 5784: 5770: 5757: 5756: 5748: 5724: 5706: 5693: 5692: 5690: 5670: 5651: 5650: 5636: 5564: 5551: 5539: 5526: 5498: 5485: 5473: 5460: 5450: 5423: 5419: 5418: 5415: 5389: 5351: 5338: 5326: 5313: 5303: 5277: 5254: 5227: 5214: 5205: 5190: 5180: 5168: 5155: 5146: 5131: 5121: 5109: 5096: 5094: 5065: 5032: 5017: 5007: 4998: 4983: 4973: 4961: 4946: 4936: 4927: 4912: 4902: 4896: 4880: 4867: 4858: 4829: 4805: 4792: 4783: 4753: 4734: 4721: 4708: 4694: 4675: 4662: 4649: 4643: 4616: 4597: 4588: 4564: 4560: 4559: 4556: 4536: 4512: 4493: 4480: 4461: 4452: 4428: 4424: 4423: 4420: 4391: 4369: 4360: 4358: 4337: 4318: 4312: 4283: 4281: 4252: 4250: 4229: 4225: 4224: 4217: 4204: 4200: 4199: 4196: 4173: 4162: 4160: 4125: 4114: 4087: 4074: 4070: 4069: 4054: 4043: 4013: 4007: 3980: 3974: 3932: 3919: 3915: 3914: 3884: 3848: 3833: 3831: 3801: 3786: 3777: 3762: 3750: 3735: 3726: 3711: 3674: 3662: 3637: 3592: 3566: 3555: 3547: 3523: 3492: 3468: 3442: 3401: 3375: 3370: 3357: 3356: 3347: 3326: 3321: 3308: 3307: 3298: 3286: 3265: 3259: 3258: 3254: 3253: 3250: 3230: 3206: 3200: 3192: 3191: 3187: 3186: 3176: 3170: 3169: 3165: 3164: 3161: 3134: 3125: 3116: 3107: 3092: 3083: 3074: 3065: 3057: 3030: 3023: 3022: 3013: 3012: 3011: 3007: 3006: 3003: 2979: 2960: 2947: 2928: 2919: 2895: 2888: 2887: 2878: 2877: 2876: 2872: 2871: 2868: 2819:One major example is that the graph of a 2784: 2773: 2771: 2744: 2739: 2733: 2707: 2687: 2655: 2615: 2594: 2589: 2583: 2557: 2537: 2498: 2454: 2422: 2418: 2415: 2414: 2411: 2383: 2379: 2376: 2375: 2366: 2322: 2313: 2288: 2282: 2249: 2227: 2218: 2194: 2175: 2166: 2146: 2122: 2103: 2094: 2070: 2054: 2041: 2030: 2018: 1988: 1982: 1959: 1939: 1894: 1877: 1860: 1852: 1783: 1754: 1707: 1679: 1667: 1654: 1642: 1608: 1604: 1603: 1600: 1573: 1554: 1545: 1502: 1482: 1462: 1442: 1410: 1386: 1362: 1342: 1312: 1288: 1276: 1235: 1211: 1199: 1179: 1155: 1149: 1120: 1100: 1077: 1034: 1013: 1007: 986: 980: 960: 927: 912: 900: 885: 875: 870: 862: 851: 843: 838: 817: 812: 800: 772: 767: 761: 760: 757: 729: 723: 698: 692: 672: 648: 624: 594: 569: 556: 544: 514: 493: 472: 466: 443: 419: 395: 379: 373: 349: 325: 309: 303: 279: 273: 247: 220: 205: 185: 162: 82: 53: 27:Type of manifold in differential geometry 7084: 7082: 7080: 7063:. Basel: Birkhäuser Verlag. p. 10. 7054: 7052: 7028:"What is a symplectic manifold, really?" 7004: – inequality applicable to 2-forms 1588:{\displaystyle \{v_{1},\ldots ,v_{2n}\}} 1092:is a closed non-degenerate differential 532:{\displaystyle dH=\omega (V_{H},\cdot )} 145:of a closed system. In the same way the 7018: 6117: 6272:{\displaystyle T^{*}\mathbb {R} ^{n},} 3584:. Notice that when we expand this out 1049:is equivalent to the requirement that 7408:"How to find Lagrangian Submanifolds" 6800:A symplectic manifold endowed with a 6199:can be, at least locally, written as 4628:{\displaystyle (u_{1},\dotsc ,u_{n})} 2258:{\displaystyle dq^{1},\ldots ,dq^{n}} 2206:{\displaystyle (p_{1},\ldots ,p_{n})} 2134:{\displaystyle (q^{1},\ldots ,q^{n})} 7: 5955:imaginary. A Lagrangian submanifold 3049:with the canonical symplectic form 2265:. Cotangent bundles are the natural 1141:, the skew-symmetric pairing on the 438:ensures that for every differential 407:{\displaystyle T^{*}M\otimes T^{*}M} 337:{\displaystyle T^{*}M\otimes T^{*}M} 232:{\displaystyle TM\rightarrow T^{*}M} 7224:Introduction to Symplectic Topology 6159:are Lagrangian submanifolds. Since 6097:complex Lagrangian submanifolds of 5658:{\displaystyle f:M\to \mathbb {R} } 4346:{\displaystyle f_{1},\dotsc ,f_{k}} 3867:factor, which is 0, by definition. 3358: 3309: 3024: 3014: 2889: 2879: 2847:gives the sum of the submanifold's 2823:in the product symplectic manifold 7226:. Oxford Mathematical Monographs. 6936:Covariant Hamiltonian field theory 6034: 5987: 5936: 5909: 5862: 5857: 5844: 5837: 5771: 5707: 5557: 5553: 5532: 5528: 5491: 5487: 5466: 5462: 5344: 5340: 5319: 5315: 5220: 5216: 5198: 5183: 5161: 5157: 5139: 5124: 5102: 5098: 5025: 5010: 4991: 4976: 4954: 4939: 4920: 4905: 4361: 4284: 4253: 4174: 4163: 4155:where we are treating the symbols 4126: 4115: 4055: 4044: 3845: 3834: 3798: 3787: 3774: 3763: 3747: 3736: 3723: 3712: 3659: 3634: 3567: 3556: 3520: 3489: 3367: 3318: 3126: 3108: 3084: 3066: 1954:be a smooth manifold of dimension 1854: 1623:{\displaystyle \mathbb {R} ^{2n}.} 1029:corresponding to arbitrary smooth 913: 886: 871: 863: 852: 801: 117:of manifolds. For example, in the 25: 6728:Special cases and generalizations 5435:{\displaystyle \mathbb {R} ^{2n}} 5086:. This can be seen by expanding 4576:{\displaystyle \mathbb {R} ^{2n}} 4440:{\displaystyle \mathbb {R} ^{2n}} 3876:of a manifold. For example, let 2914:have global coordinates labelled 2485:Lagrangian and other submanifolds 2431:{\displaystyle \mathbb {CP} ^{n}} 298:, or equivalently, an element of 7158:Giachetta, G.; Mangiarotti, L.; 6900: 4850:. That is, it is Lagrangian if 3437:To elucidate, consider the case 3260: 3201: 3193: 3171: 137:Symplectic manifolds arise from 7026:Webster, Ben (9 January 2012). 6808:with the symplectic form is an 6404:give a Lagrangian fibration of 6342:This is the canonical picture. 5901:as a holomorphic n-form, where 5818:Special Lagrangian submanifolds 4703: 4411:Example: Parametric submanifold 4300:{\displaystyle \mathrm {d} y=0} 4269:{\displaystyle \mathrm {d} x=0} 3430:{\displaystyle \omega (X,Y)=0.} 7560:Differentiable/Smooth manifold 7002:Wirtinger inequality (2-forms) 6872: 6860: 6752: 6740: 6314: 5795: 5789: 5778: 5761: 5714: 5697: 5647: 4886: 4860: 4811: 4785: 4759: 4727: 4700: 4668: 4622: 4590: 4518: 4454: 4062: 4028: 3907: 3895: 3854: 3841: 3810: 3807: 3794: 3783: 3770: 3756: 3743: 3732: 3719: 3708: 3705: 3699: 3693: 3687: 3668: 3655: 3649: 3630: 3624: 3618: 3609: 3597: 3516: 3510: 3485: 3479: 3418: 3406: 3363: 3353: 3314: 3304: 3182: 2985: 2921: 2759:{\displaystyle \omega |_{L}=0} 2740: 2669: 2657: 2590: 2512: 2500: 2200: 2168: 2128: 2096: 1974:. Then the total space of the 1673: 1647: 1630:We define our symplectic form 1424: 1412: 1357:be nondegenerate implies that 1264:{\displaystyle \omega (X,Y)=0} 1252: 1240: 933: 920: 906: 893: 879: 867: 828: 805: 796: 786: 780: 600: 587: 575: 549: 526: 507: 213: 1: 4415:Consider the canonical space 2141:are any local coordinates on 200:. So we require a linear map 7340:10.1016/0001-8708(71)90020-X 7301:. Basel: Birkhäuser Verlag. 7246:"Seminar on Mirror Symmetry" 7213:General and cited references 6983: – Mathematical concept 6968: – Mathematical concept 5678:{\displaystyle \varepsilon } 2603:{\displaystyle \omega |_{S}} 975:such that the corresponding 8266:Classification of manifolds 7431:Encyclopedia of Mathematics 7194:10.1088/0305-4470/32/38/302 7059:de Gosson, Maurice (2006). 6758:{\displaystyle (M,\omega )} 6046:{\displaystyle \Omega _{1}} 5999:{\displaystyle \Omega _{2}} 5948:{\displaystyle \Omega _{2}} 5921:{\displaystyle \Omega _{1}} 5608:—this is an application of 4531:. A parametric submanifold 2675:{\displaystyle (M,\omega )} 2518:{\displaystyle (M,\omega )} 1430:{\displaystyle (M,\omega )} 1333:. Since in odd dimensions, 1300:{\displaystyle Y\in T_{p}M} 1223:{\displaystyle X\in T_{p}M} 8416: 7447:Lectures for Theoreticians 6962: – Mathematical group 6928: – Branch of geometry 6917:Almost symplectic manifold 6226:. This form is called the 5810: 5597:and all others vanishing. 2721:{\displaystyle L\subset M} 2571:{\displaystyle S\subset M} 1634:on this basis as follows: 1533: 738:{\displaystyle \iota _{X}} 180:of a Hamiltonian function 8342:over commutative algebras 7360:10.1007/978-94-011-3330-2 7144:10.1017/S1446788700036636 6885:-form; it is utilized in 6795:canonical symplectic form 6147:of a symplectic manifold 6073:leads the volume form on 3871:Example: Cotangent bundle 2650:of a symplectic manifold 2493:of a symplectic manifold 2009:canonical symplectic form 1497:is referred to as giving 1457:is a smooth manifold and 8058:Riemann curvature tensor 7277:Foundations of Mechanics 6887:Hamiltonian field theory 6832:multisymplectic manifold 6814:almost complex structure 4353:and their differentials 2610:is a symplectic form on 2475:almost-complex manifolds 2471:almost complex structure 2442:Almost-complex manifolds 1530:Symplectic vector spaces 718:, this amounts to (here 7326:Advances in Mathematics 6981:Symplectic vector space 6847:polysymplectic manifold 6816:, but this need not be 6782:{\displaystyle \omega } 6769:if the symplectic form 5830:) we can make a choice 5665:and for a small enough 3238:{\displaystyle \omega } 2695:{\displaystyle \omega } 2648:Lagrangian submanifolds 2530:Symplectic submanifolds 2462:{\displaystyle \omega } 1536:Symplectic vector space 1470:{\displaystyle \omega } 1394:{\displaystyle \omega } 1350:{\displaystyle \omega } 1335:skew-symmetric matrices 1187:{\displaystyle \omega } 1108:{\displaystyle \omega } 680:{\displaystyle \omega } 656:{\displaystyle \omega } 632:{\displaystyle \omega } 427:{\displaystyle \omega } 414:, the requirement that 357:{\displaystyle \omega } 119:Hamiltonian formulation 90:{\displaystyle \omega } 7850:Manifold with boundary 7565:Differential structure 7426:"Symplectic Structure" 7222:; Salamon, D. (1998). 6879: 6810:almost Kähler manifold 6783: 6759: 6733:A symplectic manifold 6690: 6354: 6336: 6273: 6218:, where d denotes the 6087: 6067: 6047: 6020: 6000: 5969: 5949: 5922: 5895: 5875: 5802: 5737: 5679: 5659: 5588: 5436: 5404: 5375: 5289: 5263: 5240: 5080: 5051: 4844: 4818: 4766: 4629: 4577: 4545: 4525: 4441: 4401: 4347: 4301: 4270: 4239: 4185: 4146: 3993: 3992:{\displaystyle T^{*}X} 3960: 3861: 3817: 3578: 3536: 3457: 3431: 3390: 3275: 3239: 3219: 3147: 3043: 2992: 2908: 2809: 2760: 2722: 2696: 2676: 2634:Isotropic submanifolds 2624: 2604: 2572: 2546: 2519: 2463: 2432: 2393: 2332: 2331:{\displaystyle dq^{i}} 2298: 2259: 2207: 2155: 2135: 2080: 2046: 2001: 2000:{\displaystyle T^{*}Q} 1968: 1948: 1920: 1799: 1624: 1589: 1511: 1491: 1471: 1451: 1431: 1395: 1371: 1351: 1327: 1301: 1265: 1224: 1188: 1168: 1167:{\displaystyle T_{p}M} 1135: 1134:{\displaystyle p\in M} 1109: 1086: 1043: 1023: 996: 969: 946: 739: 708: 681: 657: 633: 613: 533: 482: 455: 428: 408: 358: 338: 292: 291:{\displaystyle T^{*}M} 259: 233: 194: 174: 151:differential equations 91: 62: 18:Lagrangian submanifold 8390:Hamiltonian mechanics 8385:Differential topology 7295:de Gosson, Maurice A. 7258:"Symplectic Geometry" 7131:J. Austral. Math. Soc 6993:Tautological one-form 6880: 6878:{\displaystyle (n+2)} 6784: 6760: 6691: 6532:Lagrangian equivalent 6353: 6337: 6274: 6125:Thomas–Yau conjecture 6099:hyperkähler manifolds 6088: 6068: 6048: 6021: 6001: 5970: 5950: 5928:is the real part and 5923: 5896: 5876: 5803: 5738: 5680: 5660: 5620:Example: Morse theory 5589: 5437: 5405: 5376: 5290: 5264: 5241: 5081: 5052: 4845: 4819: 4767: 4630: 4578: 4546: 4526: 4442: 4402: 4348: 4302: 4271: 4240: 4186: 4147: 3994: 3969:Then, we can present 3961: 3862: 3826:both terms we have a 3818: 3579: 3537: 3458: 3432: 3391: 3276: 3240: 3220: 3148: 3044: 2998:. Then, we can equip 2993: 2909: 2810: 2761: 2723: 2697: 2677: 2625: 2605: 2573: 2547: 2520: 2464: 2433: 2394: 2358:. Any smooth complex 2333: 2299: 2297:{\displaystyle p_{i}} 2273:, as is the case for 2260: 2208: 2156: 2136: 2081: 2026: 2002: 1969: 1949: 1921: 1800: 1625: 1590: 1512: 1492: 1472: 1452: 1432: 1396: 1372: 1352: 1328: 1302: 1266: 1225: 1189: 1169: 1136: 1110: 1087: 1044: 1024: 1022:{\displaystyle V_{H}} 997: 995:{\displaystyle V_{H}} 970: 947: 740: 709: 707:{\displaystyle V_{H}} 682: 658: 634: 619:, which implies that 614: 534: 483: 481:{\displaystyle V_{H}} 456: 429: 409: 359: 339: 293: 260: 234: 195: 175: 92: 63: 34:differential geometry 7997:Covariant derivative 7548:Topological manifold 7416:. December 17, 2014. 6857: 6773: 6737: 6564: 6454:Two Lagrangian maps 6388:Lagrangian immersion 6283: 6241: 6195:the symplectic form 6145:Lagrangian fibration 6139:Lagrangian fibration 6077: 6057: 6030: 6010: 5983: 5959: 5932: 5905: 5885: 5834: 5828:Calabi–Yau manifolds 5747: 5689: 5669: 5635: 5449: 5414: 5388: 5302: 5276: 5253: 5093: 5064: 4857: 4828: 4782: 4642: 4587: 4555: 4535: 4451: 4419: 4357: 4311: 4280: 4249: 4195: 4159: 4006: 3973: 3883: 3830: 3591: 3546: 3467: 3441: 3400: 3285: 3249: 3229: 3160: 3056: 3002: 2918: 2867: 2855:in the smooth case. 2853:Euler characteristic 2770: 2732: 2706: 2686: 2654: 2614: 2582: 2556: 2536: 2497: 2453: 2447:Riemannian manifolds 2410: 2365: 2312: 2308:" to the velocities 2281: 2275:Riemannian manifolds 2217: 2165: 2145: 2093: 2017: 1981: 1958: 1938: 1851: 1641: 1599: 1544: 1519:symplectic structure 1501: 1481: 1461: 1441: 1409: 1385: 1361: 1341: 1311: 1275: 1234: 1198: 1178: 1148: 1119: 1099: 1076: 1033: 1006: 979: 959: 756: 722: 691: 671: 647: 623: 543: 492: 465: 442: 418: 372: 348: 302: 272: 246: 204: 184: 161: 111:analytical mechanics 81: 52: 8400:Symplectic geometry 8031:Exterior derivative 7633:Atiyah–Singer index 7582:Riemannian manifold 7273:Marsden, Jerrold E. 7254:Meinrenken, Eckhard 7186:1999JPhA...32.6629G 6972:Symplectic topology 6220:exterior derivative 6129:stability condition 5813:symplectic category 5403:{\displaystyle i,j} 5079:{\displaystyle i,j} 4843:{\displaystyle i,j} 3456:{\displaystyle n=1} 3270: 3214: 3181: 3038: 2903: 2728:is vanishing, i.e. 1403:symplectic manifold 1379:exterior derivative 1326:{\displaystyle X=0} 714:vanishes. Applying 139:classical mechanics 107:classical mechanics 103:symplectic topology 99:symplectic geometry 76:differential 2-form 42:symplectic manifold 8337:Secondary calculus 8291:Singularity theory 8246:Parallel transport 8014:De Rham cohomology 7653:Generalized Stokes 7476:Notices of the AMS 7164:Journal of Physics 7098:Gusein-Zade, S. M. 6908:Mathematics portal 6875: 6779: 6755: 6686: 6437:critical value set 6433:Lagrangian mapping 6355: 6346:Lagrangian mapping 6332: 6269: 6222:and ∧ denotes the 6083: 6063: 6043: 6016: 5996: 5965: 5945: 5918: 5891: 5871: 5798: 5733: 5675: 5655: 5584: 5432: 5400: 5371: 5288:{\displaystyle TL} 5285: 5259: 5236: 5076: 5047: 4901: 4840: 4814: 4762: 4625: 4573: 4541: 4521: 4437: 4397: 4343: 4297: 4266: 4235: 4191:as coordinates of 4181: 4142: 3989: 3956: 3857: 3813: 3574: 3532: 3453: 3427: 3386: 3271: 3252: 3235: 3215: 3185: 3163: 3143: 3039: 3005: 2988: 2904: 2870: 2805: 2794: 2756: 2718: 2692: 2672: 2638:isotropic subspace 2620: 2600: 2568: 2542: 2515: 2459: 2428: 2389: 2360:projective variety 2356:algebraic geometry 2328: 2294: 2255: 2203: 2151: 2131: 2076: 1997: 1964: 1944: 1916: 1907: 1795: 1790: 1620: 1585: 1507: 1487: 1467: 1447: 1427: 1391: 1367: 1347: 1323: 1297: 1261: 1220: 1184: 1164: 1131: 1105: 1082: 1039: 1019: 992: 965: 942: 735: 704: 677: 653: 629: 609: 529: 478: 454:{\displaystyle dH} 451: 424: 404: 354: 334: 288: 267:cotangent manifold 258:{\displaystyle TM} 255: 229: 190: 173:{\displaystyle dH} 170: 147:Hamilton equations 87: 68:, equipped with a 58: 8372: 8371: 8254: 8253: 8019:Differential form 7673:Whitney embedding 7607:Differential form 7467:(November 1998). 7443:Sardanashvily, G. 7369:978-1-4020-0333-2 7170:(38): 6629–6642. 7160:Sardanashvily, G. 6987:Symplectomorphism 6966:Symplectic matrix 6648: 6607: 6228:Poincaré two-form 6193:Darboux's theorem 6155:where all of the 6135:of the manifold. 6086:{\displaystyle L} 6066:{\displaystyle L} 6019:{\displaystyle L} 5968:{\displaystyle L} 5894:{\displaystyle M} 5787: 5614:action functional 5571: 5546: 5505: 5480: 5358: 5333: 5262:{\displaystyle L} 5234: 5212: 5175: 5153: 5116: 5039: 5005: 4968: 4934: 4892: 4824:vanishes for all 4544:{\displaystyle L} 4447:with coordinates 3682: 3360: 3311: 3026: 3016: 2891: 2881: 2845:Arnold conjecture 2821:symplectomorphism 2793: 2776: 2623:{\displaystyle S} 2545:{\displaystyle M} 2401:Fubini—Study form 2352:complex manifolds 2154:{\displaystyle Q} 1967:{\displaystyle n} 1947:{\displaystyle Q} 1930:Cotangent bundles 1786: 1757: 1710: 1510:{\displaystyle M} 1490:{\displaystyle M} 1450:{\displaystyle M} 1370:{\displaystyle M} 1085:{\displaystyle M} 1042:{\displaystyle H} 968:{\displaystyle H} 193:{\displaystyle H} 115:cotangent bundles 61:{\displaystyle M} 16:(Redirected from 8407: 8395:Smooth manifolds 8364:Stratified space 8322:Fréchet manifold 8036:Interior product 7929: 7626: 7522: 7515: 7508: 7499: 7494: 7492: 7479: 7473: 7460: 7458: 7438: 7417: 7403: 7401: 7381: 7344: 7342: 7312: 7290: 7264: 7262: 7249: 7237: 7206: 7205: 7179: 7155: 7149: 7148: 7146: 7122: 7116: 7115: 7094:Varchenko, A. N. 7086: 7075: 7074: 7056: 7047: 7046: 7038: 7032: 7031: 7023: 7007: 6998: 6977: 6960:Symplectic group 6950: 6945:Fedosov manifold 6941: 6931: 6926:Contact manifold 6922: 6910: 6905: 6904: 6884: 6882: 6881: 6876: 6825:Poisson manifold 6788: 6786: 6785: 6780: 6764: 6762: 6761: 6756: 6695: 6693: 6692: 6687: 6681: 6680: 6668: 6667: 6658: 6657: 6646: 6636: 6635: 6623: 6622: 6605: 6595: 6594: 6582: 6581: 6529: 6491: 6430: 6408:. The composite 6403: 6381: 6365:,ω) given by an 6341: 6339: 6338: 6333: 6328: 6327: 6322: 6313: 6312: 6307: 6301: 6300: 6278: 6276: 6275: 6270: 6265: 6264: 6259: 6253: 6252: 6236:cotangent bundle 6224:exterior product 6217: 6190: 6092: 6090: 6089: 6084: 6072: 6070: 6069: 6064: 6052: 6050: 6049: 6044: 6042: 6041: 6025: 6023: 6022: 6017: 6005: 6003: 6002: 5997: 5995: 5994: 5974: 5972: 5971: 5966: 5954: 5952: 5951: 5946: 5944: 5943: 5927: 5925: 5924: 5919: 5917: 5916: 5900: 5898: 5897: 5892: 5880: 5878: 5877: 5872: 5870: 5869: 5860: 5852: 5851: 5824:Kähler manifolds 5807: 5805: 5804: 5799: 5788: 5785: 5774: 5760: 5742: 5740: 5739: 5734: 5729: 5728: 5710: 5696: 5684: 5682: 5681: 5676: 5664: 5662: 5661: 5656: 5654: 5593: 5591: 5590: 5585: 5577: 5573: 5572: 5570: 5569: 5568: 5552: 5547: 5545: 5544: 5543: 5527: 5511: 5507: 5506: 5504: 5503: 5502: 5486: 5481: 5479: 5478: 5477: 5461: 5441: 5439: 5438: 5433: 5431: 5430: 5422: 5409: 5407: 5406: 5401: 5380: 5378: 5377: 5372: 5364: 5360: 5359: 5357: 5356: 5355: 5339: 5334: 5332: 5331: 5330: 5314: 5294: 5292: 5291: 5286: 5271:tangent manifold 5268: 5266: 5265: 5260: 5245: 5243: 5242: 5237: 5235: 5233: 5232: 5231: 5215: 5213: 5211: 5210: 5209: 5196: 5195: 5194: 5181: 5176: 5174: 5173: 5172: 5156: 5154: 5152: 5151: 5150: 5137: 5136: 5135: 5122: 5117: 5115: 5114: 5113: 5097: 5085: 5083: 5082: 5077: 5056: 5054: 5053: 5048: 5040: 5038: 5037: 5036: 5023: 5022: 5021: 5008: 5006: 5004: 5003: 5002: 4989: 4988: 4987: 4974: 4969: 4967: 4966: 4965: 4952: 4951: 4950: 4937: 4935: 4933: 4932: 4931: 4918: 4917: 4916: 4903: 4900: 4885: 4884: 4872: 4871: 4849: 4847: 4846: 4841: 4823: 4821: 4820: 4817:{\displaystyle } 4815: 4810: 4809: 4797: 4796: 4777:Lagrange bracket 4771: 4769: 4768: 4763: 4758: 4757: 4739: 4738: 4726: 4725: 4713: 4712: 4699: 4698: 4680: 4679: 4667: 4666: 4654: 4653: 4634: 4632: 4631: 4626: 4621: 4620: 4602: 4601: 4582: 4580: 4579: 4574: 4572: 4571: 4563: 4550: 4548: 4547: 4542: 4530: 4528: 4527: 4522: 4517: 4516: 4498: 4497: 4485: 4484: 4466: 4465: 4446: 4444: 4443: 4438: 4436: 4435: 4427: 4406: 4404: 4403: 4398: 4396: 4395: 4374: 4373: 4364: 4352: 4350: 4349: 4344: 4342: 4341: 4323: 4322: 4306: 4304: 4303: 4298: 4287: 4275: 4273: 4272: 4267: 4256: 4244: 4242: 4241: 4236: 4234: 4233: 4228: 4222: 4221: 4209: 4208: 4203: 4190: 4188: 4187: 4182: 4177: 4166: 4151: 4149: 4148: 4143: 4129: 4118: 4092: 4091: 4079: 4078: 4073: 4058: 4047: 4018: 4017: 3998: 3996: 3995: 3990: 3985: 3984: 3965: 3963: 3962: 3957: 3937: 3936: 3924: 3923: 3918: 3866: 3864: 3863: 3858: 3853: 3852: 3837: 3822: 3820: 3819: 3814: 3806: 3805: 3790: 3782: 3781: 3766: 3755: 3754: 3739: 3731: 3730: 3715: 3683: 3675: 3667: 3666: 3642: 3641: 3583: 3581: 3580: 3575: 3570: 3559: 3541: 3539: 3538: 3533: 3528: 3527: 3497: 3496: 3462: 3460: 3459: 3454: 3436: 3434: 3433: 3428: 3395: 3393: 3392: 3387: 3382: 3381: 3380: 3379: 3362: 3361: 3352: 3351: 3333: 3332: 3331: 3330: 3313: 3312: 3303: 3302: 3280: 3278: 3277: 3272: 3269: 3264: 3263: 3257: 3244: 3242: 3241: 3236: 3224: 3222: 3221: 3216: 3213: 3205: 3204: 3196: 3190: 3180: 3175: 3174: 3168: 3152: 3150: 3149: 3144: 3139: 3138: 3129: 3121: 3120: 3111: 3097: 3096: 3087: 3079: 3078: 3069: 3048: 3046: 3045: 3040: 3037: 3029: 3028: 3027: 3018: 3017: 3010: 2997: 2995: 2994: 2989: 2984: 2983: 2965: 2964: 2952: 2951: 2933: 2932: 2913: 2911: 2910: 2905: 2902: 2894: 2893: 2892: 2883: 2882: 2875: 2842: 2814: 2812: 2811: 2806: 2795: 2786: 2777: 2774: 2765: 2763: 2762: 2757: 2749: 2748: 2743: 2727: 2725: 2724: 2719: 2701: 2699: 2698: 2693: 2681: 2679: 2678: 2673: 2629: 2627: 2626: 2621: 2609: 2607: 2606: 2601: 2599: 2598: 2593: 2577: 2575: 2574: 2569: 2551: 2549: 2548: 2543: 2524: 2522: 2521: 2516: 2468: 2466: 2465: 2460: 2437: 2435: 2434: 2429: 2427: 2426: 2421: 2405:projective space 2398: 2396: 2395: 2390: 2388: 2387: 2382: 2342:Kähler manifolds 2337: 2335: 2334: 2329: 2327: 2326: 2303: 2301: 2300: 2295: 2293: 2292: 2264: 2262: 2261: 2256: 2254: 2253: 2232: 2231: 2212: 2210: 2209: 2204: 2199: 2198: 2180: 2179: 2160: 2158: 2157: 2152: 2140: 2138: 2137: 2132: 2127: 2126: 2108: 2107: 2085: 2083: 2082: 2077: 2075: 2074: 2059: 2058: 2045: 2040: 2006: 2004: 2003: 1998: 1993: 1992: 1976:cotangent bundle 1973: 1971: 1970: 1965: 1953: 1951: 1950: 1945: 1925: 1923: 1922: 1917: 1912: 1911: 1899: 1898: 1882: 1881: 1840: 1804: 1802: 1801: 1796: 1794: 1793: 1787: 1784: 1758: 1756: with  1755: 1711: 1709: with  1708: 1672: 1671: 1659: 1658: 1629: 1627: 1626: 1621: 1616: 1615: 1607: 1594: 1592: 1591: 1586: 1581: 1580: 1559: 1558: 1516: 1514: 1513: 1508: 1496: 1494: 1493: 1488: 1476: 1474: 1473: 1468: 1456: 1454: 1453: 1448: 1436: 1434: 1433: 1428: 1400: 1398: 1397: 1392: 1376: 1374: 1373: 1368: 1356: 1354: 1353: 1348: 1332: 1330: 1329: 1324: 1306: 1304: 1303: 1298: 1293: 1292: 1270: 1268: 1267: 1262: 1229: 1227: 1226: 1221: 1216: 1215: 1193: 1191: 1190: 1185: 1173: 1171: 1170: 1165: 1160: 1159: 1140: 1138: 1137: 1132: 1114: 1112: 1111: 1106: 1091: 1089: 1088: 1083: 1048: 1046: 1045: 1040: 1028: 1026: 1025: 1020: 1018: 1017: 1001: 999: 998: 993: 991: 990: 974: 972: 971: 966: 951: 949: 948: 943: 932: 931: 916: 905: 904: 889: 874: 866: 855: 850: 849: 848: 847: 824: 823: 822: 821: 804: 779: 778: 777: 776: 766: 765: 747:interior product 744: 742: 741: 736: 734: 733: 716:Cartan's formula 713: 711: 710: 705: 703: 702: 686: 684: 683: 678: 662: 660: 659: 654: 638: 636: 635: 630: 618: 616: 615: 610: 599: 598: 574: 573: 561: 560: 538: 536: 535: 530: 519: 518: 487: 485: 484: 479: 477: 476: 460: 458: 457: 452: 433: 431: 430: 425: 413: 411: 410: 405: 400: 399: 384: 383: 363: 361: 360: 355: 343: 341: 340: 335: 330: 329: 314: 313: 297: 295: 294: 289: 284: 283: 264: 262: 261: 256: 241:tangent manifold 238: 236: 235: 230: 225: 224: 199: 197: 196: 191: 179: 177: 176: 171: 123:cotangent bundle 96: 94: 93: 88: 67: 65: 64: 59: 21: 8415: 8414: 8410: 8409: 8408: 8406: 8405: 8404: 8375: 8374: 8373: 8368: 8307:Banach manifold 8300:Generalizations 8295: 8250: 8187: 8084: 8046:Ricci curvature 8002:Cotangent space 7980: 7918: 7760: 7754: 7713:Exponential map 7677: 7622: 7616: 7536: 7526: 7482: 7471: 7463: 7441: 7420: 7406: 7391: 7388: 7386:Further reading 7370: 7347: 7315: 7309: 7293: 7287: 7267: 7260: 7252: 7240: 7234: 7218: 7215: 7210: 7209: 7157: 7156: 7152: 7124: 7123: 7119: 7112: 7088: 7087: 7078: 7071: 7058: 7057: 7050: 7040: 7039: 7035: 7025: 7024: 7020: 7015: 7010: 7005: 6996: 6975: 6954:Poisson bracket 6948: 6939: 6929: 6920: 6906: 6899: 6896: 6855: 6854: 6851:Legendre bundle 6771: 6770: 6735: 6734: 6730: 6719: 6708: 6672: 6659: 6649: 6627: 6614: 6586: 6573: 6562: 6561: 6536:diffeomorphisms 6534:if there exist 6528: 6521: 6514: 6507: 6500: 6493: 6490: 6483: 6476: 6469: 6462: 6455: 6409: 6391: 6369: 6348: 6317: 6302: 6292: 6281: 6280: 6254: 6244: 6239: 6238: 6212: 6200: 6180: 6171: 6164: 6141: 6133:Fukaya category 6114:mirror symmetry 6075: 6074: 6055: 6054: 6033: 6028: 6027: 6008: 6007: 5986: 5981: 5980: 5957: 5956: 5935: 5930: 5929: 5908: 5903: 5902: 5883: 5882: 5861: 5843: 5832: 5831: 5822:In the case of 5820: 5815: 5745: 5744: 5720: 5687: 5686: 5667: 5666: 5633: 5632: 5622: 5560: 5556: 5535: 5531: 5525: 5521: 5494: 5490: 5469: 5465: 5459: 5455: 5447: 5446: 5417: 5412: 5411: 5386: 5385: 5347: 5343: 5322: 5318: 5312: 5308: 5300: 5299: 5274: 5273: 5251: 5250: 5223: 5219: 5201: 5197: 5186: 5182: 5164: 5160: 5142: 5138: 5127: 5123: 5105: 5101: 5091: 5090: 5062: 5061: 5028: 5024: 5013: 5009: 4994: 4990: 4979: 4975: 4957: 4953: 4942: 4938: 4923: 4919: 4908: 4904: 4876: 4863: 4855: 4854: 4826: 4825: 4801: 4788: 4780: 4779: 4749: 4730: 4717: 4704: 4690: 4671: 4658: 4645: 4640: 4639: 4612: 4593: 4585: 4584: 4558: 4553: 4552: 4533: 4532: 4508: 4489: 4476: 4457: 4449: 4448: 4422: 4417: 4416: 4413: 4387: 4365: 4355: 4354: 4333: 4314: 4309: 4308: 4278: 4277: 4247: 4246: 4223: 4213: 4198: 4193: 4192: 4157: 4156: 4083: 4068: 4009: 4004: 4003: 3976: 3971: 3970: 3928: 3913: 3881: 3880: 3873: 3844: 3828: 3827: 3797: 3773: 3746: 3722: 3658: 3633: 3589: 3588: 3544: 3543: 3519: 3488: 3465: 3464: 3439: 3438: 3398: 3397: 3371: 3366: 3343: 3322: 3317: 3294: 3283: 3282: 3247: 3246: 3227: 3226: 3158: 3157: 3130: 3112: 3088: 3070: 3054: 3053: 3000: 2999: 2975: 2956: 2943: 2924: 2916: 2915: 2865: 2864: 2861: 2824: 2768: 2767: 2738: 2730: 2729: 2704: 2703: 2684: 2683: 2652: 2651: 2612: 2611: 2588: 2580: 2579: 2554: 2553: 2534: 2533: 2495: 2494: 2487: 2451: 2450: 2444: 2413: 2408: 2407: 2374: 2363: 2362: 2348:Kähler manifold 2344: 2318: 2310: 2309: 2284: 2279: 2278: 2245: 2223: 2215: 2214: 2190: 2171: 2163: 2162: 2143: 2142: 2118: 2099: 2091: 2090: 2066: 2050: 2015: 2014: 1984: 1979: 1978: 1956: 1955: 1936: 1935: 1932: 1906: 1905: 1900: 1890: 1884: 1883: 1873: 1871: 1861: 1849: 1848: 1831: 1828:identity matrix 1817: 1789: 1788: 1781: 1775: 1774: 1737: 1728: 1727: 1690: 1680: 1663: 1650: 1639: 1638: 1602: 1597: 1596: 1595:be a basis for 1569: 1550: 1542: 1541: 1538: 1532: 1527: 1499: 1498: 1479: 1478: 1459: 1458: 1439: 1438: 1407: 1406: 1383: 1382: 1359: 1358: 1339: 1338: 1309: 1308: 1284: 1273: 1272: 1232: 1231: 1207: 1196: 1195: 1176: 1175: 1151: 1146: 1145: 1117: 1116: 1097: 1096: 1074: 1073: 1067:symplectic form 1063: 1031: 1030: 1009: 1004: 1003: 982: 977: 976: 957: 956: 923: 896: 839: 834: 813: 808: 768: 759: 754: 753: 725: 720: 719: 694: 689: 688: 669: 668: 645: 644: 621: 620: 590: 565: 552: 541: 540: 510: 490: 489: 468: 463: 462: 440: 439: 416: 415: 391: 375: 370: 369: 346: 345: 321: 305: 300: 299: 275: 270: 269: 244: 243: 216: 202: 201: 182: 181: 159: 158: 135: 129:of the system. 79: 78: 50: 49: 46:smooth manifold 36:, a subject of 28: 23: 22: 15: 12: 11: 5: 8413: 8411: 8403: 8402: 8397: 8392: 8387: 8377: 8376: 8370: 8369: 8367: 8366: 8361: 8356: 8351: 8346: 8345: 8344: 8334: 8329: 8324: 8319: 8314: 8309: 8303: 8301: 8297: 8296: 8294: 8293: 8288: 8283: 8278: 8273: 8268: 8262: 8260: 8256: 8255: 8252: 8251: 8249: 8248: 8243: 8238: 8233: 8228: 8223: 8218: 8213: 8208: 8203: 8197: 8195: 8189: 8188: 8186: 8185: 8180: 8175: 8170: 8165: 8160: 8155: 8145: 8140: 8135: 8125: 8120: 8115: 8110: 8105: 8100: 8094: 8092: 8086: 8085: 8083: 8082: 8077: 8072: 8071: 8070: 8060: 8055: 8054: 8053: 8043: 8038: 8033: 8028: 8027: 8026: 8016: 8011: 8010: 8009: 7999: 7994: 7988: 7986: 7982: 7981: 7979: 7978: 7973: 7968: 7963: 7962: 7961: 7951: 7946: 7941: 7935: 7933: 7926: 7920: 7919: 7917: 7916: 7911: 7901: 7896: 7882: 7877: 7872: 7867: 7862: 7860:Parallelizable 7857: 7852: 7847: 7846: 7845: 7835: 7830: 7825: 7820: 7815: 7810: 7805: 7800: 7795: 7790: 7780: 7770: 7764: 7762: 7756: 7755: 7753: 7752: 7747: 7742: 7740:Lie derivative 7737: 7735:Integral curve 7732: 7727: 7722: 7721: 7720: 7710: 7705: 7704: 7703: 7696:Diffeomorphism 7693: 7687: 7685: 7679: 7678: 7676: 7675: 7670: 7665: 7660: 7655: 7650: 7645: 7640: 7635: 7629: 7627: 7618: 7617: 7615: 7614: 7609: 7604: 7599: 7594: 7589: 7584: 7579: 7574: 7573: 7572: 7567: 7557: 7556: 7555: 7544: 7542: 7541:Basic concepts 7538: 7537: 7527: 7525: 7524: 7517: 7510: 7502: 7496: 7495: 7480: 7461: 7439: 7418: 7413:Stack Exchange 7404: 7387: 7384: 7383: 7382: 7368: 7345: 7317:Alan Weinstein 7313: 7307: 7291: 7285: 7269:Abraham, Ralph 7265: 7250: 7238: 7232: 7214: 7211: 7208: 7207: 7177:hep-th/9904062 7150: 7137:(3): 303–330. 7117: 7110: 7104:. Birkhäuser. 7076: 7069: 7048: 7033: 7017: 7016: 7014: 7011: 7009: 7008: 6999: 6990: 6984: 6978: 6969: 6963: 6957: 6951: 6942: 6933: 6923: 6913: 6912: 6911: 6895: 6892: 6891: 6890: 6874: 6871: 6868: 6865: 6862: 6843: 6828: 6821: 6798: 6778: 6754: 6751: 6748: 6745: 6742: 6729: 6726: 6717: 6706: 6697: 6696: 6685: 6679: 6675: 6671: 6666: 6662: 6656: 6652: 6645: 6642: 6639: 6634: 6630: 6626: 6621: 6617: 6613: 6610: 6604: 6601: 6598: 6593: 6589: 6585: 6580: 6576: 6572: 6569: 6526: 6519: 6512: 6505: 6498: 6488: 6481: 6474: 6467: 6460: 6347: 6344: 6331: 6326: 6321: 6316: 6311: 6306: 6299: 6295: 6291: 6288: 6268: 6263: 6258: 6251: 6247: 6208: 6176: 6169: 6140: 6137: 6110:SYZ conjecture 6106: 6105: 6102: 6082: 6062: 6053:restricted on 6040: 6036: 6015: 5993: 5989: 5964: 5942: 5938: 5915: 5911: 5890: 5868: 5864: 5859: 5855: 5850: 5846: 5842: 5839: 5819: 5816: 5797: 5794: 5791: 5783: 5780: 5777: 5773: 5769: 5766: 5763: 5759: 5755: 5752: 5732: 5727: 5723: 5719: 5716: 5713: 5709: 5705: 5702: 5699: 5695: 5674: 5653: 5649: 5646: 5643: 5640: 5630:Morse function 5621: 5618: 5606:Floer homology 5595: 5594: 5583: 5580: 5576: 5567: 5563: 5559: 5555: 5550: 5542: 5538: 5534: 5530: 5524: 5520: 5517: 5514: 5510: 5501: 5497: 5493: 5489: 5484: 5476: 5472: 5468: 5464: 5458: 5454: 5429: 5426: 5421: 5399: 5396: 5393: 5382: 5381: 5370: 5367: 5363: 5354: 5350: 5346: 5342: 5337: 5329: 5325: 5321: 5317: 5311: 5307: 5284: 5281: 5258: 5247: 5246: 5230: 5226: 5222: 5218: 5208: 5204: 5200: 5193: 5189: 5185: 5179: 5171: 5167: 5163: 5159: 5149: 5145: 5141: 5134: 5130: 5126: 5120: 5112: 5108: 5104: 5100: 5075: 5072: 5069: 5058: 5057: 5046: 5043: 5035: 5031: 5027: 5020: 5016: 5012: 5001: 4997: 4993: 4986: 4982: 4978: 4972: 4964: 4960: 4956: 4949: 4945: 4941: 4930: 4926: 4922: 4915: 4911: 4907: 4899: 4895: 4891: 4888: 4883: 4879: 4875: 4870: 4866: 4862: 4839: 4836: 4833: 4813: 4808: 4804: 4800: 4795: 4791: 4787: 4773: 4772: 4761: 4756: 4752: 4748: 4745: 4742: 4737: 4733: 4729: 4724: 4720: 4716: 4711: 4707: 4702: 4697: 4693: 4689: 4686: 4683: 4678: 4674: 4670: 4665: 4661: 4657: 4652: 4648: 4624: 4619: 4615: 4611: 4608: 4605: 4600: 4596: 4592: 4570: 4567: 4562: 4540: 4520: 4515: 4511: 4507: 4504: 4501: 4496: 4492: 4488: 4483: 4479: 4475: 4472: 4469: 4464: 4460: 4456: 4434: 4431: 4426: 4412: 4409: 4394: 4390: 4386: 4383: 4380: 4377: 4372: 4368: 4363: 4340: 4336: 4332: 4329: 4326: 4321: 4317: 4296: 4293: 4290: 4286: 4265: 4262: 4259: 4255: 4232: 4227: 4220: 4216: 4212: 4207: 4202: 4180: 4176: 4172: 4169: 4165: 4153: 4152: 4141: 4138: 4135: 4132: 4128: 4124: 4121: 4117: 4113: 4110: 4107: 4104: 4101: 4098: 4095: 4090: 4086: 4082: 4077: 4072: 4067: 4064: 4061: 4057: 4053: 4050: 4046: 4042: 4039: 4036: 4033: 4030: 4027: 4024: 4021: 4016: 4012: 3988: 3983: 3979: 3967: 3966: 3955: 3952: 3949: 3946: 3943: 3940: 3935: 3931: 3927: 3922: 3917: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3888: 3872: 3869: 3856: 3851: 3847: 3843: 3840: 3836: 3824: 3823: 3812: 3809: 3804: 3800: 3796: 3793: 3789: 3785: 3780: 3776: 3772: 3769: 3765: 3761: 3758: 3753: 3749: 3745: 3742: 3738: 3734: 3729: 3725: 3721: 3718: 3714: 3710: 3707: 3704: 3701: 3698: 3695: 3692: 3689: 3686: 3681: 3678: 3673: 3670: 3665: 3661: 3657: 3654: 3651: 3648: 3645: 3640: 3636: 3632: 3629: 3626: 3623: 3620: 3617: 3614: 3611: 3608: 3605: 3602: 3599: 3596: 3573: 3569: 3565: 3562: 3558: 3554: 3551: 3531: 3526: 3522: 3518: 3515: 3512: 3509: 3506: 3503: 3500: 3495: 3491: 3487: 3484: 3481: 3478: 3475: 3472: 3452: 3449: 3446: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3405: 3385: 3378: 3374: 3369: 3365: 3355: 3350: 3346: 3342: 3339: 3336: 3329: 3325: 3320: 3316: 3306: 3301: 3297: 3293: 3290: 3268: 3262: 3256: 3234: 3212: 3209: 3203: 3199: 3195: 3189: 3184: 3179: 3173: 3167: 3154: 3153: 3142: 3137: 3133: 3128: 3124: 3119: 3115: 3110: 3106: 3103: 3100: 3095: 3091: 3086: 3082: 3077: 3073: 3068: 3064: 3061: 3036: 3033: 3021: 3009: 2987: 2982: 2978: 2974: 2971: 2968: 2963: 2959: 2955: 2950: 2946: 2942: 2939: 2936: 2931: 2927: 2923: 2901: 2898: 2886: 2874: 2860: 2857: 2817: 2816: 2804: 2801: 2798: 2792: 2789: 2783: 2780: 2755: 2752: 2747: 2742: 2737: 2717: 2714: 2711: 2691: 2671: 2668: 2665: 2662: 2659: 2645: 2631: 2619: 2597: 2592: 2587: 2567: 2564: 2561: 2541: 2514: 2511: 2508: 2505: 2502: 2486: 2483: 2458: 2443: 2440: 2425: 2420: 2417: 2386: 2381: 2378: 2373: 2370: 2343: 2340: 2325: 2321: 2317: 2291: 2287: 2252: 2248: 2244: 2241: 2238: 2235: 2230: 2226: 2222: 2202: 2197: 2193: 2189: 2186: 2183: 2178: 2174: 2170: 2150: 2130: 2125: 2121: 2117: 2114: 2111: 2106: 2102: 2098: 2087: 2086: 2073: 2069: 2065: 2062: 2057: 2053: 2049: 2044: 2039: 2036: 2033: 2029: 2025: 2022: 1996: 1991: 1987: 1963: 1943: 1931: 1928: 1927: 1926: 1915: 1910: 1904: 1901: 1897: 1893: 1889: 1886: 1885: 1880: 1876: 1872: 1870: 1867: 1866: 1864: 1859: 1856: 1815: 1810:quadratic form 1806: 1805: 1792: 1782: 1780: 1777: 1776: 1773: 1770: 1767: 1764: 1761: 1753: 1750: 1747: 1744: 1741: 1738: 1736: 1733: 1730: 1729: 1726: 1723: 1720: 1717: 1714: 1706: 1703: 1700: 1697: 1694: 1691: 1689: 1686: 1685: 1683: 1678: 1675: 1670: 1666: 1662: 1657: 1653: 1649: 1646: 1619: 1614: 1611: 1606: 1584: 1579: 1576: 1572: 1568: 1565: 1562: 1557: 1553: 1549: 1534:Main article: 1531: 1528: 1526: 1523: 1506: 1486: 1466: 1446: 1426: 1423: 1420: 1417: 1414: 1390: 1366: 1346: 1322: 1319: 1316: 1296: 1291: 1287: 1283: 1280: 1260: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1219: 1214: 1210: 1206: 1203: 1183: 1163: 1158: 1154: 1130: 1127: 1124: 1104: 1081: 1062: 1059: 1038: 1016: 1012: 989: 985: 964: 953: 952: 941: 938: 935: 930: 926: 922: 919: 915: 911: 908: 903: 899: 895: 892: 888: 884: 881: 878: 873: 869: 865: 861: 858: 854: 846: 842: 837: 833: 830: 827: 820: 816: 811: 807: 803: 798: 794: 791: 788: 785: 782: 775: 771: 764: 732: 728: 701: 697: 676: 665:Lie derivative 652: 628: 608: 605: 602: 597: 593: 589: 586: 583: 580: 577: 572: 568: 564: 559: 555: 551: 548: 528: 525: 522: 517: 513: 509: 506: 503: 500: 497: 475: 471: 450: 447: 436:non-degenerate 423: 403: 398: 394: 390: 387: 382: 378: 353: 333: 328: 324: 320: 317: 312: 308: 287: 282: 278: 254: 251: 228: 223: 219: 215: 212: 209: 189: 169: 166: 134: 131: 125:describes the 86: 57: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8412: 8401: 8398: 8396: 8393: 8391: 8388: 8386: 8383: 8382: 8380: 8365: 8362: 8360: 8359:Supermanifold 8357: 8355: 8352: 8350: 8347: 8343: 8340: 8339: 8338: 8335: 8333: 8330: 8328: 8325: 8323: 8320: 8318: 8315: 8313: 8310: 8308: 8305: 8304: 8302: 8298: 8292: 8289: 8287: 8284: 8282: 8279: 8277: 8274: 8272: 8269: 8267: 8264: 8263: 8261: 8257: 8247: 8244: 8242: 8239: 8237: 8234: 8232: 8229: 8227: 8224: 8222: 8219: 8217: 8214: 8212: 8209: 8207: 8204: 8202: 8199: 8198: 8196: 8194: 8190: 8184: 8181: 8179: 8176: 8174: 8171: 8169: 8166: 8164: 8161: 8159: 8156: 8154: 8150: 8146: 8144: 8141: 8139: 8136: 8134: 8130: 8126: 8124: 8121: 8119: 8116: 8114: 8111: 8109: 8106: 8104: 8101: 8099: 8096: 8095: 8093: 8091: 8087: 8081: 8080:Wedge product 8078: 8076: 8073: 8069: 8066: 8065: 8064: 8061: 8059: 8056: 8052: 8049: 8048: 8047: 8044: 8042: 8039: 8037: 8034: 8032: 8029: 8025: 8024:Vector-valued 8022: 8021: 8020: 8017: 8015: 8012: 8008: 8005: 8004: 8003: 8000: 7998: 7995: 7993: 7990: 7989: 7987: 7983: 7977: 7974: 7972: 7969: 7967: 7964: 7960: 7957: 7956: 7955: 7954:Tangent space 7952: 7950: 7947: 7945: 7942: 7940: 7937: 7936: 7934: 7930: 7927: 7925: 7921: 7915: 7912: 7910: 7906: 7902: 7900: 7897: 7895: 7891: 7887: 7883: 7881: 7878: 7876: 7873: 7871: 7868: 7866: 7863: 7861: 7858: 7856: 7853: 7851: 7848: 7844: 7841: 7840: 7839: 7836: 7834: 7831: 7829: 7826: 7824: 7821: 7819: 7816: 7814: 7811: 7809: 7806: 7804: 7801: 7799: 7796: 7794: 7791: 7789: 7785: 7781: 7779: 7775: 7771: 7769: 7766: 7765: 7763: 7757: 7751: 7748: 7746: 7743: 7741: 7738: 7736: 7733: 7731: 7728: 7726: 7723: 7719: 7718:in Lie theory 7716: 7715: 7714: 7711: 7709: 7706: 7702: 7699: 7698: 7697: 7694: 7692: 7689: 7688: 7686: 7684: 7680: 7674: 7671: 7669: 7666: 7664: 7661: 7659: 7656: 7654: 7651: 7649: 7646: 7644: 7641: 7639: 7636: 7634: 7631: 7630: 7628: 7625: 7621:Main results 7619: 7613: 7610: 7608: 7605: 7603: 7602:Tangent space 7600: 7598: 7595: 7593: 7590: 7588: 7585: 7583: 7580: 7578: 7575: 7571: 7568: 7566: 7563: 7562: 7561: 7558: 7554: 7551: 7550: 7549: 7546: 7545: 7543: 7539: 7534: 7530: 7523: 7518: 7516: 7511: 7509: 7504: 7503: 7500: 7491: 7486: 7481: 7477: 7470: 7466: 7462: 7457: 7452: 7448: 7444: 7440: 7437: 7433: 7432: 7427: 7423: 7419: 7415: 7414: 7409: 7405: 7400: 7395: 7390: 7389: 7385: 7379: 7375: 7371: 7365: 7361: 7357: 7353: 7352: 7346: 7341: 7336: 7333:(3): 329–46. 7332: 7328: 7327: 7322: 7318: 7314: 7310: 7308:3-7643-7574-4 7304: 7300: 7296: 7292: 7288: 7286:0-8053-0102-X 7282: 7278: 7274: 7270: 7266: 7259: 7255: 7251: 7247: 7243: 7242:Auroux, Denis 7239: 7235: 7233:0-19-850451-9 7229: 7225: 7221: 7217: 7216: 7212: 7203: 7199: 7195: 7191: 7187: 7183: 7178: 7173: 7169: 7165: 7161: 7154: 7151: 7145: 7140: 7136: 7132: 7128: 7121: 7118: 7113: 7111:0-8176-3187-9 7107: 7103: 7099: 7095: 7091: 7090:Arnold, V. I. 7085: 7083: 7081: 7077: 7072: 7070:3-7643-7574-4 7066: 7062: 7055: 7053: 7049: 7044: 7041:Cohn, Henry. 7037: 7034: 7029: 7022: 7019: 7012: 7003: 7000: 6994: 6991: 6988: 6985: 6982: 6979: 6973: 6970: 6967: 6964: 6961: 6958: 6955: 6952: 6946: 6943: 6937: 6934: 6927: 6924: 6918: 6915: 6914: 6909: 6903: 6898: 6893: 6888: 6869: 6866: 6863: 6852: 6848: 6844: 6841: 6837: 6833: 6829: 6826: 6822: 6819: 6815: 6811: 6807: 6803: 6799: 6796: 6792: 6776: 6768: 6749: 6746: 6743: 6732: 6731: 6727: 6725: 6723: 6716: 6712: 6705: 6702: 6683: 6677: 6673: 6669: 6664: 6660: 6654: 6650: 6643: 6640: 6637: 6632: 6628: 6624: 6619: 6615: 6611: 6608: 6602: 6599: 6596: 6591: 6587: 6583: 6578: 6574: 6570: 6567: 6560: 6559: 6558: 6556: 6552: 6548: 6544: 6540: 6537: 6533: 6525: 6518: 6511: 6504: 6497: 6487: 6480: 6473: 6466: 6459: 6452: 6450: 6446: 6442: 6438: 6434: 6429: 6425: 6421: 6417: 6413: 6407: 6402: 6398: 6394: 6389: 6385: 6380: 6376: 6372: 6368: 6364: 6360: 6352: 6345: 6343: 6329: 6324: 6309: 6297: 6293: 6289: 6286: 6266: 6261: 6249: 6245: 6237: 6234:as being the 6233: 6229: 6225: 6221: 6216: 6211: 6207: 6203: 6198: 6194: 6188: 6184: 6179: 6175: 6168: 6162: 6158: 6154: 6150: 6146: 6138: 6136: 6134: 6130: 6126: 6121: 6119: 6115: 6111: 6103: 6100: 6096: 6095: 6094: 6080: 6060: 6038: 6013: 5991: 5978: 5962: 5940: 5913: 5888: 5866: 5853: 5848: 5840: 5829: 5825: 5817: 5814: 5809: 5792: 5781: 5775: 5767: 5764: 5753: 5750: 5730: 5725: 5721: 5717: 5711: 5703: 5700: 5672: 5644: 5641: 5638: 5631: 5627: 5619: 5617: 5615: 5611: 5607: 5603: 5598: 5581: 5578: 5574: 5565: 5561: 5548: 5540: 5536: 5522: 5518: 5515: 5512: 5508: 5499: 5495: 5482: 5474: 5470: 5456: 5452: 5445: 5444: 5443: 5427: 5424: 5397: 5394: 5391: 5368: 5365: 5361: 5352: 5348: 5335: 5327: 5323: 5309: 5305: 5298: 5297: 5296: 5282: 5279: 5272: 5256: 5228: 5224: 5206: 5202: 5191: 5187: 5177: 5169: 5165: 5147: 5143: 5132: 5128: 5118: 5110: 5106: 5089: 5088: 5087: 5073: 5070: 5067: 5044: 5041: 5033: 5029: 5018: 5014: 4999: 4995: 4984: 4980: 4970: 4962: 4958: 4947: 4943: 4928: 4924: 4913: 4909: 4897: 4893: 4889: 4881: 4877: 4873: 4868: 4864: 4853: 4852: 4851: 4837: 4834: 4831: 4806: 4802: 4798: 4793: 4789: 4778: 4754: 4750: 4746: 4743: 4740: 4735: 4731: 4722: 4718: 4714: 4709: 4705: 4695: 4691: 4687: 4684: 4681: 4676: 4672: 4663: 4659: 4655: 4650: 4646: 4638: 4637: 4636: 4617: 4613: 4609: 4606: 4603: 4598: 4594: 4568: 4565: 4538: 4513: 4509: 4505: 4502: 4499: 4494: 4490: 4486: 4481: 4477: 4473: 4470: 4467: 4462: 4458: 4432: 4429: 4410: 4408: 4392: 4388: 4384: 4381: 4378: 4375: 4370: 4366: 4338: 4334: 4330: 4327: 4324: 4319: 4315: 4294: 4291: 4288: 4263: 4260: 4257: 4230: 4218: 4214: 4210: 4205: 4178: 4170: 4167: 4136: 4133: 4130: 4122: 4119: 4111: 4108: 4105: 4102: 4099: 4096: 4093: 4088: 4084: 4080: 4075: 4065: 4059: 4051: 4048: 4040: 4037: 4034: 4031: 4022: 4019: 4014: 4010: 4002: 4001: 4000: 3986: 3981: 3977: 3953: 3947: 3944: 3941: 3938: 3933: 3929: 3925: 3920: 3910: 3904: 3901: 3898: 3889: 3886: 3879: 3878: 3877: 3870: 3868: 3849: 3838: 3802: 3791: 3778: 3767: 3759: 3751: 3740: 3727: 3716: 3702: 3696: 3690: 3684: 3679: 3676: 3671: 3663: 3652: 3646: 3643: 3638: 3627: 3621: 3615: 3612: 3606: 3603: 3600: 3594: 3587: 3586: 3585: 3571: 3563: 3560: 3552: 3549: 3529: 3524: 3513: 3507: 3504: 3501: 3498: 3493: 3482: 3476: 3473: 3470: 3450: 3447: 3444: 3424: 3421: 3415: 3412: 3409: 3403: 3396:we have that 3383: 3376: 3372: 3348: 3344: 3340: 3337: 3334: 3327: 3323: 3299: 3295: 3291: 3288: 3266: 3232: 3210: 3207: 3197: 3177: 3140: 3135: 3131: 3122: 3117: 3113: 3104: 3101: 3098: 3093: 3089: 3080: 3075: 3071: 3062: 3059: 3052: 3051: 3050: 3034: 3031: 3019: 2980: 2976: 2972: 2969: 2966: 2961: 2957: 2953: 2948: 2944: 2940: 2937: 2934: 2929: 2925: 2899: 2896: 2884: 2858: 2856: 2854: 2850: 2849:Betti numbers 2846: 2840: 2836: 2832: 2828: 2822: 2802: 2799: 2796: 2790: 2787: 2781: 2778: 2753: 2750: 2745: 2735: 2715: 2712: 2709: 2689: 2666: 2663: 2660: 2649: 2646: 2643: 2639: 2635: 2632: 2617: 2595: 2585: 2565: 2562: 2559: 2539: 2531: 2528: 2527: 2526: 2509: 2506: 2503: 2492: 2484: 2482: 2480: 2476: 2472: 2456: 2448: 2441: 2439: 2423: 2406: 2402: 2384: 2371: 2368: 2361: 2357: 2353: 2349: 2341: 2339: 2323: 2319: 2315: 2307: 2289: 2285: 2276: 2272: 2271:metric tensor 2268: 2250: 2246: 2242: 2239: 2236: 2233: 2228: 2224: 2220: 2195: 2191: 2187: 2184: 2181: 2176: 2172: 2148: 2123: 2119: 2115: 2112: 2109: 2104: 2100: 2071: 2067: 2063: 2060: 2055: 2051: 2047: 2042: 2037: 2034: 2031: 2027: 2023: 2020: 2013: 2012: 2011: 2010: 1994: 1989: 1985: 1977: 1961: 1941: 1929: 1913: 1908: 1902: 1895: 1891: 1887: 1878: 1874: 1868: 1862: 1857: 1847: 1846: 1845: 1843: 1839: 1835: 1829: 1826: 1822: 1818: 1811: 1778: 1771: 1768: 1765: 1762: 1759: 1751: 1748: 1745: 1742: 1739: 1734: 1731: 1724: 1721: 1718: 1715: 1712: 1704: 1701: 1698: 1695: 1692: 1687: 1681: 1676: 1668: 1664: 1660: 1655: 1651: 1644: 1637: 1636: 1635: 1633: 1617: 1612: 1609: 1577: 1574: 1570: 1566: 1563: 1560: 1555: 1551: 1537: 1529: 1524: 1522: 1520: 1504: 1484: 1464: 1444: 1421: 1418: 1415: 1404: 1388: 1380: 1364: 1344: 1336: 1320: 1317: 1314: 1294: 1289: 1285: 1281: 1278: 1258: 1255: 1249: 1246: 1243: 1237: 1217: 1212: 1208: 1204: 1201: 1181: 1161: 1156: 1152: 1144: 1143:tangent space 1128: 1125: 1122: 1102: 1095: 1079: 1072: 1068: 1060: 1058: 1056: 1052: 1036: 1014: 1010: 987: 983: 962: 939: 936: 928: 924: 917: 909: 901: 897: 890: 882: 876: 859: 856: 844: 840: 835: 831: 825: 818: 814: 809: 792: 789: 783: 773: 769: 752: 751: 750: 748: 730: 726: 717: 699: 695: 674: 666: 650: 642: 626: 606: 603: 595: 591: 584: 581: 578: 570: 566: 562: 557: 553: 546: 523: 520: 515: 511: 504: 501: 498: 495: 473: 469: 448: 445: 437: 421: 401: 396: 392: 388: 385: 380: 376: 367: 351: 331: 326: 322: 318: 315: 310: 306: 285: 280: 276: 268: 252: 249: 242: 226: 221: 217: 210: 207: 187: 167: 164: 156: 152: 148: 144: 140: 132: 130: 128: 124: 120: 116: 112: 108: 104: 100: 84: 77: 74: 73:nondegenerate 71: 55: 47: 43: 39: 35: 30: 19: 8286:Moving frame 8281:Morse theory 8271:Gauge theory 8063:Tensor field 7992:Closed/Exact 7971:Vector field 7939:Distribution 7908: 7880:Hypercomplex 7875:Quaternionic 7612:Vector field 7570:Smooth atlas 7490:math/9907034 7475: 7446: 7429: 7411: 7350: 7330: 7324: 7298: 7276: 7223: 7220:McDuff, Dusa 7167: 7163: 7153: 7134: 7130: 7120: 7101: 7060: 7036: 7021: 6846: 6839: 6835: 6831: 6766: 6721: 6714: 6709:denotes the 6703: 6700: 6698: 6554: 6546: 6542: 6538: 6531: 6523: 6516: 6509: 6502: 6495: 6485: 6478: 6471: 6464: 6457: 6453: 6447:is called a 6444: 6440: 6436: 6432: 6427: 6423: 6419: 6415: 6411: 6405: 6400: 6396: 6392: 6387: 6386:is called a 6383: 6378: 6374: 6370: 6362: 6358: 6356: 6231: 6214: 6209: 6205: 6201: 6196: 6186: 6182: 6177: 6173: 6166: 6160: 6148: 6144: 6142: 6122: 6118:Hitchin 1999 6107: 5976: 5821: 5626:Morse theory 5623: 5610:Morse theory 5602:local charts 5599: 5596: 5383: 5248: 5059: 4774: 4414: 4154: 3968: 3874: 3825: 3245:vanishes on 3155: 2862: 2838: 2834: 2830: 2826: 2818: 2647: 2642:co-isotropic 2641: 2633: 2529: 2488: 2469:-compatible 2445: 2345: 2267:phase spaces 2088: 1933: 1842:block matrix 1837: 1833: 1824: 1820: 1819:denotes the 1813: 1807: 1631: 1539: 1518: 1402: 1401:vanishes. A 1069:on a smooth 1066: 1064: 1050: 954: 155:vector field 136: 41: 31: 29: 8231:Levi-Civita 8221:Generalized 8193:Connections 8143:Lie algebra 8075:Volume form 7976:Vector flow 7949:Pushforward 7944:Lie bracket 7843:Lie algebra 7808:G-structure 7597:Pushforward 7577:Submanifold 6530:are called 6204:= ∑ d 4635:such that 3225:. The form 2491:submanifold 2473:are termed 1174:defined by 641:alternating 143:phase space 127:phase space 38:mathematics 8379:Categories 8354:Stratifold 8312:Diffeology 8108:Associated 7909:Symplectic 7894:Riemannian 7823:Hyperbolic 7750:Submersion 7658:Hopf–Rinow 7592:Submersion 7587:Smooth map 7465:McDuff, D. 7422:Lumist, Ü. 7399:2206.14792 7133:. Ser. A. 6834:of degree 6818:integrable 6806:compatible 5975:is called 5811:See also: 5628:. Given a 2578:such that 2479:integrable 1405:is a pair 1230:such that 1061:Definition 1053:should be 488:such that 344:. Letting 133:Motivation 8236:Principal 8211:Ehresmann 8168:Subbundle 8158:Principal 8133:Fibration 8113:Cotangent 7985:Covectors 7838:Lie group 7818:Hermitian 7761:manifolds 7730:Immersion 7725:Foliation 7663:Noether's 7648:Frobenius 7643:De Rham's 7638:Darboux's 7529:Manifolds 7456:0908.1886 7436:EMS Press 7424:(2001) , 7202:204899025 7013:Citations 6797:is exact. 6777:ω 6750:ω 6711:pull back 6674:ω 6661:ω 6655:∗ 6651:τ 6641:τ 6638:∘ 6629:π 6616:π 6612:∘ 6609:ν 6600:σ 6597:∘ 6571:∘ 6568:τ 6508:) : 6470:) : 6418:) : 6367:immersion 6315:→ 6298:∗ 6287:π 6250:∗ 6213:∧ d 6153:fibration 6035:Ω 5988:Ω 5937:Ω 5910:Ω 5863:Ω 5845:Ω 5838:Ω 5768:⋅ 5765:ε 5754:∩ 5726:∗ 5718:⊂ 5704:⋅ 5701:ε 5673:ε 5648:→ 5558:∂ 5554:∂ 5533:∂ 5529:∂ 5519:ω 5516:− 5492:∂ 5488:∂ 5467:∂ 5463:∂ 5453:ω 5345:∂ 5341:∂ 5320:∂ 5316:∂ 5306:ω 5221:∂ 5217:∂ 5199:∂ 5184:∂ 5162:∂ 5158:∂ 5140:∂ 5125:∂ 5103:∂ 5099:∂ 5026:∂ 5011:∂ 4992:∂ 4977:∂ 4971:− 4955:∂ 4940:∂ 4921:∂ 4906:∂ 4894:∑ 4744:… 4685:… 4607:… 4503:… 4471:… 4379:… 4328:… 4219:∗ 4123:− 4094:− 4066:∈ 4015:∗ 3982:∗ 3939:− 3911:∈ 3846:∂ 3799:∂ 3775:∂ 3760:− 3748:∂ 3724:∂ 3660:∂ 3635:∂ 3616:ω 3595:ω 3564:∧ 3550:ω 3521:∂ 3490:∂ 3404:ω 3368:∂ 3319:∂ 3233:ω 3183:→ 3123:∧ 3102:⋯ 3081:∧ 3060:ω 2970:… 2938:… 2800:⁡ 2775:dim  2736:ω 2713:⊂ 2690:ω 2667:ω 2586:ω 2563:⊂ 2510:ω 2457:ω 2372:⊂ 2237:… 2185:… 2113:… 2061:∧ 2028:∑ 2021:ω 1990:∗ 1888:− 1855:Ω 1785:otherwise 1769:⩽ 1763:⩽ 1743:− 1732:− 1722:⩽ 1716:⩽ 1696:− 1645:ω 1564:… 1465:ω 1422:ω 1389:ω 1345:ω 1282:∈ 1238:ω 1205:∈ 1182:ω 1126:∈ 1103:ω 918:ω 891:ω 857:ω 836:ι 826:ω 810:ι 797:⇔ 784:ω 727:ι 675:ω 651:ω 627:ω 547:ω 524:⋅ 505:ω 422:ω 397:∗ 389:⊗ 381:∗ 364:denote a 352:ω 327:∗ 319:⊗ 311:∗ 281:∗ 239:from the 222:∗ 214:→ 85:ω 8332:Orbifold 8327:K-theory 8317:Diffiety 8041:Pullback 7855:Oriented 7833:Kenmotsu 7813:Hadamard 7759:Types of 7708:Geodesic 7533:Glossary 7378:22509804 7319:(1971). 7297:(2006). 7275:(1978). 7100:(1985). 6894:See also 6804:that is 6395: : 6373: : 5384:for all 5060:for all 3463:. Then, 2859:Examples 2449:with an 2306:soldered 1525:Examples 1271:for all 1071:manifold 8276:History 8259:Related 8173:Tangent 8151:)  8131:)  8098:Adjoint 8090:Bundles 8068:density 7966:Torsion 7932:Vectors 7924:Tensors 7907:)  7892:)  7888:,  7886:Pseudo− 7865:Poisson 7798:Finsler 7793:Fibered 7788:Contact 7786:)  7778:Complex 7776:)  7745:Section 7182:Bibcode 6551:commute 6449:caustic 6390:). Let 6191:and by 6131:on the 6116:; see ( 5977:special 5612:to the 2403:on the 1307:, then 745:is the 366:section 265:to the 113:as the 8241:Vector 8226:Koszul 8206:Cartan 8201:Affine 8183:Vector 8178:Tensor 8163:Spinor 8153:Normal 8149:Stable 8103:Affine 8007:bundle 7959:bundle 7905:Almost 7828:Kähler 7784:Almost 7774:Almost 7768:Closed 7668:Sard's 7624:(list) 7376:  7366:  7305:  7283:  7230:  7200:  7108:  7067:  6842:-form. 6802:metric 6699:where 6647:  6606:  6553:, and 6496:π 6458:π 6435:. The 6412:π 6393:π 6157:fibres 1437:where 1094:2-form 1055:closed 687:along 70:closed 8349:Sheaf 8123:Fiber 7899:Rizza 7870:Prime 7701:Local 7691:Curve 7553:Atlas 7485:arXiv 7472:(PDF) 7451:arXiv 7394:arXiv 7261:(PDF) 7198:S2CID 7172:arXiv 6849:is a 6791:exact 6767:exact 6431:is a 6185:,..., 6172:,..., 6151:is a 2304:are " 2089:Here 1812:. If 44:is a 8216:Form 8118:Dual 8051:flow 7914:Tame 7890:Sub− 7803:Flat 7683:Maps 7374:OCLC 7364:ISBN 7303:ISBN 7281:ISBN 7228:ISBN 7106:ISBN 7065:ISBN 6545:and 6492:and 6357:Let 6123:The 6120:). 6108:The 5826:(or 5786:Crit 4276:and 3542:and 2863:Let 2766:and 2161:and 1934:Let 1540:Let 749:): 109:and 40:, a 8138:Jet 7356:doi 7335:doi 7190:doi 7168:A32 7139:doi 6789:is 6765:is 6720:by 6713:of 6439:of 6006:to 5881:on 5600:As 4551:of 3999:as 2837:× − 2797:dim 2702:to 2532:of 1836:× 2 1381:of 667:of 639:is 434:be 368:of 101:or 32:In 8381:: 8129:Co 7474:. 7449:. 7434:, 7428:, 7410:. 7372:. 7362:. 7329:. 7323:. 7271:; 7256:. 7244:. 7196:. 7188:. 7180:. 7166:. 7135:66 7129:. 7096:; 7092:; 7079:^ 7051:^ 6845:A 6830:A 6724:. 6541:, 6522:↠ 6515:↪ 6501:∘ 6484:↠ 6477:↪ 6463:∘ 6451:. 6443:∘ 6426:↠ 6422:↪ 6414:∘ 6399:↠ 6377:↪ 6189:), 6181:, 6143:A 5808:. 5442:: 4407:. 3425:0. 2833:, 2829:× 2525:: 2438:. 2346:A 1844:: 1823:× 1521:. 1517:a 1065:A 1057:. 48:, 8147:( 8127:( 7903:( 7884:( 7782:( 7772:( 7535:) 7531:( 7521:e 7514:t 7507:v 7493:. 7487:: 7478:. 7459:. 7453:: 7402:. 7396:: 7380:. 7358:: 7343:. 7337:: 7331:6 7311:. 7289:. 7263:. 7248:. 7236:. 7204:. 7192:: 7184:: 7174:: 7147:. 7141:: 7114:. 7073:. 7045:. 7030:. 6889:. 6873:) 6870:2 6867:+ 6864:n 6861:( 6840:k 6836:k 6827:. 6820:. 6753:) 6747:, 6744:M 6741:( 6722:τ 6718:2 6715:ω 6707:2 6704:ω 6701:τ 6684:, 6678:1 6670:= 6665:2 6644:, 6633:2 6625:= 6620:1 6603:, 6592:2 6588:i 6584:= 6579:1 6575:i 6555:τ 6547:ν 6543:τ 6539:σ 6527:2 6524:B 6520:2 6517:K 6513:2 6510:L 6506:2 6503:i 6499:2 6494:( 6489:1 6486:B 6482:1 6479:K 6475:1 6472:L 6468:1 6465:i 6461:1 6456:( 6445:i 6441:π 6428:B 6424:K 6420:L 6416:i 6410:( 6406:K 6401:B 6397:K 6384:i 6382:( 6379:K 6375:L 6371:i 6363:K 6359:L 6330:. 6325:n 6320:R 6310:n 6305:R 6294:T 6290:: 6267:, 6262:n 6257:R 6246:T 6232:M 6215:q 6210:k 6206:p 6202:ω 6197:ω 6187:q 6183:q 6178:n 6174:p 6170:1 6167:p 6165:( 6161:M 6149:M 6101:, 6081:L 6061:L 6039:1 6014:L 5992:2 5963:L 5941:2 5914:1 5889:M 5867:2 5858:i 5854:+ 5849:1 5841:= 5796:) 5793:f 5790:( 5782:= 5779:) 5776:f 5772:d 5762:( 5758:V 5751:M 5731:M 5722:T 5715:) 5712:f 5708:d 5698:( 5694:V 5652:R 5645:M 5642:: 5639:f 5582:1 5579:= 5575:) 5566:k 5562:q 5549:, 5541:k 5537:p 5523:( 5513:= 5509:) 5500:k 5496:p 5483:, 5475:k 5471:q 5457:( 5428:n 5425:2 5420:R 5398:j 5395:, 5392:i 5369:0 5366:= 5362:) 5353:j 5349:u 5336:, 5328:i 5324:u 5310:( 5283:L 5280:T 5257:L 5229:k 5225:p 5207:i 5203:u 5192:k 5188:p 5178:+ 5170:k 5166:q 5148:i 5144:u 5133:k 5129:q 5119:= 5111:i 5107:u 5074:j 5071:, 5068:i 5045:0 5042:= 5034:j 5030:u 5019:k 5015:q 5000:i 4996:u 4985:k 4981:p 4963:j 4959:u 4948:k 4944:p 4929:i 4925:u 4914:k 4910:q 4898:k 4890:= 4887:] 4882:j 4878:u 4874:, 4869:i 4865:u 4861:[ 4838:j 4835:, 4832:i 4812:] 4807:j 4803:u 4799:, 4794:i 4790:u 4786:[ 4760:) 4755:n 4751:u 4747:, 4741:, 4736:1 4732:u 4728:( 4723:i 4719:p 4715:= 4710:i 4706:p 4701:) 4696:n 4692:u 4688:, 4682:, 4677:1 4673:u 4669:( 4664:i 4660:q 4656:= 4651:i 4647:q 4623:) 4618:n 4614:u 4610:, 4604:, 4599:1 4595:u 4591:( 4569:n 4566:2 4561:R 4539:L 4519:) 4514:n 4510:p 4506:, 4500:, 4495:1 4491:p 4487:, 4482:n 4478:q 4474:, 4468:, 4463:1 4459:q 4455:( 4433:n 4430:2 4425:R 4393:k 4389:f 4385:d 4382:, 4376:, 4371:1 4367:f 4362:d 4339:k 4335:f 4331:, 4325:, 4320:1 4316:f 4295:0 4292:= 4289:y 4285:d 4264:0 4261:= 4258:x 4254:d 4231:2 4226:R 4215:T 4211:= 4206:4 4201:R 4179:y 4175:d 4171:, 4168:x 4164:d 4140:} 4137:0 4134:= 4131:x 4127:d 4120:y 4116:d 4112:y 4109:2 4106:, 4103:0 4100:= 4097:x 4089:2 4085:y 4081:: 4076:4 4071:R 4063:) 4060:y 4056:d 4052:, 4049:x 4045:d 4041:, 4038:y 4035:, 4032:x 4029:( 4026:{ 4023:= 4020:X 4011:T 3987:X 3978:T 3954:. 3951:} 3948:0 3945:= 3942:x 3934:2 3930:y 3926:: 3921:2 3916:R 3908:) 3905:y 3902:, 3899:x 3896:( 3893:{ 3890:= 3887:X 3855:) 3850:x 3842:( 3839:y 3835:d 3811:) 3808:) 3803:x 3795:( 3792:x 3788:d 3784:) 3779:x 3771:( 3768:y 3764:d 3757:) 3752:x 3744:( 3741:y 3737:d 3733:) 3728:x 3720:( 3717:x 3713:d 3709:( 3706:) 3703:x 3700:( 3697:g 3694:) 3691:x 3688:( 3685:f 3680:2 3677:1 3672:= 3669:) 3664:x 3656:) 3653:x 3650:( 3647:g 3644:, 3639:x 3631:) 3628:x 3625:( 3622:f 3619:( 3613:= 3610:) 3607:Y 3604:, 3601:X 3598:( 3572:y 3568:d 3561:x 3557:d 3553:= 3530:, 3525:x 3517:) 3514:x 3511:( 3508:g 3505:= 3502:Y 3499:, 3494:x 3486:) 3483:x 3480:( 3477:f 3474:= 3471:X 3451:1 3448:= 3445:n 3422:= 3419:) 3416:Y 3413:, 3410:X 3407:( 3384:, 3377:i 3373:x 3364:) 3359:x 3354:( 3349:i 3345:g 3341:= 3338:Y 3335:, 3328:i 3324:x 3315:) 3310:x 3305:( 3300:i 3296:f 3292:= 3289:X 3267:n 3261:x 3255:R 3211:n 3208:2 3202:y 3198:, 3194:x 3188:R 3178:n 3172:x 3166:R 3141:. 3136:n 3132:y 3127:d 3118:n 3114:x 3109:d 3105:+ 3099:+ 3094:1 3090:y 3085:d 3076:1 3072:x 3067:d 3063:= 3035:n 3032:2 3025:y 3020:, 3015:x 3008:R 2986:) 2981:n 2977:y 2973:, 2967:, 2962:1 2958:y 2954:, 2949:n 2945:x 2941:, 2935:, 2930:1 2926:x 2922:( 2900:n 2897:2 2890:y 2885:, 2880:x 2873:R 2841:) 2839:ω 2835:ω 2831:M 2827:M 2825:( 2803:M 2791:2 2788:1 2782:= 2779:L 2754:0 2751:= 2746:L 2741:| 2716:M 2710:L 2670:) 2664:, 2661:M 2658:( 2644:. 2630:. 2618:S 2596:S 2591:| 2566:M 2560:S 2540:M 2513:) 2507:, 2504:M 2501:( 2424:n 2419:P 2416:C 2385:n 2380:P 2377:C 2369:V 2324:i 2320:q 2316:d 2290:i 2286:p 2251:n 2247:q 2243:d 2240:, 2234:, 2229:1 2225:q 2221:d 2201:) 2196:n 2192:p 2188:, 2182:, 2177:1 2173:p 2169:( 2149:Q 2129:) 2124:n 2120:q 2116:, 2110:, 2105:1 2101:q 2097:( 2072:i 2068:q 2064:d 2056:i 2052:p 2048:d 2043:n 2038:1 2035:= 2032:i 2024:= 1995:Q 1986:T 1962:n 1942:Q 1914:. 1909:) 1903:0 1896:n 1892:I 1879:n 1875:I 1869:0 1863:( 1858:= 1838:n 1834:n 1832:2 1825:n 1821:n 1816:n 1814:I 1779:0 1772:n 1766:j 1760:1 1752:n 1749:= 1746:j 1740:i 1735:1 1725:n 1719:i 1713:1 1705:n 1702:= 1699:i 1693:j 1688:1 1682:{ 1677:= 1674:) 1669:j 1665:v 1661:, 1656:i 1652:v 1648:( 1632:ω 1618:. 1613:n 1610:2 1605:R 1583:} 1578:n 1575:2 1571:v 1567:, 1561:, 1556:1 1552:v 1548:{ 1505:M 1485:M 1445:M 1425:) 1419:, 1416:M 1413:( 1365:M 1321:0 1318:= 1315:X 1295:M 1290:p 1286:T 1279:Y 1259:0 1256:= 1253:) 1250:Y 1247:, 1244:X 1241:( 1218:M 1213:p 1209:T 1202:X 1162:M 1157:p 1153:T 1129:M 1123:p 1080:M 1051:ω 1037:H 1015:H 1011:V 988:H 984:V 963:H 940:0 937:= 934:) 929:H 925:V 921:( 914:d 910:= 907:) 902:H 898:V 894:( 887:d 883:+ 880:) 877:H 872:d 868:( 864:d 860:= 853:d 845:H 841:V 832:+ 829:) 819:H 815:V 806:( 802:d 793:0 790:= 787:) 781:( 774:H 770:V 763:L 731:X 700:H 696:V 607:0 604:= 601:) 596:H 592:V 588:( 585:H 582:d 579:= 576:) 571:H 567:V 563:, 558:H 554:V 550:( 527:) 521:, 516:H 512:V 508:( 502:= 499:H 496:d 474:H 470:V 449:H 446:d 402:M 393:T 386:M 377:T 332:M 323:T 316:M 307:T 286:M 277:T 253:M 250:T 227:M 218:T 211:M 208:T 188:H 168:H 165:d 56:M 20:)

Index

Lagrangian submanifold
differential geometry
mathematics
smooth manifold
closed
nondegenerate
differential 2-form
symplectic geometry
symplectic topology
classical mechanics
analytical mechanics
cotangent bundles
Hamiltonian formulation
cotangent bundle
phase space
classical mechanics
phase space
Hamilton equations
differential equations
vector field
tangent manifold
cotangent manifold
section
non-degenerate
alternating
Lie derivative
Cartan's formula
interior product
closed
manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.