Knowledge (XXG)

Fluid mosaic model

Source đź“ť

31: 225:, they were able to show that the mouse and human proteins remained segregated to separate halves of the heterokaryon a short time after cell fusion. However, the proteins eventually diffused and over time the border between the two halves was lost. Lowering the temperature slowed the rate of this diffusion by causing the membrane phospholipids to transition from a fluid to a gel phase. Singer and Nicolson rationalized the results of these experiments using their fluid mosaic model. 206: 375: 390:
are a family of GTP-binding proteins highly conserved among eukaryotes. Prokaryotes have similar proteins called paraseptins. They form compartmentalizing ring-like structures strongly associated with the cell membranes. Septins are involved in the formation of structures such as, cilia and flagella,
370:
When integral proteins of the lipid bilayer are tethered to the extracellular matrix, they are unable to diffuse freely. Proteins with a long intracellular domain may collide with a fence formed by cytoskeleton filaments. Both processes restrict the diffusion of proteins and lipids directly involved,
311:
cell, in about 1 second. It has also been observed that individual lipid molecules rotate rapidly around their own axis. Moreover, phospholipid molecules can, although they seldom do, migrate from one side of the lipid bilayer to the other (a process known as flip-flop). However, flip-flop movement
268:
The existence of non-bilayer lipid formations with important biological functions was confirmed subsequent to publication of the fluid mosaic model. These membrane structures may be useful when the cell needs to propagate a non bilayer form, which occurs during cell division and the formation of a
320:
There are restrictions to the lateral mobility of the lipid and protein components in the fluid membrane imposed by zonation. Early attempts to explain the assembly of membrane zones include the formation of lipid rafts and “cytoskeletal fences”, corrals wherein lipid and membrane proteins can
228:
The fluid mosaic model explains changes in structure and behavior of cell membranes under different temperatures, as well as the association of membrane proteins with the membranes. While Singer and Nicolson had substantial evidence drawn from multiple subfields to support their model, recent
341:
Cell membrane proteins and glycoproteins do not exist as single elements of the lipid membrane, as first proposed by Singer and Nicolson in 1972. Rather, they occur as diffusing complexes within the membrane. The assembly of single molecules into these macromolecular complexes has important
439:
proposed that lipid membranes are layers composed by proteins and lipids with pore-like structures that allow specific permeability for certain molecules. Then, they suggested a model for the cell membrane, consisting of a lipid layer surrounded by protein layers at both sides of
197:
Tri-Layer model. These models had proteins present as sheets neighboring a lipid layer, rather than incorporated into the phospholipid bilayer. Other models described repeating, regular units of protein and lipid. These models were not well supported by microscopy and
306:
During the 1970s, it was acknowledged that individual lipid molecules undergo free lateral diffusion within each of the layers of the lipid membrane. Diffusion occurs at a high speed, with an average lipid molecule diffusing ~2ÎĽm, approximately the length of a large
96:
where embedded proteins are generally randomly distributed. For example, it is stated that "A prediction of the fluid mosaic model is that the two-dimensional long-range distribution of any integral protein in the plane of the membrane is essentially random."
362:
Some proteins embedded in the bilipid layer interact with the extracellular matrix outside the cell, cytoskeleton filaments inside the cell, and septin ring-like structures. These interactions have a strong influence on shape and structure, as well as on
312:
is enhanced by flippase enzymes. The processes described above influence the disordered nature of lipid molecules and interacting proteins in the lipid membranes, with consequences to membrane fluidity, signaling, trafficking and function.
255:
and cholesterol-interacting proteins can concentrate into lipid rafts and constrain cell signaling processes to only these rafts. Another form of asymmetry was shown by the work of Mouritsen and Bloom in 1984, where they proposed a
332:
are membrane nanometric platforms with a particular lipid and protein composition that laterally diffuse, navigating on the liquid bilipid layer. Sphingolipids and cholesterol are important building blocks of the lipid rafts.
281:
The membrane bilayer is not always flat. Local curvature of the membrane can be caused by the asymmetry and non-bilayer organization of lipids as discussed above. More dramatic and functional curvature is achieved through
250:
Additionally, the two leaflets of biological membranes are asymmetric and divided into subdomains composed of specific proteins or lipids, allowing spatial segregation of biological processes associated with membranes.
818:
RodrĂ­guez-GarcĂ­a R, Arriaga LR, Mell M, Moleiro LH, LĂłpez-Montero I, Monroy F (March 2009). "Bimodal spectrum for the curvature fluctuations of bilayer vesicles: pure bending plus hybrid curvature-dilation modes".
209:
The Frye-Edidin experiment showed that when two cells are fused the proteins of both diffuse around the membrane and mingle rather than being locked to their area of the membrane.
460:– SJ Singer and GL Nicolson proposed the fluid mosaic model as an explanation for the data and latest evidence regarding the structure and thermodynamics of cell membranes. 562:"The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years" 1425: 321:
diffuse freely, but that they can seldom leave. These ideas remain controversial, and alternative explanations are available such as the proteolipid code.
472:– TA Kervin and M Overduin proposed the proteolipid code to fully explain membrane zonation as the lipid raft theory became increasingly controversial. 367:. Moreover, they impose physical constraints that restrict the free lateral diffusion of proteins and at least some lipids within the bilipid layer. 1854: 868: 186:
of the lipid bilayer in which they were embedded, and demonstrated that the molecules within the cell membrane are dynamic rather than static.
878: 1228: 260:
of lipid-protein interactions to address the biophysical evidence that the membrane can range in thickness and hydrophobicity of proteins.
636:
Silvius JR (December 2005). "Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies".
298:
formation and cell division. Curvature development is in constant flux and contributes to the dynamic nature of biological membranes.
1418: 454:
plasma and organelle membranes, have the same structure: a bilayer of phospholipids with monolayers of proteins at both sides of it.
601:
Frye LD, Edidin M (September 1970). "The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons".
213:
An important experiment that provided evidence supporting fluid and dynamic biological was performed by Frye and Edidin. They used
450:, based on electron microscopy studies, establishes the "Unit Membrane Hypothesis". This, states that all membranes in the cell, 1487: 945:"Sphingolipids, Membrane Rafts and Caveolae - sphingomyelin and cholesterol - structure, occurrence, biochemistry and function" 291: 944: 1589: 1847: 1411: 1932: 194: 2023: 1923: 730:"Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile" 1584: 1840: 230: 85: 1549: 1936: 1918: 1524: 93: 182:, and calorimetry. These studies showed that integral membrane proteins diffuse at rates affected by the 2033: 1972: 1927: 1788: 1574: 1467: 447: 179: 466:– K Simons and E Ikonen proposed the lipid raft theory as an initial explanation of membrane zonation. 418: 30: 1821: 1374: 1276: 1033: 978: 896:"Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution" 828: 684: 507: 498:
Singer SJ, Nicolson GL (February 1972). "The fluid mosaic model of the structure of cell membranes".
364: 287: 257: 73: 2028: 1447: 205: 414: 1239: 1002: 531: 343: 234: 383:
Septin ring-like structures (in green) can pinch cell membranes and split them into subdomains.
1977: 1771: 1609: 1492: 1390: 1362: 1343: 1292: 1182: 1110: 1061: 994: 925: 874: 844: 800: 751: 710: 653: 618: 583: 523: 89: 69: 1992: 1910: 1382: 1333: 1323: 1284: 1209: 1172: 1164: 1100: 1092: 1051: 1041: 986: 915: 907: 836: 790: 782: 741: 700: 692: 645: 610: 573: 515: 50: 1200:
Danielli J, Davson H (1935). "A contribution to the theory of permeability of thin films".
1987: 1472: 1022:"Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model" 1378: 1338: 1311: 1280: 1129: 1037: 982: 832: 688: 511: 1872: 1435: 1177: 1152: 1105: 1080: 969:
Lingwood D, Simons K (January 2010). "Lipid rafts as a membrane-organizing principle".
920: 895: 795: 770: 705: 672: 436: 404: 351: 222: 46: 1403: 1056: 1021: 696: 2017: 1997: 1957: 1880: 1864: 1718: 1678: 1653: 1569: 1482: 1457: 421:
found that red blood cell membranes are formed by a fatty layer two molecules thick,
347: 199: 81: 54: 35: 1386: 1006: 535: 374: 1895: 1885: 1698: 1670: 1648: 1641: 1621: 1561: 1477: 1462: 840: 270: 218: 214: 190: 1832: 174:
The fluid property of functional biological membranes had been determined through
17: 1020:
Vereb G, Szöllosi J, MatkĂł J, Nagy P, Farkas T, Vigh L, et al. (July 2003).
746: 729: 649: 578: 561: 519: 1890: 1800: 1766: 1693: 1688: 1579: 432: 252: 84:
are also found in the cell membrane. The biological model, which was devised by
1328: 1026:
Proceedings of the National Academy of Sciences of the United States of America
786: 1967: 1962: 1795: 1735: 1728: 1713: 1708: 1703: 1658: 1604: 1594: 1544: 1539: 1529: 329: 283: 175: 58: 1816: 1778: 1751: 1723: 1631: 1616: 1599: 1534: 1507: 1439: 1046: 990: 295: 183: 65: 1394: 1347: 1213: 1186: 1114: 1096: 1065: 998: 929: 848: 804: 755: 657: 587: 1296: 714: 622: 527: 2002: 1952: 1761: 1517: 1502: 1497: 1168: 308: 77: 1264: 728:
van den Brink-van der Laan E, Killian JA, de Kruijff B (November 2004).
614: 202:
data, and did not accommodate evidence for dynamic membrane properties.
1783: 1683: 1636: 1512: 387: 62: 45:
explains various characteristics regarding the structure of functional
1130:"Uberdie osmotischen Eigenshafter der Lebenden Pflanzen und tierzelle" 911: 129:
The hydrophilic phosphate side is outwards and hydrophobic inwards.
1982: 1900: 1626: 358:
Cytoskeletal fences (corrals) and binding to the extracellular matrix
1288: 1153:"On Bimolecular Layers of Lipoids on the Chromocytes of the Blood" 373: 371:
as well as of other interacting components of the cell membranes.
204: 1836: 1407: 1756: 873:(5th ed.). New York: Garland Science. pp. 621–622. 771:"The BAR domain superfamily: membrane-molding macromolecules" 638:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
673:"Mattress model of lipid-protein interactions in membranes" 894:
Hankins HM, Baldridge RD, Xu P, Graham TR (January 2015).
237:
have validated the fluid mosaic nature of cell membranes.
160:
Embedded within or on the surface of phospholipid layers
127:
It provides selective permeability to the cell membrane.
407:
hypothesized that cell membranes are made out of lipids.
163:
These form channels to allow the movement of molecules.
1310:
Kervin, Troy A.; Overduin, Michael (27 February 2024).
425:
they described the bilipid nature of the cell membrane.
189:
Previous models of biological membranes included the
152:
It helps the plasma membrane to retain its fluidity.
1312:"Membranes are functionalized by a proteolipid code" 1945: 1909: 1871: 1809: 1744: 1669: 1560: 1446: 867:Alberts B, Johnson A, Lewis J, et al. (2008). 57:(two molecules thick layer consisting primarily of 1236:Newsletter of the American Society of Cell Biology 734:Biochimica et Biophysica Acta (BBA) - Biomembranes 566:Biochimica et Biophysica Acta (BBA) - Biomembranes 217:to force human and mouse cells to fuse and form a 27:Describe the fluid mosaic model of plasma membrane 1081:"The emerging functions of septins in metazoans" 149:Between phospholipids and phospholipid bilayers 138:Attached to proteins on outside membrane layers 1202:Journal of Cellular and Comparative Physiology 769:Frost A, Unger VM, De Camilli P (April 2009). 555: 553: 551: 549: 547: 545: 342:functional consequences for the cell; such as 1848: 1419: 68:are embedded. The phospholipid bilayer gives 8: 493: 491: 489: 487: 485: 1855: 1841: 1833: 1426: 1412: 1404: 92:in 1972, describes the cell membrane as a 1337: 1327: 1176: 1104: 1055: 1045: 919: 862: 860: 858: 794: 745: 704: 577: 1263:Simons, Kai; Ikonen, Elina (June 1997). 1079:Saarikangas J, Barral Y (October 2011). 104: 29: 481: 290:on the membrane surface, assisting in 141:It helps in cell-to-cell recognition. 671:Mouritsen OG, Bloom M (August 1984). 7: 1265:"Functional rafts in cell membranes" 1157:The Journal of Experimental Medicine 124:The main fabric of plasma membrane 1361:Leslie, Mitch (25 November 2011). 1151:Gorter E, Grendel F (March 1925). 391:dendritic spines, and yeast buds. 302:Lipid movement within the membrane 25: 1229:"In Memory of J. David Robertson" 316:Restrictions to lateral diffusion 1387:10.1126/science.334.6059.1046-b 841:10.1103/PhysRevLett.102.128101 1: 1590:Microtubule organizing center 870:Molecular Biology of the Cell 697:10.1016/S0006-3495(84)84007-2 191:Robertson Unit Membrane Model 943:Christie, William (Bill) W. 747:10.1016/j.bbamem.2004.06.010 650:10.1016/j.bbamcr.2005.09.003 579:10.1016/j.bbamem.2013.10.019 520:10.1126/science.175.4023.720 344:ion and metabolite transport 1933:Peripheral membrane protein 2050: 1924:Integral membrane proteins 1329:10.1186/s12915-024-01849-6 787:10.1016/j.cell.2009.04.010 560:Nicolson GL (June 2014). 1585:Prokaryotic cytoskeleton 1134:VJSCHR Naturf Ges Zurich 61:phospholipids) in which 34:Fluid mosaic model of a 1968:Lipid raft/microdomains 1363:"Do Lipid Rafts Exist?" 1047:10.1073/pnas.1332550100 991:10.1126/science.1174621 821:Physical Review Letters 603:Journal of Cell Science 241:Subsequent developments 231:fluorescence microscopy 86:Seymour Jonathan Singer 1973:Membrane contact sites 1937:Lipid-anchored protein 1919:Membrane glycoproteins 1214:10.1002/jcp.1030050409 1097:10.1038/embor.2011.193 384: 210: 94:two-dimensional liquid 38: 1928:transmembrane protein 1575:Intermediate filament 1468:Endoplasmic reticulum 377: 264:Non-bilayer membranes 208: 170:Experimental evidence 33: 1953:Caveolae/Coated pits 1822:Extracellular matrix 1169:10.1084/jem.41.4.439 477:Notes and references 365:compartmentalization 288:phosphatidylinositol 49:. According to this 1525:Cytoplasmic granule 1379:2011Sci...334.1046L 1373:(6059): 1046–1047. 1281:1997Natur.387..569S 1038:2003PNAS..100.8053V 983:2010Sci...327...46L 833:2009PhRvL.102l8101R 689:1984BpJ....46..141M 677:Biophysical Journal 615:10.1242/jcs.7.2.319 512:1972Sci...175..720S 395:Historical timeline 106: 80:. Small amounts of 1978:Membrane nanotubes 1863:Structures of the 1550:Weibel–Palade body 1434:Structures of the 1227:Heuser JE (1995). 1128:Overton E (1895). 448:J. David Robertson 385: 277:Membrane curvature 246:Membrane asymmetry 235:structural biology 211: 105: 43:fluid mosaic model 39: 18:Fluid Mosaic Model 2011: 2010: 1911:Membrane proteins 1830: 1829: 1610:Spindle pole body 1275:(6633): 569–572. 1091:(11): 1118–1126. 1032:(14): 8053–8058. 912:10.1111/tra.12233 880:978-0-8153-4105-5 506:(4023): 720–731. 337:Protein complexes 223:antibody staining 180:x-ray diffraction 167: 166: 90:Garth L. Nicolson 16:(Redirected from 2041: 2024:Membrane biology 1993:Nuclear envelope 1988:Nodes of Ranvier 1857: 1850: 1843: 1834: 1428: 1421: 1414: 1405: 1399: 1398: 1358: 1352: 1351: 1341: 1331: 1307: 1301: 1300: 1260: 1254: 1253: 1251: 1250: 1244: 1238:. Archived from 1233: 1224: 1218: 1217: 1197: 1191: 1190: 1180: 1148: 1142: 1141: 1125: 1119: 1118: 1108: 1076: 1070: 1069: 1059: 1049: 1017: 1011: 1010: 966: 960: 959: 957: 955: 940: 934: 933: 923: 891: 885: 884: 864: 853: 852: 815: 809: 808: 798: 766: 760: 759: 749: 740:(1–2): 275–288. 725: 719: 718: 708: 668: 662: 661: 633: 627: 626: 598: 592: 591: 581: 572:(6): 1451–1466. 557: 540: 539: 495: 419:François Grendel 286:, which bind to 107: 51:biological model 21: 2049: 2048: 2044: 2043: 2042: 2040: 2039: 2038: 2014: 2013: 2012: 2007: 1941: 1905: 1873:Membrane lipids 1867: 1861: 1831: 1826: 1805: 1740: 1665: 1556: 1473:Golgi apparatus 1449: 1442: 1432: 1402: 1360: 1359: 1355: 1309: 1308: 1304: 1262: 1261: 1257: 1248: 1246: 1242: 1231: 1226: 1225: 1221: 1199: 1198: 1194: 1150: 1149: 1145: 1127: 1126: 1122: 1078: 1077: 1073: 1019: 1018: 1014: 977:(5961): 46–50. 968: 967: 963: 953: 951: 942: 941: 937: 893: 892: 888: 881: 866: 865: 856: 817: 816: 812: 768: 767: 763: 727: 726: 722: 670: 669: 665: 635: 634: 630: 600: 599: 595: 559: 558: 543: 497: 496: 483: 479: 397: 382: 360: 339: 327: 318: 304: 279: 266: 248: 243: 195:Davson-Danielli 172: 103: 101:Chemical makeup 28: 23: 22: 15: 12: 11: 5: 2047: 2045: 2037: 2036: 2031: 2026: 2016: 2015: 2009: 2008: 2006: 2005: 2000: 1998:Phycobilisomes 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1958:Cell junctions 1955: 1949: 1947: 1943: 1942: 1940: 1939: 1930: 1921: 1915: 1913: 1907: 1906: 1904: 1903: 1898: 1893: 1888: 1883: 1877: 1875: 1869: 1868: 1862: 1860: 1859: 1852: 1845: 1837: 1828: 1827: 1825: 1824: 1819: 1813: 1811: 1807: 1806: 1804: 1803: 1798: 1793: 1792: 1791: 1786: 1776: 1775: 1774: 1769: 1764: 1754: 1748: 1746: 1745:Other internal 1742: 1741: 1739: 1738: 1733: 1732: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1681: 1675: 1673: 1667: 1666: 1664: 1663: 1662: 1661: 1656: 1646: 1645: 1644: 1639: 1634: 1629: 1619: 1614: 1613: 1612: 1607: 1602: 1597: 1587: 1582: 1577: 1572: 1566: 1564: 1558: 1557: 1555: 1554: 1553: 1552: 1547: 1542: 1537: 1532: 1522: 1521: 1520: 1515: 1510: 1505: 1500: 1495: 1485: 1480: 1475: 1470: 1465: 1460: 1454: 1452: 1444: 1443: 1433: 1431: 1430: 1423: 1416: 1408: 1401: 1400: 1353: 1302: 1255: 1219: 1208:(4): 495–508. 1192: 1163:(4): 439–443. 1143: 1120: 1071: 1012: 961: 935: 886: 879: 854: 827:(12): 128101. 810: 781:(2): 191–196. 761: 720: 683:(2): 141–153. 663: 644:(3): 193–202. 628: 609:(2): 319–335. 593: 541: 480: 478: 475: 474: 473: 467: 461: 455: 441: 437:James Danielli 426: 408: 405:Ernest Overton 396: 393: 359: 356: 338: 335: 326: 323: 317: 314: 303: 300: 278: 275: 265: 262: 258:Mattress Model 247: 244: 242: 239: 171: 168: 165: 164: 161: 158: 154: 153: 150: 147: 143: 142: 139: 136: 135:Carbohydrates 132: 131: 125: 122: 118: 117: 114: 111: 102: 99: 47:cell membranes 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2046: 2035: 2032: 2030: 2027: 2025: 2022: 2021: 2019: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1983:Myelin sheath 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1950: 1948: 1944: 1938: 1934: 1931: 1929: 1925: 1922: 1920: 1917: 1916: 1914: 1912: 1908: 1902: 1899: 1897: 1896:Sphingolipids 1894: 1892: 1889: 1887: 1886:Phospholipids 1884: 1882: 1881:Lipid bilayer 1879: 1878: 1876: 1874: 1870: 1866: 1865:cell membrane 1858: 1853: 1851: 1846: 1844: 1839: 1838: 1835: 1823: 1820: 1818: 1815: 1814: 1812: 1808: 1802: 1799: 1797: 1794: 1790: 1787: 1785: 1782: 1781: 1780: 1777: 1773: 1770: 1768: 1765: 1763: 1760: 1759: 1758: 1755: 1753: 1750: 1749: 1747: 1743: 1737: 1734: 1730: 1727: 1725: 1722: 1720: 1719:Proteinoplast 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1686: 1685: 1682: 1680: 1679:Mitochondrion 1677: 1676: 1674: 1672: 1671:Endosymbionts 1668: 1660: 1657: 1655: 1654:Lamellipodium 1652: 1651: 1650: 1647: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1624: 1623: 1620: 1618: 1615: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1592: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1570:Microfilament 1568: 1567: 1565: 1563: 1559: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1527: 1526: 1523: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1490: 1489: 1486: 1484: 1483:Autophagosome 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1458:Cell membrane 1456: 1455: 1453: 1451: 1448:Endomembrane 1445: 1441: 1437: 1429: 1424: 1422: 1417: 1415: 1410: 1409: 1406: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1354: 1349: 1345: 1340: 1335: 1330: 1325: 1321: 1317: 1313: 1306: 1303: 1298: 1294: 1290: 1289:10.1038/42408 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1245:on 2018-10-08 1241: 1237: 1230: 1223: 1220: 1215: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1179: 1174: 1170: 1166: 1162: 1158: 1154: 1147: 1144: 1139: 1135: 1131: 1124: 1121: 1116: 1112: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1072: 1067: 1063: 1058: 1053: 1048: 1043: 1039: 1035: 1031: 1027: 1023: 1016: 1013: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 965: 962: 950: 949:lipidmaps.org 946: 939: 936: 931: 927: 922: 917: 913: 909: 905: 901: 897: 890: 887: 882: 876: 872: 871: 863: 861: 859: 855: 850: 846: 842: 838: 834: 830: 826: 822: 814: 811: 806: 802: 797: 792: 788: 784: 780: 776: 772: 765: 762: 757: 753: 748: 743: 739: 735: 731: 724: 721: 716: 712: 707: 702: 698: 694: 690: 686: 682: 678: 674: 667: 664: 659: 655: 651: 647: 643: 639: 632: 629: 624: 620: 616: 612: 608: 604: 597: 594: 589: 585: 580: 575: 571: 567: 563: 556: 554: 552: 550: 548: 546: 542: 537: 533: 529: 525: 521: 517: 513: 509: 505: 501: 494: 492: 490: 488: 486: 482: 476: 471: 468: 465: 462: 459: 456: 453: 449: 445: 442: 438: 434: 430: 427: 424: 420: 416: 412: 409: 406: 402: 399: 398: 394: 392: 389: 380: 376: 372: 368: 366: 357: 355: 353: 349: 348:cell adhesion 346:, signaling, 345: 336: 334: 331: 324: 322: 315: 313: 310: 301: 299: 297: 293: 289: 285: 276: 274: 272: 263: 261: 259: 254: 245: 240: 238: 236: 232: 226: 224: 220: 216: 207: 203: 201: 200:thermodynamic 196: 192: 187: 185: 181: 178:experiments, 177: 169: 162: 159: 156: 155: 151: 148: 145: 144: 140: 137: 134: 133: 130: 126: 123: 121:Phospholipid 120: 119: 115: 112: 109: 108: 100: 98: 95: 91: 87: 83: 82:carbohydrates 79: 75: 71: 67: 64: 60: 56: 55:lipid bilayer 53:, there is a 52: 48: 44: 37: 36:cell membrane 32: 19: 2034:Cell anatomy 1891:Lipoproteins 1699:Gerontoplast 1649:Pseudopodium 1642:Radial spoke 1622:Undulipodium 1562:Cytoskeleton 1478:Parenthesome 1370: 1366: 1356: 1319: 1315: 1305: 1272: 1268: 1258: 1247:. Retrieved 1240:the original 1235: 1222: 1205: 1201: 1195: 1160: 1156: 1146: 1137: 1133: 1123: 1088: 1085:EMBO Reports 1084: 1074: 1029: 1025: 1015: 974: 970: 964: 954:14 September 952:. Retrieved 948: 938: 906:(1): 35–47. 903: 899: 889: 869: 824: 820: 813: 778: 774: 764: 737: 733: 723: 680: 676: 666: 641: 637: 631: 606: 602: 596: 569: 565: 503: 499: 469: 463: 457: 451: 443: 428: 422: 415:Evert Gorter 410: 400: 386: 379:S.cerevisiae 378: 369: 361: 340: 328: 319: 305: 280: 271:gap junction 267: 249: 229:advances in 227: 219:heterokaryon 215:Sendai virus 212: 188: 173: 146:Cholesterol 128: 42: 40: 1801:Magnetosome 1767:Spliceosome 1694:Chromoplast 1689:Chloroplast 1580:Microtubule 1316:BMC Biology 433:Hugh Davson 330:Lipid rafts 325:Lipid rafts 294:formation, 284:BAR domains 253:Cholesterol 110:Components 59:amphipathic 2029:Organelles 2018:Categories 1963:Glycocalyx 1796:Proteasome 1789:Inclusions 1736:Nitroplast 1729:Apicoplast 1714:Elaioplast 1709:Amyloplast 1704:Leucoplast 1659:Filopodium 1605:Basal body 1595:Centrosome 1545:Peroxisome 1540:Glyoxysome 1530:Melanosome 1440:organelles 1249:2014-12-05 1140:: 159–201. 116:Functions 74:elasticity 2003:Porosomes 1817:Cell wall 1779:Cytoplasm 1752:Nucleolus 1724:Tannosome 1632:Flagellum 1617:Myofibril 1600:Centriole 1535:Microbody 1508:Phagosome 1322:(1): 46. 352:migration 309:bacterial 296:organelle 184:viscosity 157:Proteins 113:Location 66:molecules 1810:External 1762:Ribosome 1518:Acrosome 1503:Endosome 1498:Lysosome 1395:22116853 1348:38414038 1339:10898092 1187:19868999 1115:21997296 1066:12832616 1007:35095032 999:20044567 930:25284293 849:19392326 805:19379681 756:15519321 658:16271405 588:24189436 536:83851531 221:. Using 193:and the 176:labeling 78:membrane 70:fluidity 1901:Sterols 1784:Cytosol 1684:Plastid 1637:Axoneme 1513:Vacuole 1493:Exosome 1488:Vesicle 1463:Nucleus 1375:Bibcode 1367:Science 1297:9177342 1277:Bibcode 1178:2130960 1106:3207108 1034:Bibcode 979:Bibcode 971:Science 921:4275391 900:Traffic 829:Bibcode 796:4832598 715:6478029 706:1435039 685:Bibcode 623:4098863 528:4333397 508:Bibcode 500:Science 388:Septins 381:septins 292:vesicle 76:to the 63:protein 1627:Cilium 1450:system 1393:  1346:  1336:  1295:  1269:Nature 1185:  1175:  1113:  1103:  1064:  1057:166180 1054:  1005:  997:  928:  918:  877:  847:  803:  793:  754:  713:  703:  656:  621:  586:  534:  526:  350:, and 1946:Other 1772:Vault 1243:(PDF) 1232:(PDF) 1003:S2CID 532:S2CID 1436:cell 1391:PMID 1344:PMID 1293:PMID 1183:PMID 1111:PMID 1062:PMID 995:PMID 956:2024 926:PMID 875:ISBN 845:PMID 801:PMID 775:Cell 752:PMID 738:1666 711:PMID 654:PMID 642:1746 619:PMID 584:PMID 570:1838 524:PMID 470:2024 464:1997 458:1972 452:i.e. 444:1957 435:and 429:1935 423:i.e. 417:and 411:1925 401:1895 233:and 88:and 72:and 41:The 1757:RNA 1383:doi 1371:334 1334:PMC 1324:doi 1285:doi 1273:387 1210:doi 1173:PMC 1165:doi 1101:PMC 1093:doi 1052:PMC 1042:doi 1030:100 987:doi 975:327 916:PMC 908:doi 837:doi 825:102 791:PMC 783:doi 779:137 742:doi 701:PMC 693:doi 646:doi 611:doi 574:doi 516:doi 504:175 440:it. 2020:: 1438:/ 1389:. 1381:. 1369:. 1365:. 1342:. 1332:. 1320:22 1318:. 1314:. 1291:. 1283:. 1271:. 1267:. 1234:. 1204:. 1181:. 1171:. 1161:41 1159:. 1155:. 1138:40 1136:. 1132:. 1109:. 1099:. 1089:12 1087:. 1083:. 1060:. 1050:. 1040:. 1028:. 1024:. 1001:. 993:. 985:. 973:. 947:. 924:. 914:. 904:16 902:. 898:. 857:^ 843:. 835:. 823:. 799:. 789:. 777:. 773:. 750:. 736:. 732:. 709:. 699:. 691:. 681:46 679:. 675:. 652:. 640:. 617:. 605:. 582:. 568:. 564:. 544:^ 530:. 522:. 514:. 502:. 484:^ 446:– 431:– 413:– 403:– 354:. 273:. 1935:/ 1926:/ 1856:e 1849:t 1842:v 1427:e 1420:t 1413:v 1397:. 1385:: 1377:: 1350:. 1326:: 1299:. 1287:: 1279:: 1252:. 1216:. 1212:: 1206:5 1189:. 1167:: 1117:. 1095:: 1068:. 1044:: 1036:: 1009:. 989:: 981:: 958:. 932:. 910:: 883:. 851:. 839:: 831:: 807:. 785:: 758:. 744:: 717:. 695:: 687:: 660:. 648:: 625:. 613:: 607:7 590:. 576:: 538:. 518:: 510:: 20:)

Index

Fluid Mosaic Model

cell membrane
cell membranes
biological model
lipid bilayer
amphipathic
protein
molecules
fluidity
elasticity
membrane
carbohydrates
Seymour Jonathan Singer
Garth L. Nicolson
two-dimensional liquid
labeling
x-ray diffraction
viscosity
Robertson Unit Membrane Model
Davson-Danielli
thermodynamic

Sendai virus
heterokaryon
antibody staining
fluorescence microscopy
structural biology
Cholesterol
Mattress Model

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑