Knowledge (XXG)

Flow battery

Source 📝

151: 492:
electrochemical voltage window of the graphite-aqueous acid interface, and thus the elimination of the mixing dilution, detrimental in Cr–Fe RFBs. More importantly for commercial success is the near-perfect match of the voltage window of carbon/aqueous acid interface with that of vanadium redox-couples. This extends the life of the low-cost carbon electrodes and reduces the impact of side reactions, such as H2 and O2 evolutions, resulting in many year durability and many cycle (15,000–20,000) lives, which in turn results in a record low
599:
space. One unresolved issue is zinc buildup on the negative electrode that can permeate the membrane, reducing efficiency. Because of the Zn dendrite formation, Zn-halide batteries cannot operate at high current density (> 20 mA/cm) and thus have limited power density. Adding alcohol to the electrolyte of the ZnI battery can help. The drawbacks of Zn/I RFB lie are the high cost of Iodide salts (> $ 20 / Kg); limited area capacity of Zn deposition, reducing the decoupled energy and power; and Zn dendrite formation.
1068:) with the decoupled energy-power advantage of flow batteries. SEB(ROTS) RFBs have advantages compared to semi-solid RFBs, such as no need to pump viscous slurries, no precipitation/clogging, higher area-specific power, longer durability, and wider chemical design space. However, because of double energy losses (one in the stack and another in the tank between the SEB(ROTS) and a mediator), such batteries suffer from poor energy efficiency. On a system-level, the practical specific energy of traditional 1053:, positive and negative electrode particles are suspended in a carrier liquid. The suspensions are flow through a stack of reaction chambers, separated by a barrier such as a thin, porous membrane. The approach combines the basic structure of aqueous-flow batteries, which use electrode material suspended in a liquid electrolyte, with the chemistry of lithium-ion batteries in both carbon-free suspensions and slurries with a conductive carbon network. The carbon-free semi-solid RFB is also referred to as 496:(LCOE, system cost divided by usable energy, cycle life, and round-trip efficiency). These long lifetimes allow for the amortization of their relatively high capital cost (driven by vanadium, carbon felts, bipolar plates, and membranes). The LCOE is on the order of a few tens cents per kWh, much lower than of solid-state batteries and near the targets of 5 cents stated by US and EC government agencies. Major challenges include: low abundance and high costs of V 1034: 688:. During charging, PFB combines hydrogen ions produced from splitting water with electrons and metal particles in one electrode of a fuel cell. The energy is stored in the form of a metal hydride solid. Discharge produces electricity and water when the process is reversed and the protons are combined with ambient oxygen. Metals less expensive than lithium can be used and provide greater energy density than lithium cells. 33: 1649: 1616:– Because flow batteries can be rapidly "recharged" by replacing the electrolyte, they can be used for applications where the vehicle needs to take on energy as fast as a gas vehicle. A common problem with most RFB chemistries in EV applications is their low energy density which translated into a short driving range. Zinc-chlorine batteries and batteries with highly soluble halates are a notable exception. 4879: 1635: 898:(de)hydrogenation demonstration cell operated continuously for 120 days over 1,111 charging cycles at room temperature without a catalyst, retaining 97% percent capacity. The cell offered more than double the energy density of vanadium-based systems. The major challenge was the lack of a stable catholyte, holding energy densities below 5 Wh/L. Alkaline AORFBs use excess 971:) dissolved in water were the active electrode material. The size-selective nanoporous membrane worked like a strainer and is produced much more easily and at lower cost than conventional ion-selective membranes. It block the big "spaghetti"-like polymer molecules, while allowing small counterions to pass. The concept may solve the high cost of traditional 705:
electrode materials, while the latter use inorganic materials for either anode or cathode. In larger-scale energy storage, lower solvent cost and higher conductivity give AORFBs greater commercial potential, as well as offering the safety advantages of water-based electrolytes. NAORFBs instead provide a much larger voltage window and occupy less space.
4588: 105:(50–80%). This drawback stems from the need to operate flow batteries at high (>= 100 mA/cm2) current densities to reduce the effect of internal crossover (through the membrane/separator) and to reduce the cost of power (size of stacks). Also, most flow batteries (Zn-Cl2, Zn-Br2 and H2-LiBrO3 are exceptions) have lower 1021:
chemical reaction can be reversed to recharge the battery – a first for a membraneless design. One such membraneless flow battery announced in August 2013 produced a maximum power density of 795 kW/cm, three times more than other membraneless systems—and an order of magnitude higher than lithium-ion batteries.
1020:
that can destroy the membrane. Both materials are available at low cost. The design uses a small channel between two electrodes. Liquid bromine flows through the channel over a graphite cathode and hydrobromic acid flows under a porous anode. At the same time, hydrogen gas flows across the anode. The
819:
exceeding 6,000 W/m at 13,000 A/m. Cycling showed > 99% storage capacity retention per cycle. Volumetric energy density was over 20 Wh/L. Anthraquinone-2-sulfonic acid and anthraquinone-2,6-disulfonic acid on the negative side and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on
598:
store 325 Wh/L. The zinc–polyiodide battery is claimed to be safer than other flow batteries given its absence of acidic electrolytes, nonflammability and operating range of −4 to 122 Â°F (−20 to 50 Â°C) that does not require extensive cooling circuitry, which would add weight and occupy
1015:
Membranes are often the most costly and least reliable battery components, as they are subject to corrosion by repeated exposure to certain reactants. The absence of a membrane enables the use of a liquid bromine solution and hydrogen: this combination is problematic when membranes are used, because
96:
Flow batteries have certain technical advantages over conventional rechargeable batteries with solid electroactive materials, such as independent scaling of power (determined by the size of the stack) and of energy (determined by the size of the tanks), long cycle and calendar life, and potentially
577:
aqueous solution. The two electrolytes of different pH are separated by a bipolar membrane. The system demonstrated good reversibility and high efficiencies in coulomb (95%), energy (84%), and voltage (88%). They reported improvements with increased current density, inclusion of larger 100 cm
737:
V, and, possibly, lowest capital cost ($ 180/kWh) reported for AORFBs as of 2015. The aqueous liquid electrolytes were designed as a drop-in replacement without replacing infrastructure. A 600-milliwatt test battery was stable for 100 cycles with nearly 100 percent efficiency at current densities
704:
Organic redox flow batteries can be further classified into aqueous (AORFBs) and non-aqueous (NAORFBs). AORFBs use water as solvent for electrolyte materials while NAORFBs employ organic solvents. AORFBs and NAORFBs can be further divided into total and hybrid systems. The former use only organic
423:
than to conventional batteries. The main reason fuel cells are not considered to be batteries, is because originally (in the 1800s) fuel cells emerged as a means to produce electricity directly from fuels (and air) via a non-combustion electrochemical process. Later, particularly in the 1960s and
520:
The hybrid flow battery (HFB) uses one or more electroactive components deposited as a solid layer. The major disadvantage is that this reduces decoupled energy and power. The cell contains one battery electrode and one fuel cell electrode. This type is limited in energy by the electrode surface
1063:
Flow batteries with redox-targeted solids (ROTS), also known as solid energy boosters (SEBs) either the posolyte or negolyte or both (a.k.a. redox fluids), come in contact with one or more solid electroactive materials (SEM). The fluids comprise one or more redox couples, with redox potentials
491:
Vanadium redox flow batteries are the commercial leaders. They use vanadium at both electrodes, so they do not suffer cross-contamination. The limited solubility of vanadium salts, however, offsets this advantage in practice. This chemistry's advantages include four oxidation states within the
459:
Cr–Fe chemistry has disadvantages, including hydrate isomerism (i.e. the equilibrium between electrochemically active Cr3+ chloro-complexes and inactive hexa-aqua complex and hydrogen evolution on the negode. Hydrate isomerism can be alleviated by adding chelating amino-ligands, while hydrogen
2498: 1551:
Technical merits make redox flow batteries well-suited for large-scale energy storage. Flow batteries are normally considered for relatively large (1 kWh – 10 MWh) stationary applications with multi-hour charge-discharge cycles. Flow batteries are not cost-efficient for shorter
1024:
In 2018, a macroscale membraneless RFB capable of recharging and recirculation of the electrolyte streams was demonstrated. The battery was based on immiscible organic catholyte and aqueous anolyte liquids, which exhibited high capacity retention and Coulombic efficiency during cycling.
874:
or combi-molecules allow the same material to be used in both tanks. In one tank it is an electron donor, while in the other it is an electron recipient. This has advantages such as diminishing crossover effects. Thus, quinone diaminoanthraquinone and indigo-based molecules as well as
2129: 4680:
Tolmachev, Yuriy V.; Piatkivskyi, Andrii; Ryzhov, Victor V.; Konev, Dmitry V.; Vorotyntsev, Mikhail A. (2015). "Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion".
717:
as a supporting electrolyte. At pH neutral conditions, organic and organometallic molecules are more stable than at corrosive acidic and alkaline conditions. For example, K4, a common catholyte used in AORFBs, is not stable in alkaline solutions but is at pH neutral conditions.
2008:
E. R. Sum, M.; Skyllas-Kazacos, M., J Power Sources, 16 (2), 85-95 (1985); E. S.-K. Sum, M., J Power Sources, 15 (2-3), 179-190 (1985); M. Rychcik and M. Skyllas-Kazacos, J Power Sources, 19 (1), 45-54 (1987); M. Rychcik and M. Skyllas-Kazacos, J Power Sources, 22 (1), 59-67
742:
mA, at which about 70% of the battery's original voltage was retained. Neutral AORFBs can be more environmentally friendly than acid or alkaline alternatives, while showing electrochemical performance comparable to corrosive RFBs. The MV/TEMPO AORFB has an energy density of
2517: 223:
and groups in Japan and elsewhere selected Cr–Fe chemistry for further development. Mixed solutions (i.e. comprising both chromium and iron species in the negolyte and in the posolyte) were used in order to reduce the effect of time-varying concentration during cycling.
2475: 700:
batteries. Organic redox flow batteries advantage is the tunable redox properties of its active components. As of 2021, organic RFB experienced low durability (i.e. calendar or cycle life, or both) and have not been demonstrated on a commercial scale.
636:). The battery produces power by pumping liquid across the stack where the liquids mix. Inside the stack, zinc ions pass through a selective membrane and change into metallic zinc on the stack's negative side. To increase energy density, bromide ions ( 4586:, Spaziante, Placido Maria; Kampanatsanyakorn, Krisada & Zocchi, Andrea, "System for storing and/or transforming energy from sources at variable voltage and frequency", published 2003-05-22, assigned to Squirrel Holdings Ltd. 218:
Walther Kangro, an Estonian chemist working in Germany in the 1950s, was the first to demonstrate flow batteries based on dissolved transition metal ions: Ti–Fe and Cr–Fe. After initial experimentations with Ti–Fe redox flow battery (RFB) chemistry,
3755:
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S. (2015). "An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials".
3703:
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S. (2015). "An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials".
1011:
in which two liquids are pumped through a channel, where they undergo electrochemical reactions to store or release energy. The solutions pass in parallel, with little mixing. The flow naturally separates the liquids, without requiring a membrane.
1045:
eliminates the requirement that charge moves in and out of particles that are in direct contact with a conducting plate. Instead, the nanoparticle network allows electricity to flow throughout the liquid. This allows more energy to be extracted.
1622:– An example of this is in cellphone base stations where no grid power is available. The battery can be used alongside solar or wind power sources to compensate for their fluctuating power levels and alongside a generator to save fuel. 288:
Electrolyte is stored externally, generally in tanks, and is typically pumped through the cell (or cells) of the reactor. Flow batteries can be rapidly "recharged" by replacing discharged electrolyte liquid (analogous to refueling
1569:
to store power during off-peak hours and release it during peak demand periods. The common problem limiting this use of most flow battery chemistries is their low areal power (operating current density) which translates into high
2303:
Cho, Kyu Taek; Tucker, Michael C.; Ding, Markus; Ridgway, Paul; Battaglia, Vincent S.; Srinivasan, Venkat; Weber, Adam Z. (2015). "Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage".
770:
and their derivatives are the basis of many organic redox systems. In one study, 1,2-dihydrobenzoquinone-3,5-disulfonic acid (BQDS) and 1,4-dihydrobenzoquinone-2-sulfonic acid (BQS) were employed as cathodes, and conventional
3395:
Winsberg, Jan; Stolze, Christian; Muench, Simon; Liedl, Ferenc; Hager, Martin D.; Schubert, Ulrich S. (11 November 2016). "TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries".
3063:
Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin; Sprenkle, Vincent; Wang, Wei (1 November 2015). "A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte".
578:
electrodes, and series operation. Preliminary data using a fluctuating simulated power input tested the viability toward kWh scale storage. In 2016, a high energy density Mn(VI)/Mn(VII)-Zn hybrid flow battery was proposed.
4186:
Qi, Zhaoxiang; Liu, Aaron L.; Koenig Jr, Gary M. (20 February 2017). "Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries".
2107: 952:
redox-species were proposed to reduce crossover, while allowing low-cost membranes. Such redox-active oligomers are known as redoxymers. One system uses organic polymers and a saline solution with a
2374:
Tolmachev, Yuriy V. (2015). "Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion".
391:). However a high power of 1.4 W/cm was demonstrated for hydrogen–bromine flow batteries, and a high specific energy (530 Wh/kg at the tank level) was shown for hydrogen–bromate flow batteries 540:
hybrid flow battery with an experimental OCV of 1.93 V and operating voltage of 1.70 V, relatively high values. It consists of a graphite felt positive electrode operating in a mixed solution of
387:
Traditional flow battery chemistries have both low specific energy (which makes them too heavy for fully electric vehicles) and low specific power (which makes them too expensive for stationary
2971:; Almheiri, Saif (2017). "The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: demonstration with an iron–chromium acetylacetonate chemistry". 239:
chemistry UNSW filed several patents related to VRFBs, that were later licensed to Japanese, Thai and Canadian companies, which tried to commercialize this technology with varying success.
1057:. Dissolving a material changes its chemical behavior significantly. However, suspending bits of solid material preserves the solid's characteristics. The result is a viscous suspension. 4445:
Li, Zheng; Sam Pan, Menghsuan; Su, Liang; Tsai, Ping-Chun; Badel, Andres F.; Valle, Joseph M.; Eiler, Stephanie L.; Xiang, Kai; Brushett, Fikile R.; Chiang, Yet-Ming (11 October 2017).
3543:
Feng, Ruozhu; Zhang, Xin; Murugesan, Vijayakumar; Hollas, Aaron; Chen, Ying; Shao, Yuyan; Walter, Eric; Wellala, Nadeesha P. N.; Yan, Litao; Rosso, Kevin M.; Wang, Wei (21 May 2021).
778:
was the anolyte in a hybrid acid AORFB. Quinones accept two units of electrical charge, compared with one in conventional catholyte, implying twice as much energy in a given volume.
2127:, Fujii, Toshinobu; Hirose, Takashi & Kondou, Naoki, "Metallohalogen secondary battery", published 1981-06-13, assigned to Meidensha Electric Mfg. Co. Ltd. 859:
V. Cell efficiency exceeded 99%, while round-trip efficiency measured 84%. The battery offered an expected lifetime of at least 1,000 cycles. Its theoretic energy density was 19
154:
The log number of publications related to electrochemical power sources by year. Also shown as the magenta line is the inflation-adjusted oil price in US$ /liter in linear scale
71:
Various flow batteries have been demonstrated, including inorganic and organic forms. Flow battery design can be further classified into full flow, semi-flow, and membraneless.
3992:; Hashaikeh, Raed; Almheiri, Saif (2018). "Cyclable membraneless redox flow batteries based on immiscible liquid electrolytes: Demonstration with all-iron redox chemistry". 2268:
Xu, Q.; Ji, Y.N.; Qin, L.Y.; Leung, P.K.; Qiao, F.; Li, Y.S.; Su, H.N. (2018). ""Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review"".
2889:
Andrews, J.; Seif Mohammadi, S. (2014). "Towards a 'proton flow battery': Investigation of a reversible PEM fuel cell with integrated metal-hydride hydrogen storage".
4358:
Tolmachev, Yuriy, and Svetlana V. Starodubceva. "Flow batteries with solid energy boosters." Journal of Electrochemical Science and Engineering 12.4 (2022): 731-766.
1598:– Because all cells share the same electrolyte(s), the electrolytes may be charged using a given number of cells and discharged with a different number. As battery 956:
membrane. A prototype underwent 10,000 charging cycles while retaining substantial capacity. The energy density was 10 Wh/L. Current density reached ,1 amperes/cm.
781:
Another quinone 9,10-Anthraquinone-2,7-disulfonic acid (AQDS), was evaluated. AQDS undergoes rapid, reversible two-electron/two-proton reduction on a glassy carbon
4077: 3357:
Carretero-GonzĂĄlez, Javier; Castillo-MartĂ­nez, Elizabeth; Armand, Michel (2016). "Highly water-soluble three-redox state organic dyes as bifunctional analytes".
2104: 4635: 2566:
Spagnuolo, G.; Petrone, G.; Mattavelli, P.; Guarnieri, M. (2016). "Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology".
730: 3006:
Luo, J.; Sam, A.; Hu, B.; DeBruler C.; Liu, T. L. (2017). "Unraveling pH Dependent Cycling Stability of Ferricyanide / Ferrocyanide in Redox Flow Batteries".
4310:
Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Angewandte Chemie-International Edition 2020, 59, 14286-14291.
372:
Lower energy efficiency, because they operate at higher current densities to minimize the effects of cross-over (internal self-discharge) and to reduce cost.
68:
inside the cell (accompanied by current flow through an external circuit) occurs across the membrane while the liquids circulate in their respective spaces.
882:
Another approach adopted a Blatter radical as the donor/recipient. It endured 275 charge and discharge cycles in tests, although it was not water-soluble.
979:
redox-species have not demonstrated competitive area-specific power. Low operating current density may be an intrinsic feature of large redox-molecules.
352:
Some types offer easy state-of-charge determination (through voltage dependence on charge), low maintenance and tolerance to overcharge/overdischarge.
150: 3192:
Xu, Yan; Wen, Yue-Hua; Cheng, Jie; Cao, Gao-Ping; Yang, Yu-Sheng (2010). "A study of tiron in aqueous solutions for redox flow battery application".
4808: 303:
due to their low inherent activity toward many redox couples. The amount of electricity that can be generated depends on the volume of electrolyte.
210: 733:
as a catholyte at pH neutral conditions, plus NaCL and a low-cost anion exchange membrane. This MV/TEMPO system has the highest cell voltage, 1.25
3807:
Bamgbopa, Musbaudeen O.; Almheiri, Saif; Sun, Hong (2017). "Prospects of recently developed membraneless cell designs for redox flow batteries".
4431: 2840:
Weng, Guo-Ming (2017). "Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries".
3301: 1860:
Redox Active Inorganic Materials for Redox Flow Batteries in Encyclopedia of Inorganic and Bioinorganic Chemistry: Inorganic Battery Materials
3228: 113:. The heavier weight results mostly from the need to use a solvent (usually-water) to maintain the redox active species in the liquid phase. 5301: 4602: 3254:"Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage" 1054: 5079: 4966: 2515:, Keefer, Richard Mackay, "Redox fuel cell regenerated with sugar", published 1972-08-08, assigned to Electrocell Ltd. 1509: 529: 5339: 355:
They are safe because they typically do not contain flammable electrolytes, and electrolytes can be stored away from the power stack.
4538: 3851: 1064:
flanking the redox potential of the SEM. Such SEB/RFBs combine the high specific energy advantage of conventional batteries (such as
4033:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
2646:
Leung, P. K.; Ponce-De-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C. (2011). "Characterization of a zinc–cerium flow battery".
1711:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
1562: 759:
AORFB were reported to be stable for 1000 cycles at an energy density of 10 Wh/L, the most stable, energy-dense AORFB to that date.
117: 5119: 215:
on September 29, 1879. Zn-Br2 batteries have relatively high specific energy, and were demonstrated in electric cars in the 1970s.
4765: 4371:
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014).
1754:
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014).
2255: 299:. Many flow batteries use carbon felt electrodes due to its low cost and adequate electrical conductivity, despite their limited 5129: 1426: 602:
When the battery is fully discharged, both tanks hold the same electrolyte solution: a mixture of positively charged zinc ions (
472: 5482: 2473:, Borchers, William, "Process of transforming chemical energy of fuel into electrical energy", published 1896-09-22 918: 2814:
Borghino, Dario (27 February 2015). "High-performance flow battery could rival lithium-ions for EVs and grid storage". Gizmag.
933:
coordinated to 1,3-propanediaminetetraacetate (PDTA), gave cell potentials of 1.62 V vs. ferrocyanide and a record 2.13 V vs.
322:
Independent scaling of energy (tanks) and power (stack), which allows for a cost/weight/etc. optimization for each application
89:(where new charged negolyte (a.k.a. reducer or fuel) and charged posolyte (a.k.a. oxidant) are added to the system) or like a 5437: 5057: 925:
would otherwise precipitate. By blocking the coordination of water to the metal, organic ligands can inhibit metal-catalyzed
595: 2254:
Tolmachev, Yuriy. "Flow batteries from 1879 to 2022 and beyond." Journal of Electrochemical Science and Engineering (2022) (
525: 201: 1060:
In 2022, Influit Energy announced a flow battery electrolyte consisting of a metal oxide suspended in an aqueous solution.
594:
flow battery demonstrated an energy density of 167 Wh/L. Older zinc–bromide cells reach 70 Wh/L. For comparison,
5477: 5139: 4620: 3518: 2826: 232: 996: 5360: 4801: 1589: 5104: 5530: 5447: 5390: 4971: 2732:"Investigations of High Voltage Vanadium-Metal Hydride Flow Battery toward kWh Scale Storage with 100 cm 2 Electrodes" 1662: 307: 5144: 5114: 5099: 5067: 2924:
Brushett, Fikile; Vaughey, John; Jansen, Andrew (2012). "An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery".
138:. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the 36:
A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes.
3109:"Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries" 2215:"Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage" 5467: 5329: 4776: 4721: 1578: 290: 5159: 4906: 4328:
Redox Targeting of Energy Materials for Energy Storage and Conversion. Advanced Materials 2021, 2104562 (2104519).
1813:
Alotto, P.; Guarnieri, M.; Moro, F. (2014). "Redox Flow Batteries for the storage of renewable energy: a review".
5556: 5457: 5375: 5334: 1607: 1595: 789:. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the 5174: 4564: 1471: 992: 5462: 5370: 5294: 5072: 3677: 3652: 2427:
Shiokawa, Y.; Yamana, H.; Moriyama, H. (2000). "An Application of Actinide Elements for a Redox Flow Battery".
2339:
Yu; Tolmachev, V. (2013). "Hydrogen-halogen electrochemical cells: A review of applications and technologies".
1978:
Yuriy V. Tolmachev "Review—Flow Batteries from 1879 to 2022 and Beyond." 2023 J. Electrochem. Soc. 170 030505.
1966:
Yuriy V. Tolmachev "Review—Flow Batteries from 1879 to 2022 and Beyond." 2023 J. Electrochem. Soc. 170 030505.
1619: 681: 493: 5179: 5124: 5109: 5042: 5001: 4976: 4956: 4936: 2214: 1443: 988: 281:. Electroactive elements are "elements in solution that can take part in an electrode reaction or that can be 49: 3282: 5551: 5452: 5385: 5365: 5062: 4794: 2867: 1654: 1050: 476: 335:
No need for "equalisation" charging (the overcharging of a battery to ensure all cells have an equal charge)
98: 3492: 5566: 5472: 5411: 5268: 5169: 1405: 1383: 1359: 1334: 899: 468: 236: 121: 5030: 1999:
W. Kangro Dr, 1949.; W. Kangro Dr, 1954.;W. Kangro and H. Pieper, Electrochim Acta, 7 (4), 435-448 (1962)
1494: 533: 5380: 5344: 5134: 4951: 4781: 2170:
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry".
2124: 1682: 1672: 1667: 1073: 1069: 381: 228: 110: 102: 5395: 4996: 4583: 824:. The battery was claimed to last 1,000 cycles without degradation. It has a low cell voltage (ca. 0.55 369:
Low charge and discharge rates. This implies large electrodes and membrane separators, increasing cost.
124:(H01M8/18), even though it is more appropriate to consider fuel cells as a subclass of flow batteries. 2512: 2078: 1990:
C. J. Amato, in "1973 International Automotive Engineering Congress and Exposition", p. 11, 1973-02-01
403:
cell uses redox-active species in fluid (liquid or gas) media. Redox flow batteries are rechargeable (
5012: 4981: 4817: 4495: 4458: 4384: 4283:
Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage. Advanced Materials 2018, 30, 13.
4158: 4147:"A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries" 4111: 4040: 3946: 3873: 3816: 3765: 3713: 3624: 3556: 3120: 3038: 3011: 2933: 2898: 2694: 2655: 2620: 2489: 2470: 2436: 2277: 2229: 1822: 1767: 1718: 1111: 960: 504:(> $ 30 / Kg); parasitic reactions including hydrogen and oxygen evolution; and precipitation of V 270: 206: 90: 61: 53: 4654: 1603: 5561: 5416: 5287: 5164: 5149: 5084: 5052: 5047: 4863: 4603:"Electric Vehicle Refuelling System (EVRS) used in conjunction with Vanadium Redox Flow Technology" 4215: 1979: 1967: 1556: 855:
tanks. The increased electrical resistance in the membrane was compensated increased voltage to 1.2
844: 574: 127: 74:
The fundamental difference between conventional and flow batteries is that energy is stored in the
5324: 5154: 5025: 4878: 4836: 4698: 4519: 4127: 3970: 3936: 3897: 3863: 3789: 3737: 3588: 3473: 3089: 2949: 2593: 2548: 2452: 2391: 2356: 2321: 1890: 922: 3927:
Braff, W. A.; Bazant, M. Z.; Buie, C. R. (2013). "Membrane-less hydrogen bromine flow battery".
2773: 1606:. In addition, if the number of cells is continuously changed (on the input and/or output side) 5228: 4946: 4916: 4614: 4511: 4447:"Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage" 4412: 4220: 4058: 4009: 3962: 3889: 3832: 3781: 3729: 3580: 3572: 3545:"Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries" 3465: 3457: 3413: 3374: 3209: 3081: 2988: 2796: 2751: 2712: 2195: 2187: 2060: 2052: 1795: 1736: 937:. Metal-organic flow batteries may be known as coordination chemistry flow batteries, such as 648:) are used as the complexing agent to stabilize the free iodine, forming iodine–bromide ions ( 412: 408: 404: 3253: 3148:"Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs" 2683:"Developments in soluble lead flow batteries and remaining challenges: An illustrated review" 1874: 5517: 5512: 5507: 5502: 5094: 5089: 4901: 4841: 4733: 4690: 4662: 4503: 4466: 4402: 4392: 4259: 4196: 4166: 4119: 4048: 4001: 3954: 3881: 3824: 3773: 3721: 3632: 3564: 3447: 3405: 3366: 3201: 3159: 3128: 3108: 3073: 3019: 2980: 2941: 2906: 2849: 2788: 2743: 2702: 2663: 2628: 2583: 2575: 2540: 2444: 2383: 2348: 2313: 2285: 2237: 2179: 2152: 2044: 1947: 1882: 1838: 1830: 1785: 1775: 1726: 1613: 1610:
can also be AC/DC, AC/AC, or DC–AC with the frequency limited by that of the switching gear.
1137: 1017: 836: 772: 453: 326: 318:
Redox flow batteries, and to a lesser extent hybrid flow batteries, have the advantages of:
4717:
Talk by John Davis of Deeya energy about their flow battery's use in the telecomms industry
4961: 4888: 4542: 4486:
Service, R.F. (2 November 2018). "Advances in flow batteries promise cheap backup power".
2731: 2730:
Weng, Guo-Ming; Li, Chi-Ying Vanessa; Chan, Kwong-Yu; Lee, Cheuk-Wing; Zhong, Jin (2016).
2111: 1677: 1566: 938: 926: 714: 274: 131: 106: 57: 3268: 2611:
Bartolozzi, M. (1989). "Development of redox flow batteries. A historical bibliography".
959:
Another oligomer RFB employed viologen and TEMPO redoxymers in combination with low-cost
4499: 4462: 4388: 4292:
Redox targeting-based flow batteries. Journal of Physics D-Applied Physics 2019, 52, 17.
4162: 4115: 4044: 3950: 3877: 3820: 3769: 3717: 3628: 3560: 3124: 3015: 2937: 2902: 2698: 2659: 2624: 2440: 2281: 2233: 2143:
Aaron, Douglas (2013). "In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries".
1826: 1771: 1722: 1033: 5197: 4851: 4407: 4372: 3989: 3678:"Chemists present an innovative redox-flow battery based on organic polymers and water" 2968: 2493: 2032: 1875:"Status and Prospects of Organic Redox Flow Batteries towards Renewable Energy Storage" 1790: 1755: 1592:, where the battery is used if the main power fails to provide an uninterrupted supply. 964: 388: 363: 342: 253:
began operating a 400 MWh, 100 MW vanadium flow battery, then the largest of its type.
65: 3544: 5545: 5432: 4831: 4338: 4319:
Redox targeting of energy materials. Current Opinion in Electrochemistry 2021, 29, 7.
3592: 3477: 3329: 2632: 1894: 1640: 921:, and can enable the electrolyte to be in neutral or alkaline conditions under which 816: 786: 677: 537: 300: 4702: 4523: 4200: 4131: 4005: 3974: 3901: 3205: 3107:
Luo, J.; Hu, B.; DeBruler C.; Zhao, Y.; Yuan B.; Hu, M.; Wu, W.; Liu, T. L. (2019).
3093: 2953: 2597: 2552: 2531:
Kummer, J. T.; Oei, D. -G. (1985). "A chemically regenerative redox fuel cell. II".
2456: 2395: 2360: 2325: 2018:
G. Kear, A. A. Shah, and F. C. Walsh, Int. J. Energy Res., 36 (11), 1105-1120 (2012)
1909: 5035: 4991: 4926: 4868: 4171: 4146: 3793: 3741: 2910: 2667: 1042: 1008: 903: 864: 848: 756: 116:
Patent Classifications for flow batteries had not been fully developed as of 2021.
3409: 2496:, "Brennstoffelement mit unangreifbaren Elektroden ", published 1912-06-15 2448: 1886: 483:. Redox fuel cells are less common commercially although many have been proposed. 32: 4507: 3023: 2774:"High energy density MnO4−/MnO42− redox couple for alkaline redox flow batteries" 2033:"Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review" 894:
molecules can be reengineered to increase water solubility. In 2021 a reversible
293:) while recovering the spent material for recharging. They can also be recharged 93:(where an electric power source drives regeneration of the reducer and oxidant). 5263: 5248: 4986: 4911: 4471: 4446: 3637: 3612: 3132: 2048: 1648: 1065: 870:
Integrating both anolyte and catholyte in the same molecule, i.e., bifunctional
416: 278: 266: 79: 78:
material in conventional batteries, while in flow batteries it is stored in the
3828: 1834: 1602:
is proportional to the number of cells used, the battery can act as a powerful
64:
in liquids that are pumped through the system on separate sides of a membrane.
5207: 4941: 4921: 4770: 4715: 4694: 4235: 4078:"Nanoparticle Networks Promise Cheaper Batteries for Storing Renewable Energy" 2707: 2682: 2387: 2352: 2289: 2241: 1630: 891: 591: 377: 282: 17: 4734:"Performance Testing of Zinc–Bromine Flow Batteries for Remote Telecom Sites" 4397: 4062: 4013: 3836: 3576: 3461: 3434:
Potash, Rebecca A.; McKone, James R.; Conte, Sean; Abruña, Héctor D. (2016).
3417: 3378: 3213: 3085: 2992: 2755: 2716: 2681:
Krishna, M.; Fraser, E. J.; Wills, R. G. A.; Walsh, F. C. (1 February 2018).
2579: 2191: 2056: 1780: 1740: 5310: 5253: 5243: 5233: 5202: 4858: 3613:"Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries" 3568: 1634: 1574: 968: 953: 914: 876: 782: 752: 685: 420: 262: 139: 86: 75: 4515: 4416: 4123: 3966: 3893: 3852:"New rechargeable flow battery enables cheaper, large-scale energy storage" 3785: 3733: 3584: 3180:
World Non-Grid-Connected Wind Power and Energy Conference, 2009. WNWEC 2009
3077: 2945: 2800: 2317: 2199: 1799: 879:
are potential electrolytes for such symmetric redox-flow batteries (SRFB).
4102:
Duduta, Mihai (May 2011). "Semi-Solid Lithium Rechargeable Flow Battery".
3493:"Symmetrical flow battery may strike right balance for grid-scale storage" 2408:
Linden, D.; Reddy, T.B. (2002). Handbook of Batteries (Eds.). McGraw-Hill.
5494: 4931: 4029:"Review Article: Flow battery systems with solid electroactive materials" 3452: 3435: 3318:
Alkaline quinone flow battery Lin et al. Science 2015 349 (6255), p. 1529
3269:"New water-based organic battery is cheap, rechargeable and eco-friendly" 2747: 2588: 1843: 1707:"Review Article: Flow battery systems with solid electroactive materials" 1217: 1199: 1163: 1133: 1107: 976: 949: 930: 871: 748: 722: 464:
overvoltage and Au salts for catalyzing the chromium electrode reaction.
269:
containing one or more dissolved electroactive elements flows through an
4786: 4655:"A Zinc-Chloride Battery - The Missing Link to a Practical Electric Car" 4260:"Influit moves to commercialize its ultra-high density liquid batteries" 3777: 3725: 2156: 5238: 3958: 3885: 3370: 3330:"Greener, safer flow battery could store renewable energy on the cheap" 3164: 3147: 2984: 2853: 2792: 2544: 1599: 1159: 934: 929:, resulting in higher voltage aqueous systems. For example, the use of 852: 767: 726: 480: 295: 4053: 4028: 3519:"Candle compound brings high density to grid-scale battery technology" 3469: 2183: 2064: 1952: 1935: 1731: 1706: 696:
Compared to inorganic redox flow batteries, such as vanadium and Zn-Br
4373:"Emerging electrochemical energy conversion and storage technologies" 1756:"Emerging electrochemical energy conversion and storage technologies" 972: 910: 895: 738:
ranging from 20 to 100 mA/cm, with optimal performance rated at 40–50
246: 4359: 3352: 3350: 3039:"New flow battery projected to cost 60% less than existing standard" 4760: 4666: 4636:"nanoFLOWCELL-powered Quant e-Limo approved for german road trials" 713:
pH neutral AORFBs are operated at pH 7 conditions, typically using
624:). When charged, one tank holds another negative ion, polyiodide, ( 325:
Long cycle and calendar lives (because there are no solid-to-solid
5223: 4432:"Room-temperature flow battery uses liquid sodium-potassium alloy" 4301:
Redox Targeting Improves Flow Batteries. Joule 2019, 3, 2066-2067.
3941: 3868: 3302:"Flow Battery Could Smooth Irregular Wind and Solar Energy Supply" 3283:"A rechargeable battery to power a home from rooftop solar panels" 1032: 812: 400: 250: 31: 1980:
https://iopscience.iop.org/article/10.1149/1945-7111/acb8de/meta
1968:
https://iopscience.iop.org/article/10.1149/1945-7111/acb8de/meta
1858:
Hu, B.; Luo, J.; DeBruler C.; Hu, M; Wu, W.; Liu, T. L. (2019).
867:'s chemical stability in high pH KOH solution was not verified. 587: 536:, and iron-salt flow batteries. Weng et al. reported a vanadium– 449: 220: 135: 5283: 4790: 3611:
Robb, Brian H.; Farrell, Jason M.; Marshak, Michael P. (2019).
2031:
Kwabi, David G.; Ji, Yunlong; Aziz, Michael J. (22 July 2020).
460:
evolution can be mitigated by adding Pb salts to increase the H
204:(Zn-Br2) was the original flow battery. John Doyle file patent 5258: 4339:"130+ million publications organized by topic on ResearchGate" 3850:
Braff, William A.; Bazant, Martin Z.; Buie, Cullen R. (2013).
2772:
Colli, Alejandro N.; Peljo, Pekka; Girault, Hubert H. (2016).
1181: 376:
Flow batteries typically have a higher energy efficiency than
5279: 2079:"World's largest flow battery connected to the grid in China" 1559:- short and/or long-term energy storage for use by the grid 366:(large tanks are required to store useful amounts of energy) 3178:
Xu, Y.; Wen, Y.; Cheng, J.; Yanga, Y.; Xie, Z.; Cao, G. In
2213:
Arenas, L.F.; Ponce de LeĂłn, C.; Walsh, F.C. (June 2017).
2827:"New flow battery to keep big cities lit, green and safe" 1873:
Luo, J.; Hu, B.; Hu, M.; Liu, T. L. (13 September 2019).
1584:
Peak shaving, where demand spikes are met by the battery.
3429: 3427: 668:) as a means to free up iodide ions for charge storage. 306:
Flow batteries are governed by the design principles of
134:
and ranges, in practical applications, from 1.0 to 2.43
4568: 2417:
C. Y. Sun and H. Zhang, ChemSusChem, 15 (1), 15 (2022)
4145:
Qi, Zhaoxiang; Koenig Jr., Gary M. (15 August 2016).
1934:
Yuriy V. Tolmachev; Svetlana V. Starodubceva (2022).
3146:
Gong, K; Fang, Q; Gu, S; Li, F.S.Y.; Yan, Y (2015).
851:
was less corrosive, allowing the use of inexpensive
5493: 5425: 5404: 5353: 5317: 5216: 5188: 5010: 4886: 4824: 3436:"On the Benefits of a Symmetric Redox Flow Battery" 3390: 3388: 747:
Wh/L with the limitation on the TEMPO side. In 2019
467:Traditional redox flow battery chemistries include 1573:Shifting energy from intermittent sources such as 1072:is larger than that of SEB(ROTS)-flow versions of 329:, which degrade lithium-ion and related batteries) 4609:. Archived from the original on 10 December 2011. 1041:A lithium–sulfur system arranged in a network of 101:,. However, flow batteries suffer from low cycle 913:to improve redox properties. The ligands can be 820:the positive side avoids the use of hazardous Br 2868:"Proton flow battery simplifies hydrogen power" 1552:charge/discharge times. Market niches include: 1705:Qi, Zhaoxiang; Koenig, Gary M. (12 May 2017). 448:, such as unitized regenerative fuel cells in 242:Organic redox flow batteries emerged in 2009. 5295: 4802: 731:4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl 8: 2767: 2765: 902:catholyte because of the stability issue of 573:, and a metal hydride negative electrode in 1936:"Flow batteries with solid energy boosters" 1700: 1698: 5302: 5288: 5280: 4809: 4795: 4787: 4766:Research on the uranium redox flow battery 1815:Renewable & Sustainable Energy Reviews 1083: 751:-based flow batteries using an ultralight 4470: 4406: 4396: 4170: 4052: 3940: 3867: 3636: 3451: 3229:"From Harvard, a Cheaper Storage Battery" 3163: 2706: 2587: 2429:Journal of Nuclear Science and Technology 1951: 1842: 1789: 1779: 1730: 909:Metal-organic flow batteries use organic 3922: 3920: 3918: 3809:Renewable and Sustainable Energy Reviews 2891:International Journal of Hydrogen Energy 1085:Comparison of flow battery compositions 676:Proton flow batteries (PFB) integrate a 149: 4683:Journal of Solid State Electrochemistry 4027:Qi, Zhaoxiang; Koenig, Gary M. (2017). 2376:Journal of Solid State Electrochemistry 1940:Electrochemical Science and Engineering 1694: 60:is provided by two chemical components 4612: 4565:"Redflow – Sustainable Energy Storage" 3440:Journal of the Electrochemical Society 2736:Journal of the Electrochemical Society 1581:for use during periods of peak demand. 1096:Average electrode power density (W/m) 987:Other flow-type batteries include the 839:with a less toxic alkaline solution (1 613:) and negatively charged iodide ion, ( 4782:South Australian Flow Battery Project 4214:Chandler, David L. (23 August 2011). 3606: 3604: 3602: 3328:Borghino, Dario (30 September 2015). 2026: 2024: 1055:solid dispersion redox flow batteries 424:1990s, rechargeable fuel cells (i.e. 7: 4216:"Go with the Flow – Cambridge Crude" 2568:IEEE Industrial Electronics Magazine 680:storage electrode into a reversible 348:Recycling of electroactive materials 227:In the late 1980s, Sum, Rychcik and 3227:WALD, MATTHEW L. (8 January 2014). 2825:White, Frances (25 February 2015). 2533:Journal of Applied Electrochemistry 2341:Russian Journal of Electrochemistry 828:V) and a low energy density (< 4 5340:Proton-exchange membrane fuel cell 4237:Darpa Nanoelectrofuel Flow Battery 3359:Energy & Environmental Science 3037:Moss, Richard (22 December 2015). 2842:Energy & Environmental Science 1908:Clark, Elliot (17 November 2023). 85:A flow battery may be used like a 25: 4634:Antony Ingram (11 October 2016). 4360:https://hrcak.srce.hr/file/410594 3300:Matthew Gunther, ChemistryWorld. 1565:– the battery is attached to the 1007:A membraneless battery relies on 261:A flow battery is a rechargeable 235:(UNSW) in Australia demonstrated 118:Cooperative Patent Classification 4877: 4653:Amato, C. J. (1 February 1973). 3182:IEEE: Nanjing, China, 2009, p 1. 3152:Energy and Environmental Science 2973:Journal of Materials Chemistry A 1647: 1633: 596:lithium iron phosphate batteries 130:is chemically determined by the 120:considers RFBs as a subclass of 5483:Unitized regenerative fuel cell 4761:Electropaedia on Flow Batteries 4201:10.1016/j.electacta.2017.01.061 4006:10.1016/j.electacta.2018.02.063 3653:"Energy Storage: GridStar Flow" 3206:10.1016/j.electacta.2009.09.031 815:couple, yields a peak galvanic 409:heterogeneous electron transfer 4172:10.1016/j.jpowsour.2016.05.033 4076:Kevin Bullis (24 April 2014). 3491:Lavars, Nick (17 March 2022). 3267:Szondy, David (29 June 2014). 2911:10.1016/j.ijhydene.2013.11.010 2870:. Gizmag.com. 13 February 2014 2668:10.1016/j.jpowsour.2011.01.095 1510:Zinc–cerium (methanesulfonate) 1: 5478:Solid oxide electrolyzer cell 3410:10.1021/acsenergylett.6b00413 2926:Advanced Functional Materials 2449:10.1080/18811248.2000.9714891 1887:10.1021/acsenergylett.9b01332 1099:Average fluid energy density 967:(similar to acrylic glass or 941:'s Gridstar Flow technology. 407:) cells. Because they employ 233:University of New South Wales 5361:Direct borohydride fuel cell 4508:10.1126/science.362.6414.508 4430:Bush, Steve (20 July 2018). 4258:Blain, Loz (9 August 2022). 3517:Lavars, Nick (21 May 2021). 3024:10.1016/j.nanoen.2017.10.057 2633:10.1016/0378-7753(89)80037-0 2145:ECS Electrochemistry Letters 1495:Lead–acid (methanesulfonate) 1384:Vanadium–vanadium (sulphate) 358:The main disadvantages are: 27:Type of electrochemical cell 5448:Membrane electrode assembly 5391:Reformed methanol fuel cell 4472:10.1016/j.joule.2017.08.007 3638:10.1016/j.joule.2019.07.002 3133:10.1016/j.joule.2018.10.010 2049:10.1021/acs.chemrev.9b00599 1663:Glossary of fuel cell terms 1406:Vanadium–vanadium (bromide) 308:electrochemical engineering 291:internal combustion engines 5583: 5468:Protonic ceramic fuel cell 5438:Electro-galvanic fuel cell 5330:Molten carbonate fuel cell 4659:SAE Technical Paper Series 4539:"Storing Renewable Energy" 3829:10.1016/j.rser.2016.11.234 1910:"What is a Calendar-life?" 1881:. 2019, 4 (9): 2220–2240. 1835:10.1016/j.rser.2013.08.001 1427:Sodium–bromine polysulfide 1316:Sulfonate viologen (NH4)4 963:membranes. Functionalized 395:Traditional flow batteries 5526: 5458:Photoelectrochemical cell 5376:Direct methanol fuel cell 5335:Phosphoric acid fuel cell 4967:Metal–air electrochemical 4875: 4695:10.1007/s10008-015-2805-z 4619:: CS1 maint: unfit URL ( 4104:Advanced Energy Materials 3988:Bamgbopa, Musbaudeen O.; 3066:Advanced Energy Materials 2967:Bamgbopa, Musbaudeen O.; 2708:10.1016/j.est.2017.10.020 2687:Journal of Energy Storage 2388:10.1007/s10008-015-2805-z 2353:10.1134/S1023193513120069 2290:10.1016/j.est.2018.01.005 2270:Journal of Energy Storage 2242:10.1016/j.est.2017.02.007 2222:Journal of Energy Storage 2103:Science-Dictionary.org. " 927:water-splitting reactions 419:they are more similar to 273:that reversibly converts 202:zinc–bromine flow battery 5463:Proton-exchange membrane 5371:Direct-ethanol fuel cell 4669:– via www.sae.org. 4398:10.3389/fchem.2014.00079 4151:Journal of Power Sources 2648:Journal of Power Sources 2613:Journal of Power Sources 2580:10.1109/MIE.2016.2611760 1781:10.3389/fchem.2014.00079 1620:Stand-alone power system 997:hydrogen–bromine battery 682:proton exchange membrane 494:levelized cost of energy 5453:Membraneless Fuel Cells 5386:Metal hydride fuel cell 5366:Direct carbon fuel cell 4772:How flow batteries work 3569:10.1126/science.abd9795 2781:Chemical Communications 2125:JP patent S5671271A 2105:Electroactive Substance 1655:Renewable energy portal 1051:semi-solid flow battery 1037:Semi-solid flow battery 906:in alkaline solutions. 99:total cost of ownership 5473:Regenerative fuel cell 5412:Enzymatic biofuel cell 5269:Semipermeable membrane 5058:Lithium–iron–phosphate 4584:WO patent 03043170 4377:Frontiers in Chemistry 4124:10.1002/aenm.201100152 3078:10.1002/aenm.201501449 2946:10.1002/aenm.201200322 2318:10.1002/cplu.201402043 2110:27 August 2013 at the 1760:Frontiers in Chemistry 1093:Max. cell voltage (V) 1038: 900:potassium ferrocyanide 155: 122:regenerative fuel cell 109:(heavier weight) than 37: 5381:Formic acid fuel cell 5345:Solid oxide fuel cell 5140:Rechargeable alkaline 4818:Electrochemical cells 4082:MIT Technology Review 3929:Nature Communications 3856:Nature Communications 3010:. 2017, 42: 215–221. 2513:US patent 3682704 1683:Microtubular membrane 1673:List of battery types 1668:Hydrogen technologies 1517:< 1,200–2,500 1074:lithium-ion batteries 1070:lithium-ion batteries 1036: 413:solid-state diffusion 382:lithium-ion batteries 153: 111:lithium-ion batteries 35: 5120:Nickel–metal hydride 3453:10.1149/2.0971602jes 2748:10.1149/2.0271601jes 2490:DE patent 264026 2471:US patent 567959 993:zinc–bromine battery 975:membrane. RFBs with 923:metal aquo complexes 338:No harmful emissions 332:Quick response times 285:on the electrode." 271:electrochemical cell 91:rechargeable battery 54:electrochemical cell 5417:Microbial fuel cell 5130:Polysulfide–bromide 4972:Nickel oxyhydroxide 4864:Thermogalvanic cell 4607:REDT Energy Storage 4571:on 9 February 2010. 4500:2018Sci...362..508S 4463:2017Joule...1..306L 4389:2014FrCh....2...79B 4189:Electrochimica Acta 4163:2016JPS...323...97Q 4116:2011AdEnM...1..511D 4045:2017JVSTB..35d0801Q 3994:Electrochimica Acta 3951:2013NatCo...4.2346B 3878:2013NatCo...4.2346B 3821:2017RSERv..70..506B 3778:10.1038/nature15746 3770:2015Natur.527...78J 3726:10.1038/nature15746 3718:2015Natur.527...78J 3629:2019Joule...3.2503R 3561:2021Sci...372..836F 3306:Scientific American 3194:Electrochimica Acta 3125:2019Joule...3..149L 3016:2017NEne...42..215L 2979:(26): 13457–13468. 2938:2012AdEnM...2.1390B 2903:2014IJHE...39.1740A 2787:(97): 14039–14042. 2699:2018JEnSt..15...69K 2660:2011JPS...196.5174L 2625:1989JPS....27..219B 2441:2000JNST...37..253S 2282:2018JEnSt..16..108X 2234:2017JEnSt..11..119A 2157:10.1149/2.001303eel 1827:2014RSERv..29..325A 1772:2014FrCh....2...79B 1723:2017JVSTB..35d0801Q 1458:Sulfur–oxygen-salt 1086: 989:zinc–cerium battery 473:polysulfide–bromide 345:during idle periods 50:reduction–oxidation 5325:Alkaline fuel cell 4893:(non-rechargeable) 4837:Concentration cell 4545:on 1 February 2014 3959:10.1038/ncomms3346 3886:10.1038/ncomms3346 3398:ACS Energy Letters 3371:10.1039/C6EE01883A 3256:. 11 January 2014. 3165:10.1039/C5EE02341F 2985:10.1039/c7ta02022h 2854:10.1039/C6EE03554J 2793:10.1039/C6CC08070G 2742:(1): A5180–A5187. 2545:10.1007/BF01059304 1084: 1039: 456:) were developed. 156: 46:redox flow battery 38: 5539: 5538: 5277: 5276: 4494:(6414): 508–509. 4221:Technology Review 4054:10.1116/1.4983210 3684:. 21 October 2015 3623:(10): 2503–2512. 3555:(6544): 836–840. 3365:(11): 3521–3530. 3158:(12): 3515–3530. 2932:(11): 1390–1396. 2654:(11): 5174–5185. 2184:10.1021/cr068076m 2043:(14): 6467–6489. 1953:10.5599/jese.1363 1732:10.1116/1.4983210 1614:Electric vehicles 1544: 1543: 1526:Zn-Mn(VI)/Mn(VII) 709:pH neutral AORFBs 512:during cycling. 380:, but lower than 327:phase transitions 279:electrical energy 103:energy efficiency 16:(Redirected from 5574: 5557:Electrochemistry 5396:Zinc–air battery 5304: 5297: 5290: 5281: 5073:Lithium–titanate 5018: 4894: 4881: 4842:Electric battery 4811: 4804: 4797: 4788: 4773: 4748: 4747: 4745: 4743: 4738: 4730: 4724: 4718: 4713: 4707: 4706: 4689:(9): 2711–2722. 4677: 4671: 4670: 4650: 4644: 4643: 4631: 4625: 4624: 4618: 4610: 4599: 4593: 4592: 4591: 4587: 4579: 4573: 4572: 4567:. Archived from 4561: 4555: 4554: 4552: 4550: 4541:. Archived from 4534: 4528: 4527: 4483: 4477: 4476: 4474: 4442: 4436: 4435: 4427: 4421: 4420: 4410: 4400: 4368: 4362: 4356: 4350: 4349: 4347: 4345: 4335: 4329: 4326: 4320: 4317: 4311: 4308: 4302: 4299: 4293: 4290: 4284: 4281: 4275: 4274: 4272: 4270: 4255: 4249: 4248: 4247: 4245: 4232: 4226: 4225: 4211: 4205: 4204: 4183: 4177: 4176: 4174: 4142: 4136: 4135: 4099: 4093: 4092: 4090: 4088: 4073: 4067: 4066: 4056: 4024: 4018: 4017: 3985: 3979: 3978: 3944: 3924: 3913: 3912: 3910: 3908: 3871: 3847: 3841: 3840: 3804: 3798: 3797: 3752: 3746: 3745: 3700: 3694: 3693: 3691: 3689: 3674: 3668: 3667: 3665: 3663: 3649: 3643: 3642: 3640: 3608: 3597: 3596: 3540: 3534: 3533: 3531: 3529: 3514: 3508: 3507: 3505: 3503: 3488: 3482: 3481: 3455: 3446:(3): A338–A344. 3431: 3422: 3421: 3392: 3383: 3382: 3354: 3345: 3344: 3342: 3340: 3325: 3319: 3316: 3310: 3309: 3297: 3291: 3290: 3279: 3273: 3272: 3264: 3258: 3257: 3250: 3244: 3243: 3241: 3239: 3224: 3218: 3217: 3189: 3183: 3176: 3170: 3169: 3167: 3143: 3137: 3136: 3104: 3098: 3097: 3060: 3054: 3053: 3051: 3049: 3034: 3028: 3027: 3003: 2997: 2996: 2964: 2958: 2957: 2921: 2915: 2914: 2897:(4): 1740–1751. 2886: 2880: 2879: 2877: 2875: 2864: 2858: 2857: 2837: 2831: 2830: 2822: 2816: 2815: 2811: 2805: 2804: 2778: 2769: 2760: 2759: 2727: 2721: 2720: 2710: 2678: 2672: 2671: 2643: 2637: 2636: 2608: 2602: 2601: 2591: 2563: 2557: 2556: 2528: 2522: 2521: 2520: 2516: 2509: 2503: 2502: 2501: 2497: 2486: 2480: 2479: 2478: 2474: 2467: 2461: 2460: 2424: 2418: 2415: 2409: 2406: 2400: 2399: 2382:(9): 2711–2722. 2371: 2365: 2364: 2336: 2330: 2329: 2300: 2294: 2293: 2265: 2259: 2252: 2246: 2245: 2219: 2210: 2204: 2203: 2178:(7): 2646–2687. 2172:Chemical Reviews 2167: 2161: 2160: 2140: 2134: 2133: 2132: 2128: 2121: 2115: 2101: 2095: 2094: 2092: 2090: 2085:. 3 October 2022 2075: 2069: 2068: 2037:Chemical Reviews 2028: 2019: 2016: 2010: 2006: 2000: 1997: 1991: 1988: 1982: 1976: 1970: 1964: 1958: 1957: 1955: 1931: 1925: 1924: 1922: 1920: 1905: 1899: 1898: 1870: 1864: 1863: 1862:. pp. 1–25. 1855: 1849: 1848: 1846: 1810: 1804: 1803: 1793: 1783: 1751: 1745: 1744: 1734: 1702: 1657: 1652: 1651: 1643: 1638: 1637: 1608:power conversion 1596:Power conversion 1537: 1485: 1444:Sodium–potassium 1417: 1397: 1374: 1349: 1307: 1287: 1267: 1246: 1151: 1138:lithium chlorate 1125: 1087: 1029:Suspension-based 1018:hydrobromic acid 862: 858: 842: 837:hydrobromic acid 831: 827: 811: 810: 809: 800: 799: 798: 746: 741: 736: 667: 666: 665: 658: 657: 647: 646: 645: 635: 634: 633: 623: 622: 621: 612: 611: 610: 572: 571: 570: 562: 561: 551: 550: 549: 454:Helios Prototype 447: 446: 445: 435: 434: 433: 214: 213: 209: 52:), is a type of 21: 5582: 5581: 5577: 5576: 5575: 5573: 5572: 5571: 5542: 5541: 5540: 5535: 5522: 5489: 5421: 5400: 5349: 5313: 5308: 5278: 5273: 5212: 5191: 5184: 5105:Nickel–hydrogen 5063:Lithium–polymer 5019: 5016: 5015: 5006: 4895: 4892: 4891: 4882: 4873: 4820: 4815: 4771: 4757: 4752: 4751: 4741: 4739: 4736: 4732: 4731: 4727: 4716: 4714: 4710: 4679: 4678: 4674: 4661:. Vol. 1. 4652: 4651: 4647: 4633: 4632: 4628: 4611: 4601: 4600: 4596: 4589: 4582: 4580: 4576: 4563: 4562: 4558: 4548: 4546: 4536: 4535: 4531: 4485: 4484: 4480: 4444: 4443: 4439: 4429: 4428: 4424: 4370: 4369: 4365: 4357: 4353: 4343: 4341: 4337: 4336: 4332: 4327: 4323: 4318: 4314: 4309: 4305: 4300: 4296: 4291: 4287: 4282: 4278: 4268: 4266: 4257: 4256: 4252: 4243: 4241: 4240:, 18 March 2022 4234: 4233: 4229: 4213: 4212: 4208: 4185: 4184: 4180: 4144: 4143: 4139: 4101: 4100: 4096: 4086: 4084: 4075: 4074: 4070: 4026: 4025: 4021: 3990:Shao-Horn, Yang 3987: 3986: 3982: 3926: 3925: 3916: 3906: 3904: 3849: 3848: 3844: 3806: 3805: 3801: 3764:(7576): 78–81. 3754: 3753: 3749: 3712:(7576): 78–81. 3702: 3701: 3697: 3687: 3685: 3676: 3675: 3671: 3661: 3659: 3657:Lockheed Martin 3651: 3650: 3646: 3610: 3609: 3600: 3542: 3541: 3537: 3527: 3525: 3516: 3515: 3511: 3501: 3499: 3490: 3489: 3485: 3433: 3432: 3425: 3394: 3393: 3386: 3356: 3355: 3348: 3338: 3336: 3327: 3326: 3322: 3317: 3313: 3299: 3298: 3294: 3281: 3280: 3276: 3266: 3265: 3261: 3252: 3251: 3247: 3237: 3235: 3226: 3225: 3221: 3191: 3190: 3186: 3177: 3173: 3145: 3144: 3140: 3106: 3105: 3101: 3062: 3061: 3057: 3047: 3045: 3036: 3035: 3031: 3005: 3004: 3000: 2969:Shao-Horn, Yang 2966: 2965: 2961: 2923: 2922: 2918: 2888: 2887: 2883: 2873: 2871: 2866: 2865: 2861: 2839: 2838: 2834: 2824: 2823: 2819: 2813: 2812: 2808: 2776: 2771: 2770: 2763: 2729: 2728: 2724: 2680: 2679: 2675: 2645: 2644: 2640: 2610: 2609: 2605: 2565: 2564: 2560: 2530: 2529: 2525: 2518: 2511: 2510: 2506: 2499: 2494:Nernst, Walther 2488: 2487: 2483: 2476: 2469: 2468: 2464: 2426: 2425: 2421: 2416: 2412: 2407: 2403: 2373: 2372: 2368: 2338: 2337: 2333: 2302: 2301: 2297: 2267: 2266: 2262: 2253: 2249: 2217: 2212: 2211: 2207: 2169: 2168: 2164: 2142: 2141: 2137: 2130: 2123: 2122: 2118: 2112:Wayback Machine 2102: 2098: 2088: 2086: 2077: 2076: 2072: 2030: 2029: 2022: 2017: 2013: 2007: 2003: 1998: 1994: 1989: 1985: 1977: 1973: 1965: 1961: 1933: 1932: 1928: 1918: 1916: 1907: 1906: 1902: 1879:ACS Energy Lett 1872: 1871: 1867: 1857: 1856: 1852: 1812: 1811: 1807: 1753: 1752: 1748: 1704: 1703: 1696: 1691: 1678:Redox electrode 1653: 1646: 1639: 1632: 1629: 1604:DC–DC converter 1549: 1535: 1483: 1415: 1395: 1372: 1347: 1305: 1285: 1265: 1244: 1149: 1123: 1112:lithium bromate 1082: 1031: 1005: 985: 947: 939:Lockheed Martin 888: 860: 856: 840: 829: 825: 823: 808: 806: 805: 804: 802: 797: 794: 793: 792: 790: 776: 765: 744: 739: 734: 723:methyl viologen 711: 699: 694: 674: 664: 662: 661: 660: 656: 653: 652: 651: 649: 644: 641: 640: 639: 637: 632: 629: 628: 627: 625: 620: 618: 617: 616: 614: 609: 607: 606: 605: 603: 584: 582:Zinc-polyiodide 569: 566: 565: 564: 560: 557: 556: 555: 553: 548: 545: 544: 543: 541: 518: 511: 507: 503: 499: 489: 463: 444: 441: 440: 439: 437: 432: 429: 428: 427: 425: 397: 316: 275:chemical energy 259: 229:Skyllas-Kazacos 211: 205: 197: 194: 191: 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 158: 148: 132:Nernst equation 107:specific energy 58:chemical energy 28: 23: 22: 15: 12: 11: 5: 5580: 5578: 5570: 5569: 5564: 5559: 5554: 5552:Flow batteries 5544: 5543: 5537: 5536: 5534: 5533: 5527: 5524: 5523: 5521: 5520: 5515: 5510: 5505: 5499: 5497: 5491: 5490: 5488: 5487: 5486: 5485: 5480: 5470: 5465: 5460: 5455: 5450: 5445: 5440: 5435: 5429: 5427: 5423: 5422: 5420: 5419: 5414: 5408: 5406: 5402: 5401: 5399: 5398: 5393: 5388: 5383: 5378: 5373: 5368: 5363: 5357: 5355: 5351: 5350: 5348: 5347: 5342: 5337: 5332: 5327: 5321: 5319: 5318:By electrolyte 5315: 5314: 5309: 5307: 5306: 5299: 5292: 5284: 5275: 5274: 5272: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5236: 5231: 5226: 5220: 5218: 5214: 5213: 5211: 5210: 5205: 5200: 5198:Atomic battery 5194: 5192: 5189: 5186: 5185: 5183: 5182: 5177: 5172: 5170:Vanadium redox 5167: 5162: 5157: 5152: 5147: 5145:Silver–cadmium 5142: 5137: 5132: 5127: 5122: 5117: 5115:Nickel–lithium 5112: 5107: 5102: 5100:Nickel–cadmium 5097: 5092: 5087: 5082: 5077: 5076: 5075: 5070: 5068:Lithium–sulfur 5065: 5060: 5055: 5045: 5040: 5039: 5038: 5028: 5022: 5020: 5017:(rechargeable) 5013:Secondary cell 5011: 5008: 5007: 5005: 5004: 4999: 4994: 4989: 4984: 4979: 4974: 4969: 4964: 4959: 4954: 4949: 4944: 4939: 4937:Edison–Lalande 4934: 4929: 4924: 4919: 4914: 4909: 4904: 4898: 4896: 4887: 4884: 4883: 4876: 4874: 4872: 4871: 4866: 4861: 4856: 4855: 4854: 4852:Trough battery 4849: 4839: 4834: 4828: 4826: 4822: 4821: 4816: 4814: 4813: 4806: 4799: 4791: 4785: 4784: 4779: 4768: 4763: 4756: 4755:External links 4753: 4750: 4749: 4725: 4708: 4672: 4667:10.4271/730248 4645: 4626: 4594: 4574: 4556: 4529: 4478: 4457:(2): 306–327. 4437: 4422: 4363: 4351: 4330: 4321: 4312: 4303: 4294: 4285: 4276: 4250: 4227: 4206: 4178: 4137: 4110:(4): 511–516. 4094: 4068: 4019: 3980: 3914: 3842: 3799: 3747: 3695: 3669: 3644: 3598: 3535: 3509: 3483: 3423: 3404:(5): 976–980. 3384: 3346: 3334:www.gizmag.com 3320: 3311: 3292: 3274: 3259: 3245: 3233:New York Times 3219: 3200:(3): 715–720. 3184: 3171: 3138: 3119:(1): 149–163. 3099: 3072:(3): 1501449. 3055: 3043:www.gizmag.com 3029: 2998: 2959: 2916: 2881: 2859: 2848:(3): 735–741. 2832: 2817: 2806: 2761: 2722: 2673: 2638: 2619:(3): 219–234. 2603: 2558: 2539:(4): 619–629. 2523: 2504: 2481: 2462: 2435:(3): 253–256. 2419: 2410: 2401: 2366: 2347:(4): 301–316. 2331: 2312:(2): 402–411. 2295: 2260: 2247: 2205: 2162: 2151:(3): A29–A31. 2135: 2116: 2114:" 14 May 2013. 2096: 2070: 2020: 2011: 2001: 1992: 1983: 1971: 1959: 1946:(4): 731–766. 1926: 1900: 1865: 1850: 1805: 1746: 1693: 1692: 1690: 1687: 1686: 1685: 1680: 1675: 1670: 1665: 1659: 1658: 1644: 1628: 1625: 1624: 1623: 1617: 1611: 1593: 1587: 1586: 1585: 1582: 1571: 1563:Load balancing 1548: 1545: 1542: 1541: 1539: 1532: 1530: 1527: 1523: 1522: 1520: 1518: 1515: 1512: 1506: 1505: 1503: 1500: 1497: 1491: 1490: 1487: 1480: 1477: 1474: 1468: 1467: 1465: 1463: 1461: 1459: 1455: 1454: 1452: 1450: 1448: 1446: 1440: 1439: 1437: 1435: 1432: 1429: 1423: 1422: 1419: 1412: 1410: 1408: 1402: 1401: 1399: 1392: 1389: 1386: 1380: 1379: 1376: 1369: 1366: 1363: 1355: 1354: 1351: 1344: 1341: 1338: 1330: 1329: 1326: 1323: 1320: 1317: 1313: 1312: 1309: 1302: 1300: 1297: 1293: 1292: 1289: 1282: 1280: 1277: 1276:Organic (2015) 1273: 1272: 1269: 1262: 1259: 1256: 1255:Organic (2013) 1252: 1251: 1248: 1241: 1240:< 1000 1238: 1235: 1231: 1230: 1228: 1226: 1223: 1220: 1213: 1212: 1210: 1208: 1205: 1202: 1195: 1194: 1192: 1190: 1187: 1184: 1177: 1176: 1174: 1172: 1169: 1166: 1156: 1155: 1153: 1146: 1143: 1140: 1130: 1129: 1127: 1120: 1117: 1114: 1104: 1103: 1100: 1097: 1094: 1091: 1081: 1078: 1030: 1027: 1004: 1001: 984: 981: 965:macromolecules 946: 943: 887: 884: 821: 807: 795: 774: 764: 761: 710: 707: 697: 693: 690: 673: 670: 663: 654: 642: 630: 619: 608: 583: 580: 567: 558: 546: 517: 514: 509: 505: 501: 497: 488: 485: 461: 442: 430: 396: 393: 389:energy storage 374: 373: 370: 367: 364:energy density 350: 349: 346: 343:self-discharge 339: 336: 333: 330: 323: 315: 312: 258: 255: 147: 144: 26: 24: 18:Flow batteries 14: 13: 10: 9: 6: 4: 3: 2: 5579: 5568: 5567:Battery types 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5549: 5547: 5532: 5529: 5528: 5525: 5519: 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5500: 5498: 5496: 5492: 5484: 5481: 5479: 5476: 5475: 5474: 5471: 5469: 5466: 5464: 5461: 5459: 5456: 5454: 5451: 5449: 5446: 5444: 5441: 5439: 5436: 5434: 5431: 5430: 5428: 5424: 5418: 5415: 5413: 5410: 5409: 5407: 5405:Biofuel cells 5403: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5379: 5377: 5374: 5372: 5369: 5367: 5364: 5362: 5359: 5358: 5356: 5352: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5322: 5320: 5316: 5312: 5305: 5300: 5298: 5293: 5291: 5286: 5285: 5282: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5221: 5219: 5215: 5209: 5206: 5204: 5201: 5199: 5196: 5195: 5193: 5187: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5161: 5160:Sodium–sulfur 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5141: 5138: 5136: 5135:Potassium ion 5133: 5131: 5128: 5126: 5123: 5121: 5118: 5116: 5113: 5111: 5108: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5086: 5083: 5081: 5078: 5074: 5071: 5069: 5066: 5064: 5061: 5059: 5056: 5054: 5051: 5050: 5049: 5046: 5044: 5041: 5037: 5034: 5033: 5032: 5029: 5027: 5024: 5023: 5021: 5014: 5009: 5003: 5000: 4998: 4995: 4993: 4990: 4988: 4985: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4952:Lithium metal 4950: 4948: 4945: 4943: 4940: 4938: 4935: 4933: 4930: 4928: 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4908: 4907:Aluminium–air 4905: 4903: 4900: 4899: 4897: 4890: 4885: 4880: 4870: 4867: 4865: 4862: 4860: 4857: 4853: 4850: 4848: 4845: 4844: 4843: 4840: 4838: 4835: 4833: 4832:Galvanic cell 4830: 4829: 4827: 4823: 4819: 4812: 4807: 4805: 4800: 4798: 4793: 4792: 4789: 4783: 4780: 4778: 4774: 4769: 4767: 4764: 4762: 4759: 4758: 4754: 4735: 4729: 4726: 4723: 4719: 4712: 4709: 4704: 4700: 4696: 4692: 4688: 4684: 4676: 4673: 4668: 4664: 4660: 4656: 4649: 4646: 4641: 4637: 4630: 4627: 4622: 4616: 4608: 4604: 4598: 4595: 4585: 4578: 4575: 4570: 4566: 4560: 4557: 4544: 4540: 4537:REDT Energy. 4533: 4530: 4525: 4521: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4482: 4479: 4473: 4468: 4464: 4460: 4456: 4452: 4448: 4441: 4438: 4433: 4426: 4423: 4418: 4414: 4409: 4404: 4399: 4394: 4390: 4386: 4382: 4378: 4374: 4367: 4364: 4361: 4355: 4352: 4340: 4334: 4331: 4325: 4322: 4316: 4313: 4307: 4304: 4298: 4295: 4289: 4286: 4280: 4277: 4265: 4261: 4254: 4251: 4239: 4238: 4231: 4228: 4223: 4222: 4217: 4210: 4207: 4202: 4198: 4194: 4190: 4182: 4179: 4173: 4168: 4164: 4160: 4156: 4152: 4148: 4141: 4138: 4133: 4129: 4125: 4121: 4117: 4113: 4109: 4105: 4098: 4095: 4083: 4079: 4072: 4069: 4064: 4060: 4055: 4050: 4046: 4042: 4039:(4): 040801. 4038: 4034: 4030: 4023: 4020: 4015: 4011: 4007: 4003: 3999: 3995: 3991: 3984: 3981: 3976: 3972: 3968: 3964: 3960: 3956: 3952: 3948: 3943: 3938: 3934: 3930: 3923: 3921: 3919: 3915: 3903: 3899: 3895: 3891: 3887: 3883: 3879: 3875: 3870: 3865: 3861: 3857: 3853: 3846: 3843: 3838: 3834: 3830: 3826: 3822: 3818: 3814: 3810: 3803: 3800: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3759: 3751: 3748: 3743: 3739: 3735: 3731: 3727: 3723: 3719: 3715: 3711: 3707: 3699: 3696: 3683: 3679: 3673: 3670: 3658: 3654: 3648: 3645: 3639: 3634: 3630: 3626: 3622: 3618: 3614: 3607: 3605: 3603: 3599: 3594: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3539: 3536: 3524: 3520: 3513: 3510: 3498: 3494: 3487: 3484: 3479: 3475: 3471: 3467: 3463: 3459: 3454: 3449: 3445: 3441: 3437: 3430: 3428: 3424: 3419: 3415: 3411: 3407: 3403: 3399: 3391: 3389: 3385: 3380: 3376: 3372: 3368: 3364: 3360: 3353: 3351: 3347: 3335: 3331: 3324: 3321: 3315: 3312: 3307: 3303: 3296: 3293: 3288: 3284: 3278: 3275: 3270: 3263: 3260: 3255: 3249: 3246: 3234: 3230: 3223: 3220: 3215: 3211: 3207: 3203: 3199: 3195: 3188: 3185: 3181: 3175: 3172: 3166: 3161: 3157: 3153: 3149: 3142: 3139: 3134: 3130: 3126: 3122: 3118: 3114: 3110: 3103: 3100: 3095: 3091: 3087: 3083: 3079: 3075: 3071: 3067: 3059: 3056: 3044: 3040: 3033: 3030: 3025: 3021: 3017: 3013: 3009: 3002: 2999: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2963: 2960: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2920: 2917: 2912: 2908: 2904: 2900: 2896: 2892: 2885: 2882: 2869: 2863: 2860: 2855: 2851: 2847: 2843: 2836: 2833: 2828: 2821: 2818: 2810: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2775: 2768: 2766: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2726: 2723: 2718: 2714: 2709: 2704: 2700: 2696: 2692: 2688: 2684: 2677: 2674: 2669: 2665: 2661: 2657: 2653: 2649: 2642: 2639: 2634: 2630: 2626: 2622: 2618: 2614: 2607: 2604: 2599: 2595: 2590: 2589:11577/3217695 2585: 2581: 2577: 2573: 2569: 2562: 2559: 2554: 2550: 2546: 2542: 2538: 2534: 2527: 2524: 2514: 2508: 2505: 2495: 2491: 2485: 2482: 2472: 2466: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2423: 2420: 2414: 2411: 2405: 2402: 2397: 2393: 2389: 2385: 2381: 2377: 2370: 2367: 2362: 2358: 2354: 2350: 2346: 2342: 2335: 2332: 2327: 2323: 2319: 2315: 2311: 2307: 2299: 2296: 2291: 2287: 2283: 2279: 2275: 2271: 2264: 2261: 2257: 2251: 2248: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2209: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2166: 2163: 2158: 2154: 2150: 2146: 2139: 2136: 2126: 2120: 2117: 2113: 2109: 2106: 2100: 2097: 2084: 2080: 2074: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2027: 2025: 2021: 2015: 2012: 2005: 2002: 1996: 1993: 1987: 1984: 1981: 1975: 1972: 1969: 1963: 1960: 1954: 1949: 1945: 1941: 1937: 1930: 1927: 1915: 1914:Energy Theory 1911: 1904: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1866: 1861: 1854: 1851: 1845: 1844:11577/2682306 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1809: 1806: 1801: 1797: 1792: 1787: 1782: 1777: 1773: 1769: 1765: 1761: 1757: 1750: 1747: 1742: 1738: 1733: 1728: 1724: 1720: 1717:(4): 040801. 1716: 1712: 1708: 1701: 1699: 1695: 1688: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1656: 1650: 1645: 1642: 1641:Energy portal 1636: 1631: 1626: 1621: 1618: 1615: 1612: 1609: 1605: 1601: 1597: 1594: 1591: 1588: 1583: 1580: 1576: 1572: 1568: 1564: 1561: 1560: 1558: 1555: 1554: 1553: 1546: 1540: 1533: 1531: 1528: 1525: 1524: 1521: 1519: 1516: 1513: 1511: 1508: 1507: 1504: 1501: 1498: 1496: 1493: 1492: 1488: 1481: 1478: 1475: 1473: 1470: 1469: 1466: 1464: 1462: 1460: 1457: 1456: 1453: 1451: 1449: 1447: 1445: 1442: 1441: 1438: 1436: 1433: 1430: 1428: 1425: 1424: 1420: 1413: 1411: 1409: 1407: 1404: 1403: 1400: 1393: 1390: 1387: 1385: 1382: 1381: 1377: 1370: 1367: 1364: 1361: 1358:Metal-organic 1357: 1356: 1352: 1345: 1342: 1339: 1337:ferrocyanide 1336: 1333:Metal-organic 1332: 1331: 1327: 1324: 1321: 1318: 1315: 1314: 1310: 1303: 1301: 1298: 1295: 1294: 1290: 1283: 1281: 1278: 1275: 1274: 1270: 1263: 1260: 1257: 1254: 1253: 1249: 1242: 1239: 1236: 1233: 1232: 1229: 1227: 1225:< 200 1224: 1221: 1219: 1215: 1214: 1211: 1209: 1207:< 200 1206: 1203: 1201: 1197: 1196: 1193: 1191: 1189:< 200 1188: 1185: 1183: 1179: 1178: 1175: 1173: 1170: 1167: 1165: 1161: 1158: 1157: 1154: 1147: 1144: 1141: 1139: 1135: 1132: 1131: 1128: 1121: 1118: 1115: 1113: 1109: 1106: 1105: 1101: 1098: 1095: 1092: 1089: 1088: 1079: 1077: 1075: 1071: 1067: 1061: 1058: 1056: 1052: 1047: 1044: 1043:nanoparticles 1035: 1028: 1026: 1022: 1019: 1013: 1010: 1002: 1000: 998: 994: 990: 982: 980: 978: 974: 970: 966: 962: 957: 955: 951: 944: 942: 940: 936: 932: 928: 924: 920: 916: 912: 907: 905: 901: 897: 893: 885: 883: 880: 878: 873: 868: 866: 854: 850: 846: 838: 833: 818: 817:power density 814: 788: 787:sulfuric acid 784: 779: 777: 769: 763:Acidic AORFBs 762: 760: 758: 754: 750: 732: 728: 724: 719: 716: 708: 706: 702: 691: 689: 687: 683: 679: 678:metal hydride 671: 669: 600: 597: 593: 589: 581: 579: 576: 539: 538:metal hydride 535: 531: 527: 524:HFBs include 522: 515: 513: 495: 486: 484: 482: 478: 475:(Regenesys), 474: 470: 465: 457: 455: 451: 422: 418: 417:intercalation 414: 410: 406: 402: 394: 392: 390: 385: 383: 379: 371: 368: 365: 361: 360: 359: 356: 353: 347: 344: 340: 337: 334: 331: 328: 324: 321: 320: 319: 313: 311: 309: 304: 302: 301:power density 298: 297: 292: 286: 284: 280: 276: 272: 268: 264: 256: 254: 252: 248: 243: 240: 238: 234: 230: 225: 222: 216: 208: 203: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 152: 145: 143: 141: 137: 133: 129: 125: 123: 119: 114: 112: 108: 104: 100: 94: 92: 88: 83: 81: 77: 72: 69: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 5443:Flow battery 5442: 5175:Zinc–bromine 4982:Silver oxide 4917:Chromic acid 4889:Primary cell 4869:Voltaic pile 4847:Flow battery 4846: 4740:. Retrieved 4728: 4711: 4686: 4682: 4675: 4658: 4648: 4639: 4629: 4606: 4597: 4577: 4569:the original 4559: 4547:. Retrieved 4543:the original 4532: 4491: 4487: 4481: 4454: 4450: 4440: 4425: 4380: 4376: 4366: 4354: 4342:. Retrieved 4333: 4324: 4315: 4306: 4297: 4288: 4279: 4267:. Retrieved 4263: 4253: 4242:, retrieved 4236: 4230: 4219: 4209: 4192: 4188: 4181: 4154: 4150: 4140: 4107: 4103: 4097: 4087:24 September 4085:. Retrieved 4081: 4071: 4036: 4032: 4022: 3997: 3993: 3983: 3932: 3928: 3905:. Retrieved 3859: 3855: 3845: 3812: 3808: 3802: 3761: 3757: 3750: 3709: 3705: 3698: 3686:. Retrieved 3681: 3672: 3660:. Retrieved 3656: 3647: 3620: 3616: 3552: 3548: 3538: 3526:. Retrieved 3522: 3512: 3500:. Retrieved 3496: 3486: 3443: 3439: 3401: 3397: 3362: 3358: 3337:. Retrieved 3333: 3323: 3314: 3305: 3295: 3286: 3277: 3262: 3248: 3236:. Retrieved 3232: 3222: 3197: 3193: 3187: 3179: 3174: 3155: 3151: 3141: 3116: 3112: 3102: 3069: 3065: 3058: 3046:. Retrieved 3042: 3032: 3007: 3001: 2976: 2972: 2962: 2929: 2925: 2919: 2894: 2890: 2884: 2872:. Retrieved 2862: 2845: 2841: 2835: 2820: 2809: 2784: 2780: 2739: 2735: 2725: 2690: 2686: 2676: 2651: 2647: 2641: 2616: 2612: 2606: 2574:(4): 20–31. 2571: 2567: 2561: 2536: 2532: 2526: 2507: 2484: 2465: 2432: 2428: 2422: 2413: 2404: 2379: 2375: 2369: 2344: 2340: 2334: 2309: 2306:ChemPlusChem 2305: 2298: 2273: 2269: 2263: 2250: 2225: 2221: 2208: 2175: 2171: 2165: 2148: 2144: 2138: 2119: 2099: 2087:. Retrieved 2082: 2073: 2040: 2036: 2014: 2004: 1995: 1986: 1974: 1962: 1943: 1939: 1929: 1917:. Retrieved 1913: 1903: 1878: 1868: 1859: 1853: 1818: 1814: 1808: 1763: 1759: 1749: 1714: 1710: 1557:Grid storage 1550: 1547:Applications 1472:Zinc–bromine 1062: 1059: 1048: 1040: 1023: 1014: 1009:laminar flow 1006: 1003:Membraneless 986: 958: 948: 908: 904:ferrocyanide 890:Quinone and 889: 881: 869: 865:Ferrocyanide 849:ferrocyanide 834: 780: 766: 757:ferrocyanide 721:AORFBs used 720: 712: 703: 695: 675: 601: 586:A prototype 585: 526:zinc–bromine 523: 519: 490: 479:(IRFB), and 466: 458: 411:rather than 398: 386: 375: 357: 354: 351: 317: 305: 294: 287: 265:in which an 260: 244: 241: 237:vanadium RFB 226: 217: 199: 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 166: 163: 160: 157: 128:Cell voltage 126: 115: 95: 84: 73: 70: 66:Ion transfer 45: 42:flow battery 41: 39: 29: 5433:Blue energy 5264:Salt bridge 5249:Electrolyte 5180:Zinc–cerium 5165:Solid state 5150:Silver–zinc 5125:Nickel–zinc 5110:Nickel–iron 5085:Molten salt 5053:Dual carbon 5048:Lithium ion 5043:Lithium–air 5002:Zinc–carbon 4977:Silicon–air 4957:Lithium–air 3815:: 506–518. 3048:23 December 3008:Nano Energy 2874:13 February 2276:: 108–116. 2228:: 119–153. 1821:: 325–335. 1489:> 2,000 1066:lithium-ion 983:Other types 672:Proton flow 530:zinc–cerium 267:electrolyte 80:electrolyte 5562:Fuel cells 5546:Categories 5311:Fuel cells 5217:Cell parts 5208:Solar cell 5190:Other cell 5155:Sodium ion 5026:Automotive 4549:27 January 4157:: 97–106. 3688:6 December 3339:8 December 3238:10 January 2829:. R&D. 2089:12 October 1689:References 1080:Comparison 1016:they form 995:, and the 892:fluorenone 835:Replacing 755:–viologen/ 727:an anolyte 592:polyiodide 532:, soluble 421:fuel cells 378:fuel cells 341:Little/no 314:Evaluation 140:electrodes 5254:Half-cell 5244:Electrode 5203:Fuel cell 5080:Metal–air 5031:Lead–acid 4947:LeclanchĂ© 4859:Fuel cell 4264:New Atlas 4195:: 91–99. 4063:2166-2746 4014:0013-4686 4000:: 41–50. 3942:1404.0917 3907:20 August 3869:1404.0917 3837:1364-0321 3593:234794555 3577:0036-8075 3523:New Atlas 3497:New Atlas 3478:101469730 3462:0013-4651 3418:2380-8195 3379:1754-5692 3271:. Gizmag. 3214:0013-4686 3086:1614-6840 2993:2050-7488 2756:0013-4651 2717:2352-152X 2693:: 69–90. 2192:0009-2665 2083:New Atlas 2057:0009-2665 1895:202210484 1741:2166-2746 1322:> 500 1296:MV-TEMPO 1234:Iron–iron 969:styrofoam 954:cellulose 877:phenazine 783:electrode 753:sulfonate 686:fuel cell 534:lead–acid 405:secondary 263:fuel cell 245:In 2022, 207:US 224404 87:fuel cell 76:electrode 62:dissolved 5531:Glossary 5495:Hydrogen 5234:Catalyst 5095:Nanowire 5090:Nanopore 5036:gel–VRLA 4997:Zinc–air 4902:Alkaline 4703:97853351 4640:Fox News 4615:cite web 4524:53218660 4516:30385552 4417:25309898 4269:9 August 4244:9 August 4132:97634258 3975:14719469 3967:23949161 3935:: 2346. 3902:14719469 3894:23949161 3862:: 2346. 3786:26503039 3734:26503039 3682:phys.org 3585:34016776 3502:18 March 3287:phys.org 3094:97838438 2954:97300070 2801:27853767 2598:28206437 2553:96195780 2457:97891309 2396:97853351 2361:97464125 2326:97168677 2256:preprint 2200:18557655 2108:Archived 1800:25309898 1627:See also 1362:bromine 1325:10 Wh/L 1218:chromium 1200:titanium 1164:hydrogen 1134:Hydrogen 1108:Hydrogen 977:oligomer 961:dialysis 950:Oligomer 945:Oligomer 931:chromium 917:such as 915:chelates 886:Alkaline 872:analytes 768:Quinones 749:Viologen 487:Vanadium 469:vanadium 283:adsorbed 5518:Vehicle 5513:Storage 5508:Station 5503:Economy 5354:By fuel 5239:Cathode 4992:Zamboni 4962:Mercury 4927:Daniell 4777:YouTube 4722:YouTube 4496:Bibcode 4488:Science 4459:Bibcode 4408:4174133 4385:Bibcode 4159:Bibcode 4112:Bibcode 4041:Bibcode 3947:Bibcode 3874:Bibcode 3817:Bibcode 3794:4393601 3766:Bibcode 3742:4393601 3714:Bibcode 3662:27 July 3625:Bibcode 3557:Bibcode 3549:Science 3470:1370440 3121:Bibcode 3012:Bibcode 2934:Bibcode 2899:Bibcode 2695:Bibcode 2656:Bibcode 2621:Bibcode 2437:Bibcode 2278:Bibcode 2230:Bibcode 2065:1799071 1823:Bibcode 1791:4174133 1768:Bibcode 1719:Bibcode 1600:voltage 1250:10,000 1160:Bromine 1102:Cycles 1090:Couple 935:bromine 911:ligands 853:polymer 832:Wh/L). 692:Organic 521:area. 481:uranium 296:in situ 231:at the 146:History 48:(after 5426:Others 5229:Binder 4987:Weston 4912:Bunsen 4742:21 May 4701:  4590:  4522:  4514:  4415:  4405:  4383:: 79. 4344:21 May 4130:  4061:  4012:  3973:  3965:  3900:  3892:  3835:  3792:  3784:  3758:Nature 3740:  3732:  3706:Nature 3591:  3583:  3575:  3528:26 May 3476:  3468:  3460:  3416:  3377:  3212:  3092:  3084:  2991:  2952:  2799:  2754:  2715:  2596:  2551:  2519:  2500:  2492:, 2477:  2455:  2394:  2359:  2324:  2198:  2190:  2131:  2063:  2055:  2009:(1988) 1893:  1798:  1788:  1766:: 79. 1739:  1536:  1502:~1,000 1484:  1479:~1,000 1421:2,000 1416:  1396:  1373:  1368:3,000 1348:  1343:2,000 1328:1,000 1306:  1286:  1266:  1261:13,000 1245:  1150:  1145:10,000 1124:  1119:15,000 991:, the 973:Nafion 896:ketone 875:TEMPO/ 863:Wh/L. 861:  857:  847:) and 841:  830:  826:  745:  740:  735:  684:(PEM) 516:Hybrid 257:Design 247:Dalian 212:  97:lower 56:where 5224:Anode 4942:Grove 4922:Clark 4825:Types 4737:(PDF) 4699:S2CID 4520:S2CID 4451:Joule 4128:S2CID 3971:S2CID 3937:arXiv 3898:S2CID 3864:arXiv 3790:S2CID 3738:S2CID 3617:Joule 3589:S2CID 3474:S2CID 3113:Joule 3090:S2CID 2950:S2CID 2777:(PDF) 2594:S2CID 2549:S2CID 2453:S2CID 2392:S2CID 2357:S2CID 2322:S2CID 2218:(PDF) 1919:3 May 1891:S2CID 1579:solar 1570:cost. 1486:Wh/kg 1375:Wh/L 1365:2.13 1350:Wh/L 1340:1.62 1308:Wh/L 1299:1.25 1216:Iron– 1198:Iron– 1180:Iron– 1171:7,950 1152:Wh/kg 1126:Wh/kg 1049:In a 813:redox 401:redox 251:China 136:volts 44:, or 5259:Ions 4744:2023 4621:link 4551:2014 4512:PMID 4413:PMID 4346:2023 4271:2022 4246:2022 4089:2014 4059:ISSN 4010:ISSN 3963:PMID 3909:2013 3890:PMID 3833:ISSN 3782:PMID 3730:PMID 3690:2015 3664:2020 3581:PMID 3573:ISSN 3530:2021 3504:2022 3466:OSTI 3458:ISSN 3414:ISSN 3375:ISSN 3341:2015 3240:2014 3210:ISSN 3082:ISSN 3050:2015 2989:ISSN 2876:2014 2797:PMID 2752:ISSN 2713:ISSN 2196:PMID 2188:ISSN 2091:2022 2061:OSTI 2053:ISSN 1921:2024 1796:PMID 1737:ISSN 1575:wind 1567:grid 1538:Wh/L 1514:2.43 1499:1.82 1476:1.85 1434:~800 1431:1.54 1418:Wh/L 1398:Wh/L 1391:~800 1346:21.7 1319:0.9 1311:100 1291:100 1288:Wh/L 1268:Wh/L 1264:21.4 1247:Wh/L 1237:1.21 1222:1.07 1204:0.43 1186:0.62 1168:1.07 1148:1400 919:EDTA 773:PbSO 729:and 715:NaCl 588:zinc 552:and 542:VOSO 477:iron 450:NASA 399:The 362:Low 221:NASA 200:The 4932:Dry 4775:on 4720:on 4691:doi 4663:doi 4581:in 4504:doi 4492:362 4467:doi 4403:PMC 4393:doi 4197:doi 4193:228 4167:doi 4155:323 4120:doi 4049:doi 4002:doi 3998:267 3955:doi 3882:doi 3825:doi 3774:doi 3762:527 3722:doi 3710:527 3633:doi 3565:doi 3553:372 3448:doi 3444:163 3406:doi 3367:doi 3202:doi 3160:doi 3129:doi 3074:doi 3020:doi 2981:doi 2942:doi 2907:doi 2850:doi 2789:doi 2744:doi 2740:163 2703:doi 2664:doi 2652:196 2629:doi 2584:hdl 2576:doi 2541:doi 2445:doi 2384:doi 2349:doi 2314:doi 2286:doi 2238:doi 2180:doi 2176:108 2153:doi 2045:doi 2041:120 1948:doi 1883:doi 1839:hdl 1831:doi 1786:PMC 1776:doi 1727:doi 1590:UPS 1577:or 1529:1.2 1394:25 1388:1.4 1378:10 1353:75 1304:8.4 1284:7.1 1279:1.2 1271:10 1258:0.8 1182:tin 1142:1.4 1122:750 1116:1.1 845:KOH 785:in 771:Pb/ 743:8.4 725:as 575:KOH 452:'s 415:or 277:to 5548:: 4697:. 4687:19 4685:. 4657:. 4638:. 4617:}} 4613:{{ 4605:. 4518:. 4510:. 4502:. 4490:. 4465:. 4453:. 4449:. 4411:. 4401:. 4391:. 4379:. 4375:. 4262:. 4218:. 4191:. 4165:. 4153:. 4149:. 4126:. 4118:. 4106:. 4080:. 4057:. 4047:. 4037:35 4035:. 4031:. 4008:. 3996:. 3969:. 3961:. 3953:. 3945:. 3931:. 3917:^ 3896:. 3888:. 3880:. 3872:. 3858:. 3854:. 3831:. 3823:. 3813:70 3811:. 3788:. 3780:. 3772:. 3760:. 3736:. 3728:. 3720:. 3708:. 3680:. 3655:. 3631:. 3619:. 3615:. 3601:^ 3587:. 3579:. 3571:. 3563:. 3551:. 3547:. 3521:. 3495:. 3472:. 3464:. 3456:. 3442:. 3438:. 3426:^ 3412:. 3400:. 3387:^ 3373:. 3361:. 3349:^ 3332:. 3304:. 3285:. 3231:. 3208:. 3198:55 3196:. 3154:. 3150:. 3127:. 3115:. 3111:. 3088:. 3080:. 3068:. 3041:. 3018:. 2987:. 2975:. 2948:. 2940:. 2928:. 2905:. 2895:39 2893:. 2846:10 2844:. 2795:. 2785:52 2783:. 2779:. 2764:^ 2750:. 2738:. 2734:. 2711:. 2701:. 2691:15 2689:. 2685:. 2662:. 2650:. 2627:. 2617:27 2615:. 2592:. 2582:. 2572:10 2570:. 2547:. 2537:15 2535:. 2451:. 2443:. 2433:37 2431:. 2390:. 2380:19 2378:. 2355:. 2345:50 2343:. 2320:. 2310:80 2308:. 2284:. 2274:16 2272:. 2258:). 2236:. 2226:11 2224:. 2220:. 2194:. 2186:. 2174:. 2147:. 2081:. 2059:. 2051:. 2039:. 2035:. 2023:^ 1944:12 1942:. 1938:. 1912:. 1889:. 1877:. 1837:. 1829:. 1819:29 1817:. 1794:. 1784:. 1774:. 1762:. 1758:. 1735:. 1725:. 1715:35 1713:. 1709:. 1697:^ 1534:60 1482:75 1414:50 1371:35 1243:20 1076:. 999:. 843:M 803:Br 791:Br 659:Br 638:Br 604:Zn 563:SO 528:, 471:, 384:. 310:. 249:, 142:. 82:. 40:A 5303:e 5296:t 5289:v 4810:e 4803:t 4796:v 4746:. 4705:. 4693:: 4665:: 4642:. 4623:) 4553:. 4526:. 4506:: 4498:: 4475:. 4469:: 4461:: 4455:1 4434:. 4419:. 4395:: 4387:: 4381:2 4348:. 4273:. 4224:. 4203:. 4199:: 4175:. 4169:: 4161:: 4134:. 4122:: 4114:: 4108:1 4091:. 4065:. 4051:: 4043:: 4016:. 4004:: 3977:. 3957:: 3949:: 3939:: 3933:4 3911:. 3884:: 3876:: 3866:: 3860:4 3839:. 3827:: 3819:: 3796:. 3776:: 3768:: 3744:. 3724:: 3716:: 3692:. 3666:. 3641:. 3635:: 3627:: 3621:3 3595:. 3567:: 3559:: 3532:. 3506:. 3480:. 3450:: 3420:. 3408:: 3402:1 3381:. 3369:: 3363:9 3343:. 3308:. 3289:. 3242:. 3216:. 3204:: 3168:. 3162:: 3156:8 3135:. 3131:: 3123:: 3117:4 3096:. 3076:: 3070:6 3052:. 3026:. 3022:: 3014:: 2995:. 2983:: 2977:5 2956:. 2944:: 2936:: 2930:2 2913:. 2909:: 2901:: 2878:. 2856:. 2852:: 2803:. 2791:: 2758:. 2746:: 2719:. 2705:: 2697:: 2670:. 2666:: 2658:: 2635:. 2631:: 2623:: 2600:. 2586:: 2578:: 2555:. 2543:: 2459:. 2447:: 2439:: 2398:. 2386:: 2363:. 2351:: 2328:. 2316:: 2292:. 2288:: 2280:: 2244:. 2240:: 2232:: 2202:. 2182:: 2159:. 2155:: 2149:2 2093:. 2067:. 2047:: 1956:. 1950:: 1923:. 1897:. 1885:: 1847:. 1841:: 1833:: 1825:: 1802:. 1778:: 1770:: 1764:2 1743:. 1729:: 1721:: 1360:– 1335:– 1162:– 1136:– 1110:– 822:2 801:/ 796:2 775:4 698:2 655:2 650:I 643:– 631:3 626:I 615:I 590:– 568:4 559:2 554:H 547:4 510:5 508:O 506:2 502:5 500:O 498:2 462:2 443:2 438:O 436:/ 431:2 426:H 20:)

Index

Flow batteries
Redox Flow Battery
reduction–oxidation
electrochemical cell
chemical energy
dissolved
Ion transfer
electrode
electrolyte
fuel cell
rechargeable battery
total cost of ownership
energy efficiency
specific energy
lithium-ion batteries
Cooperative Patent Classification
regenerative fuel cell
Cell voltage
Nernst equation
volts
electrodes

zinc–bromine flow battery
US 224404
NASA
Skyllas-Kazacos
University of New South Wales
vanadium RFB
Dalian
China

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑