Knowledge (XXG)

Fossil history of flowering plants

Source 📝

262:
their genome size. During the early Cretaceous period, only angiosperms underwent rapid genome downsizing, while genome sizes of ferns and gymnosperms remained unchanged. Smaller genomes—and smaller nuclei—allow for faster rates of cell division and smaller cells. Thus, species with smaller genomes can pack more, smaller cells—in particular veins and stomata—into a given leaf volume. Genome downsizing therefore facilitated higher rates of leaf gas exchange (transpiration and photosynthesis) and faster rates of growth. This would have countered some of the negative physiological effects of genome duplications, facilitated increased uptake of carbon dioxide despite concurrent declines in atmospheric CO
312: 336:
In 2013 flowers encased in amber were found and dated 100 million years before present. The amber had frozen the act of sexual reproduction in the process of taking place. Microscopic images showed tubes growing out of pollen and penetrating the flower's stigma. The pollen was sticky, suggesting
72:
green algae. A later terrestrial adaptation took place with retention of the delicate, avascular sexual stage, the gametophyte, within the tissues of the vascular sporophyte. This occurred by spore germination within sporangia rather than spore release, as in non-seed plants. A current example of how
261:
Whereas the earth had previously been dominated by ferns and conifers, angiosperms quickly spread during the Cretaceous. They now comprise about 90% of all plant species including most food crops. It has been proposed that the swift rise of angiosperms to dominance was facilitated by a reduction in
166:
Based on fossil evidence, some have proposed that the ancestors of the angiosperms diverged from an unknown group of gymnosperms in the Triassic period (245–202 million years ago). Fossil angiosperm-like pollen from the Middle Triassic (247.2–242.0 Ma) suggests an older date for their origin,
1095:
Coiro, Mario; Chomicki, Guillaume; Doyle, James A. (30 July 2018). "Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales".
154:. Gigantopterids are a group of extinct seed plants that share many morphological traits with flowering plants. Molecular evidence suggests that the ancestors of angiosperms diverged from the gymnosperms during the late 830:
Taylor, David Winship; Li, Hongqi; Dahl, Jeremy; et al. (March 2006). "Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils".
524:"A New Tree of Flowering Plants? For Spring? Groundbreaking. - By sequencing an enormous amount of data, a group of hundreds of researchers has gained new insights into how flowers evolved on Earth" 337:
it was carried by insects. In August 2017, scientists presented a detailed description and 3D model image of what the first flower possibly looked like, and suggested that it may have lived about
1060:
Qiu, Yin-Long; Li, Libo; Wang, Bin; et al. (June 2007). "A Nonflowering Land Plant Phylogeny Inferred from Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes".
1229: 533: 224:" that first appeared during the Triassic and went extinct in the Cretaceous, to be amongst the best candidates for a close relative of angiosperms. The fossil plant species 379:
of the other flowering plants, while morphological studies suggest that it has features that may have been characteristic of the earliest flowering plants. The orders
1190: 40:". Nonetheless, in April 2024, scientists reported an overview of the origin and development of flowering plants over the years based on extensive genetic studies. 402:, approximately 100 million years ago. However, a study in 2007 estimated that the divergence of the five most recent of the eight main groups, namely the genus 434:
in general, especially when this is associated with radical adaptations that seem to have required transitional forms. Flowering plants may have evolved on an
207:
perhaps created the ancestral line that led to all modern flowering plants. That event was studied by sequencing the genome of an ancient flowering plant,
167:
which is further supported by genetic evidence of the ancestors of angiosperms diverging during the Devonian. A close relationship between angiosperms and
60:
sexually with flagellated, swimming sperm, like the green algae from which they evolved. An adaptation to terrestrial life was the development of upright
106:
Angiosperms appear suddenly and in great diversity in the fossil record in the Early Cretaceous. This poses such a problem for the theory of gradual
1929: 925: 1139:
Jiao, Yuannian; Wickett, No4rman J.; Ayyampalayam, Saravanaraj; et al. (May 2011). "Ancestral polyploidy in seed plants and angiosperms".
497:) had already appeared by the late Cretaceous. Flowering plants appeared in Australia about 126 million years ago. This also pushed the age of 481:. The radiation of herbaceous angiosperms occurred much later. Yet, many fossil plants recognisable as belonging to modern families (including 2199: 2162: 2078: 1696: 1205: 874: 523: 498: 2168: 2084: 430:
offers a possible explanation for the sudden, fully developed appearance of flowering plants. It is believed to be a common source of
1736:
The presence of pollen grains on the style and calyx but not in the surrounding amber suggests that the grains may have been adhesive
103:
and cycads produce a pair of flagellated, mobile sperm cells that "swim" down the developing pollen tube to the female and her eggs.
1510: 765: 2226: 987: 1634:
Sun, G.; Ji, Q.; Dilcher, D.L.; Zheng, S.; Nixon, K.C.; Wang, X. (May 2002). "Archaefructaceae, a new basal angiosperm family".
438:
or island chain, where the plants bearing them were able to develop a specialised relationship with a specific animal such as a
502: 28:, now the dominant group of plants on land. The history is controversial as flowering plants appear in great diversity in the 898:"Foliar physiognomy in Cathaysian gigantopterids and the potential to track Palaeozoic climates using an extinct plant group" 588: 1807:"Strategies for Partitioning Clock Models in Phylogenomic Dating: Application to the Angiosperm Evolutionary Timescale" 1011:"Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland)" 477:
as the dominant trees close to the end of the Cretaceous, 66 million years ago or even later, at the beginning of the
391:
diverged as separate lineages from the remaining angiosperm clade at a very early stage in flowering plant evolution.
286: 123: 269:
The oldest known fossils definitively attributable to angiosperms are reticulated monosulcate pollen from the late
454:, which evolved specifically due to mutualistic plant relationships, are descended from wasps. The paleontologist 1460:
Sokoloff, Dmitry D.; Remizowa, Margarita V.; El, Elena S.; Rudall, Paula J.; Bateman, Richard M. (October 2020).
447: 83:
was enclosing the female gamete in a case, the seed. The first seed-bearing plants were gymnosperms, like the
844: 1719: 787:
Bateman, Richard M. (2020-01-01). "Hunting the Snark: the flawed search for mythical Jurassic angiosperms".
952:"Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms" 458:
has proposed that flowering plants might have evolved due to interactions with dinosaurs. He argued that
442:. Such a relationship, with a hypothetical wasp carrying pollen from one plant to another much as modern 1302:
Shi, Gongle; Herrera, Fabiany; Herendeen, Patrick S.; Clark, Elizabeth G.; Crane, Peter R. (June 2021).
1184: 896:
Glasspool, Ian J.; Hilton, Jason; Collinson, Margaret E.; Wang, Shi-Jun; Li-Cheng-Sen (20 March 2004).
253:
angiosperm. Other researchers contend that the structures are misinterpreted decomposed conifer cones.
897: 182:
The evolution of seed plants and later angiosperms appears to be the result of two distinct rounds of
2221: 2117: 2106:
Bakker, Robert T. (17 August 1978). "Dinosaur Feeding Behaviour and the Origin of Flowering Plants".
2021: 1921: 1761: 1643: 1315: 1260: 1148: 1105: 909: 209: 172: 143: 273:(Early or Lower Cretaceous - 140 to 133 million years ago) of Italy and Israel, likely representing 237:
seems to share many exclusively angiosperm features, such as flower-like structures and a thickened
32:, with scanty and debatable records before that, creating a puzzle for evolutionary biologists that 238: 662:
Herendeen, Patrick S.; Friis, Else Marie; Pedersen, Kaj Raunsgaard; Crane, Peter R. (2017-03-03).
68:
to new habitats. This feature is lacking in the descendants of their nearest algal relatives, the
2133: 1688: 1667: 1347: 1284: 1221: 1172: 1121: 1077: 979: 866: 848: 699: 528: 395: 315: 134: 115: 37: 465:
By the late Cretaceous, angiosperms appear to have dominated environments formerly occupied by
2195: 2158: 2152: 2074: 2049: 2005: 1982: 1903: 1836: 1787: 1659: 1616: 1565: 1483: 1442: 1398: 1339: 1331: 1276: 1164: 1042: 971: 812: 804: 738: 691: 683: 641: 342: 311: 274: 176: 2068: 1859: 179:
that suggest gnetophytes are instead more closely related to conifers and other gymnosperms.
126:
of flowering plants, but there is no continuous fossil evidence showing how flowers evolved.
2125: 2108: 2039: 2029: 2010:"Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms" 2001: 1972: 1964: 1893: 1877: 1826: 1818: 1777: 1769: 1651: 1606: 1596: 1555: 1545: 1473: 1432: 1388: 1378: 1323: 1268: 1213: 1156: 1113: 1069: 1032: 1022: 963: 917: 840: 796: 730: 675: 631: 623: 578: 570: 561: 455: 388: 1421:"How deep is the conflict between molecular and fossil evidence on the age of angiosperms?" 1689:"When flowers reached Australia: First blooms made it to Australia 126 millions years ago" 1251:
Adams, Keith (December 2013). "Genomics. Genomic clues to the ancestral flowering plant".
718: 427: 398:, when a great diversity of angiosperms appears in the fossil record, occurred in the mid- 183: 57: 950:
Stull, Gregory W.; Qu, Xiao-Jian; Parins-Fukuchi, Caroline; et al. (July 19, 2021).
2121: 2025: 1765: 1647: 1585:"Genome downsizing, physiological novelty, and the global dominance of flowering plants" 1534:"Genome downsizing, physiological novelty, and the global dominance of flowering plants" 1502: 1462:"Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature" 1319: 1264: 1152: 1109: 913: 757: 616:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
2044: 2009: 1977: 1952: 1873: 1831: 1806: 1782: 1749: 1611: 1584: 1560: 1533: 1393: 1366: 1037: 1010: 636: 611: 409: 231: 111: 33: 129:
Several claims of pre-Cretaceous angiosperm fossils have been made, such as the upper
2215: 1351: 1303: 1288: 983: 951: 703: 556: 421: 404: 372: 329: 225: 151: 1225: 1125: 1081: 852: 345:
of 52 angiosperm taxa suggested that the crown group of angiosperms evolved between
2137: 1671: 1176: 380: 376: 69: 1718:
Poinar, George O. Jr.; Chambers, Kenton .L; Wunderlich, Joerg (10 December 2013).
266:
concentrations, and allowed the flowering plants to outcompete other land plants.
2151:
Sadava, David; Heller, H. Craig; Orians, Gordon H.; et al. (December 2006).
1601: 1550: 921: 470: 384: 281: 270: 246: 217: 75: 53: 25: 2014:
Proceedings of the National Academy of Sciences of the United States of America
1327: 967: 574: 1217: 431: 417: 399: 319: 304: 295: 250: 221: 168: 80: 61: 29: 1951:
Vialette-Guiraud, A.C.; Alaux, M.; Legeai, F.; et al. (September 2011).
1335: 808: 687: 612:"The role of mid-palaeozoic mesofossils in the detection of early bryophytes" 2034: 1748:
Sauquet, Hervé; von Balthazar, M.; Magallón, S.; et al. (August 2017).
1720:"Micropetasos, a new genus of angiosperms from mid-Cretaceous Burmese amber" 1655: 1272: 1027: 679: 478: 459: 366: 119: 107: 73:
this might have happened can be seen in the precocious spore germination in
2053: 1986: 1907: 1840: 1791: 1663: 1620: 1569: 1487: 1446: 1402: 1365:
Fu, Qiang; Diez, Jose Bienvenido; Pole, Mike; et al. (December 2018).
1343: 1280: 1168: 1046: 975: 816: 742: 695: 645: 627: 99:). These did not produce flowers. The pollen grains (male gametophytes) of 1922:"South Pacific plant may be missing link in evolution of flowering plants" 1968: 1898: 1881: 1822: 1367:"An unexpected noncarpellate epigynous flower from the Jurassic of China" 800: 494: 443: 413: 291: 155: 139: 130: 1773: 1383: 1160: 1117: 734: 583: 450:
in both the plant and its partners. The wasp example is not incidental;
298:
period), whereas pollen considered to be of angiosperm origin takes the
474: 324: 147: 88: 1478: 1461: 1437: 1420: 56:) have existed for at least 475 million years. Early land plants 2129: 1304:"Mesozoic cupules and the origin of the angiosperm second integument" 435: 354: 347: 338: 299: 202: 195: 188: 84: 21: 1750:"The ancestral flower of angiosperms and its early diversification" 1073: 1731: 490: 482: 310: 242: 234: 79:, the spike-moss. The result for the ancestors of angiosperms and 65: 49: 466: 451: 439: 92: 1953:"Cabomba as a model for studies of early angiosperm evolution" 664:"Palaeobotanical redux: revisiting the age of the angiosperms" 486: 362: 96: 462:
dinosaurs provided a selective grazing pressure on plants.
138:, but none of these are widely accepted by paleobotanists. 1419:
Coiro, Mario; Doyle, James A.; Hilton, Jason (July 2019).
175:
evidence, has more recently been disputed on the basis of
2194:(2nd ed.). Cambridge University Press. p. 498. 845:
10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2
867:"Oily Fossils Provide Clues To The Evolution Of Flowers" 663: 118:". Several groups of extinct gymnosperms, in particular 1805:
Foster, Charles S.P.; Ho, Simon Y.W. (October 2017).
302:
record back to about 130 million years BP, with
200:. Another possible whole genome duplication event at 146:
produced by many flowering plants, has been found in
555:
Zuntini, Alexandre R.; et al. (24 April 2024).
2190:Stewart, Wilson Nichols; Rothwell, Gar W. (1993). 1882:"Amborella not a "basal angiosperm"? Not so fast" 902:Palaeogeography, Palaeoclimatology, Palaeoecology 758:"New light shed on Darwin's 'Abominable Mystery'" 2067:Buchmann, Stephen L.; Nabhan, Gary Paul (2012). 1532:Simonin, Kevin A.; Roddy, Adam B. (2018-01-11). 657: 655: 1683: 1681: 557:"Phylogenomics and the rise of the angiosperms" 308:representing the earliest flower at that time. 1206:"Shrub genome reveals secrets of flower power" 719:"The meaning of Darwin's "abominable mystery"" 150:deposits of that age together with fossils of 1583:Simonin, K. A.; Roddy, A. B. (January 2018). 1414: 1412: 945: 943: 8: 1009:Hochuli, P. A.; Feist-Burkhardt, S. (2013). 1189:: CS1 maint: numeric names: authors list ( 1503:"How flowering plants conquered the world" 2043: 2033: 1976: 1897: 1830: 1781: 1610: 1600: 1559: 1549: 1477: 1436: 1392: 1382: 1036: 1026: 635: 582: 424:, occurred around 140 million years ago. 284:confidently identified as an angiosperm, 24:and other distinctive structures of the 2192:Paleobotany and the evolution of plants 1062:International Journal of Plant Sciences 514: 322:created many flowering plants, such as 1182: 473:. Large canopy-forming trees replaced 2171:from the original on 23 December 2011 1699:from the original on 21 December 2019 873:. Stanford University. 5 April 2001. 717:Friedman, William E. (January 2009). 290:, is dated to about 125 million 7: 2087:from the original on 5 February 2016 1513:from the original on 2 February 2021 990:from the original on 10 January 2022 928:from the original on 4 November 2012 768:from the original on 30 January 2021 522:Greenwood, Veronique (11 May 2024). 877:from the original on 19 August 2010 1232:from the original on 21 April 2021 622:(1398): 733–54, discussion 754–5. 18:fossil history of flowering plants 14: 1932:from the original on 24 July 2021 216:Many paleobotanists consider the 2073:. Island Press. pp. 41–42. 1204:Callaway, Ewen (December 2013). 591:from the original on 12 May 2024 536:from the original on 11 May 2024 505:, to 126–110 million years old. 158:, about 365 million years ago. 1501:Briggs, H. (14 January 2018). 789:Journal of Experimental Botany 756:Briggs, H. (23 January 2021). 499:ancient Australian vertebrates 446:do, could cause the requisite 1: 245:, and thus might represent a 2157:. Macmillan. pp. 477–. 2154:Life: the science of biology 1811:Genome Biology and Evolution 1730:(2): 745–750. Archived from 1602:10.1371/journal.pbio.2003706 1551:10.1371/journal.pbio.2003706 922:10.1016/j.palaeo.2003.12.002 122:, have been proposed as the 2000:Moore, M. J.; Bell, C. D.; 371:, on the Pacific island of 287:Archaefructus liaoningensis 171:, proposed on the basis of 20:records the development of 2243: 1886:American Journal of Botany 1328:10.1038/s41586-021-03598-w 1015:Frontiers in Plant Science 968:10.1038/s41477-021-00964-4 723:American Journal of Botany 575:10.1038/s41586-024-07324-0 186:events. These occurred at 52:suggest that land plants ( 2070:The Forgotten Pollinators 1218:10.1038/nature.2013.14426 610:Edwards, D. (June 2000). 227:Nanjinganthus dendrostyla 1724:J. Bot. Res. Inst. Texas 184:whole genome duplication 2227:Fossil record of plants 2035:10.1073/pnas.0708072104 1858:. PBS. April 17, 2007. 1656:10.1126/science.1069439 1273:10.1126/science.1248709 1028:10.3389/fpls.2013.00344 680:10.1038/nplants.2017.15 357: million years ago 350: million years ago 205: million years ago 198: million years ago 191: million years ago 628:10.1098/rstb.2000.0613 333: 1928:. AAAS. 17 May 2006. 1754:Nature Communications 503:south polar continent 501:, in what was then a 394:The great angiosperm 365:analysis showed that 339:140 million years ago 314: 162:Triassic and Jurassic 1899:10.3732/ajb.91.6.997 368:Amborella trichopoda 210:Amborella trichopoda 144:secondary metabolite 2122:1978Natur.274..661B 2026:2007PNAS..10419363M 1774:10.1038/ncomms16047 1766:2017NatCo...816047S 1734:on 5 January 2014. 1648:2002Sci...296..899S 1466:The New Phytologist 1425:The New Phytologist 1384:10.7554/eLife.38827 1320:2021Natur.594..223S 1265:2013Sci...342.1456A 1161:10.1038/nature09916 1153:2011Natur.473...97J 1118:10.1017/pab.2018.23 1110:2018Pbio...44..490C 914:2004PPP...205...69G 735:10.3732/ajb.0800150 280:The earliest known 1969:10.1093/aob/mcr088 1823:10.1093/gbe/evx198 801:10.1093/jxb/erz411 529:The New York Times 334: 316:Adaptive radiation 177:molecular evidence 135:Sanmiguelia lewisi 116:abominable mystery 38:abominable mystery 2201:978-0-521-23315-6 2164:978-0-7167-7674-1 2116:(5672): 661–663. 2080:978-1-59726-908-7 2008:(December 2007). 1817:(10): 2752–2763. 1642:(5569): 899–904. 1479:10.1111/nph.15974 1438:10.1111/nph.15708 1314:(7862): 223–226. 569:(8013): 843–850. 343:Bayesian analysis 275:basal angiosperms 64:for dispersal by 2234: 2206: 2205: 2187: 2181: 2180: 2178: 2176: 2148: 2142: 2141: 2130:10.1038/274661a0 2103: 2097: 2096: 2094: 2092: 2064: 2058: 2057: 2047: 2037: 1997: 1991: 1990: 1980: 1957:Annals of Botany 1948: 1942: 1941: 1939: 1937: 1918: 1912: 1911: 1901: 1870: 1864: 1863: 1854:"First Flower". 1851: 1845: 1844: 1834: 1802: 1796: 1795: 1785: 1745: 1739: 1738: 1715: 1709: 1708: 1706: 1704: 1685: 1676: 1675: 1631: 1625: 1624: 1614: 1604: 1580: 1574: 1573: 1563: 1553: 1529: 1523: 1522: 1520: 1518: 1498: 1492: 1491: 1481: 1457: 1451: 1450: 1440: 1416: 1407: 1406: 1396: 1386: 1362: 1356: 1355: 1299: 1293: 1292: 1259:(6165): 1456–7. 1248: 1242: 1241: 1239: 1237: 1201: 1195: 1194: 1188: 1180: 1147:(7345): 97–100. 1136: 1130: 1129: 1092: 1086: 1085: 1057: 1051: 1050: 1040: 1030: 1006: 1000: 999: 997: 995: 962:(8): 1015–1025. 947: 938: 937: 935: 933: 893: 887: 886: 884: 882: 863: 857: 856: 827: 821: 820: 784: 778: 777: 775: 773: 753: 747: 746: 714: 708: 707: 659: 650: 649: 639: 607: 601: 600: 598: 596: 586: 552: 546: 545: 543: 541: 519: 456:Robert T. Bakker 389:Austrobaileyales 358: 351: 206: 199: 192: 2242: 2241: 2237: 2236: 2235: 2233: 2232: 2231: 2212: 2211: 2210: 2209: 2202: 2189: 2188: 2184: 2174: 2172: 2165: 2150: 2149: 2145: 2105: 2104: 2100: 2090: 2088: 2081: 2066: 2065: 2061: 2020:(49): 19363–8. 1999: 1998: 1994: 1950: 1949: 1945: 1935: 1933: 1920: 1919: 1915: 1892:(6): 997–1001. 1872: 1871: 1867: 1853: 1852: 1848: 1804: 1803: 1799: 1760:(2017): 16047. 1747: 1746: 1742: 1717: 1716: 1712: 1702: 1700: 1687: 1686: 1679: 1633: 1632: 1628: 1595:(1): e2003706. 1582: 1581: 1577: 1544:(1): e2003706. 1531: 1530: 1526: 1516: 1514: 1500: 1499: 1495: 1459: 1458: 1454: 1418: 1417: 1410: 1364: 1363: 1359: 1301: 1300: 1296: 1250: 1249: 1245: 1235: 1233: 1203: 1202: 1198: 1181: 1138: 1137: 1133: 1094: 1093: 1089: 1059: 1058: 1054: 1008: 1007: 1003: 993: 991: 949: 948: 941: 931: 929: 895: 894: 890: 880: 878: 865: 864: 860: 829: 828: 824: 786: 785: 781: 771: 769: 755: 754: 750: 716: 715: 711: 661: 660: 653: 609: 608: 604: 594: 592: 554: 553: 549: 539: 537: 521: 520: 516: 511: 428:Island genetics 375:, belongs to a 353: 346: 265: 259: 201: 194: 187: 164: 46: 12: 11: 5: 2240: 2238: 2230: 2229: 2224: 2214: 2213: 2208: 2207: 2200: 2182: 2163: 2143: 2098: 2079: 2059: 1992: 1963:(4): 589–598. 1943: 1913: 1865: 1846: 1797: 1740: 1710: 1677: 1626: 1575: 1524: 1493: 1472:(2): 420–426. 1452: 1408: 1357: 1294: 1243: 1196: 1131: 1104:(3): 490–510. 1087: 1074:10.1086/513474 1068:(5): 691–708. 1052: 1001: 939: 888: 858: 839:(2): 179–190. 822: 779: 748: 709: 651: 602: 547: 513: 512: 510: 507: 448:specialisation 410:Chloranthaceae 263: 258: 255: 232:Early Jurassic 220:, a group of " 163: 160: 152:gigantopterids 114:called it an " 112:Charles Darwin 45: 42: 34:Charles Darwin 13: 10: 9: 6: 4: 3: 2: 2239: 2228: 2225: 2223: 2220: 2219: 2217: 2203: 2197: 2193: 2186: 2183: 2170: 2166: 2160: 2156: 2155: 2147: 2144: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2110: 2102: 2099: 2086: 2082: 2076: 2072: 2071: 2063: 2060: 2055: 2051: 2046: 2041: 2036: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2006:Soltis, D. E. 2003: 2002:Soltis, P. S. 1996: 1993: 1988: 1984: 1979: 1974: 1970: 1966: 1962: 1958: 1954: 1947: 1944: 1931: 1927: 1923: 1917: 1914: 1909: 1905: 1900: 1895: 1891: 1887: 1883: 1880:(June 2004). 1879: 1878:Soltis, P. S. 1875: 1874:Soltis, D. E. 1869: 1866: 1861: 1857: 1850: 1847: 1842: 1838: 1833: 1828: 1824: 1820: 1816: 1812: 1808: 1801: 1798: 1793: 1789: 1784: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1744: 1741: 1737: 1733: 1729: 1725: 1721: 1714: 1711: 1698: 1694: 1690: 1684: 1682: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1630: 1627: 1622: 1618: 1613: 1608: 1603: 1598: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1562: 1557: 1552: 1547: 1543: 1539: 1535: 1528: 1525: 1512: 1508: 1504: 1497: 1494: 1489: 1485: 1480: 1475: 1471: 1467: 1463: 1456: 1453: 1448: 1444: 1439: 1434: 1430: 1426: 1422: 1415: 1413: 1409: 1404: 1400: 1395: 1390: 1385: 1380: 1376: 1372: 1368: 1361: 1358: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1295: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1247: 1244: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1197: 1192: 1186: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1135: 1132: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1091: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1048: 1044: 1039: 1034: 1029: 1024: 1020: 1016: 1012: 1005: 1002: 989: 985: 981: 977: 973: 969: 965: 961: 957: 956:Nature Plants 953: 946: 944: 940: 927: 923: 919: 915: 911: 908:(1): 69–110. 907: 903: 899: 892: 889: 876: 872: 868: 862: 859: 854: 850: 846: 842: 838: 834: 826: 823: 818: 814: 810: 806: 802: 798: 794: 790: 783: 780: 767: 763: 759: 752: 749: 744: 740: 736: 732: 728: 724: 720: 713: 710: 705: 701: 697: 693: 689: 685: 681: 677: 673: 669: 668:Nature Plants 665: 658: 656: 652: 647: 643: 638: 633: 629: 625: 621: 617: 613: 606: 603: 590: 585: 580: 576: 572: 568: 564: 563: 558: 551: 548: 535: 531: 530: 525: 518: 515: 508: 506: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 463: 461: 457: 453: 449: 445: 441: 437: 433: 429: 425: 423: 419: 415: 411: 408:, the family 407: 406: 405:Ceratophyllum 401: 397: 392: 390: 386: 382: 378: 374: 373:New Caledonia 370: 369: 364: 360: 356: 349: 344: 340: 331: 330:Ranunculaceae 327: 326: 321: 317: 313: 309: 307: 306: 301: 297: 293: 289: 288: 283: 278: 276: 272: 267: 256: 254: 252: 248: 244: 240: 236: 233: 229: 228: 223: 219: 214: 213: 211: 204: 197: 190: 185: 180: 178: 174: 173:morphological 170: 161: 159: 157: 153: 149: 145: 141: 137: 136: 132: 127: 125: 121: 117: 113: 109: 104: 102: 98: 94: 90: 86: 82: 78: 77: 71: 67: 63: 59: 55: 51: 43: 41: 39: 35: 31: 27: 23: 19: 2191: 2185: 2173:. Retrieved 2153: 2146: 2113: 2107: 2101: 2089:. Retrieved 2069: 2062: 2017: 2013: 1995: 1960: 1956: 1946: 1934:. Retrieved 1925: 1916: 1889: 1885: 1868: 1855: 1849: 1814: 1810: 1800: 1757: 1753: 1743: 1735: 1732:the original 1727: 1723: 1713: 1701:. Retrieved 1693:ScienceDaily 1692: 1639: 1635: 1629: 1592: 1589:PLOS Biology 1588: 1578: 1541: 1538:PLOS Biology 1537: 1527: 1515:. Retrieved 1506: 1496: 1469: 1465: 1455: 1431:(1): 83–99. 1428: 1424: 1374: 1370: 1360: 1311: 1307: 1297: 1256: 1252: 1246: 1234:. Retrieved 1209: 1199: 1185:cite journal 1144: 1140: 1134: 1101: 1098:Paleobiology 1097: 1090: 1065: 1061: 1055: 1018: 1014: 1004: 992:. Retrieved 959: 955: 930:. Retrieved 905: 901: 891: 879:. Retrieved 871:ScienceDaily 870: 861: 836: 833:Paleobiology 832: 825: 795:(1): 22–35. 792: 788: 782: 770:. Retrieved 761: 751: 726: 722: 712: 674:(3): 17015. 671: 667: 619: 615: 605: 593:. Retrieved 584:10261/359084 566: 560: 550: 538:. Retrieved 527: 517: 471:cycadophytes 464: 426: 403: 393: 381:Amborellales 377:sister group 367: 361: 335: 323: 303: 285: 279: 268: 260: 226: 215: 208: 181: 165: 133: 128: 105: 100: 74: 70:Charophycean 54:embryophytes 47: 17: 15: 2222:Angiosperms 1936:21 February 1926:EurekAlert! 1860:Transcripts 1703:21 December 1236:21 February 881:28 February 729:(1): 5–21. 460:herbivorous 385:Nymphaeales 282:macrofossil 271:Valanginian 247:crown-group 218:Caytoniales 169:gnetophytes 81:gymnosperms 76:Selaginella 48:Fossilised 26:angiosperms 2216:Categories 1517:31 January 1377:: e38827. 994:10 January 932:9 November 772:31 January 509:References 432:speciation 420:, and the 418:magnoliids 400:Cretaceous 320:Cretaceous 305:Montsechia 296:Cretaceous 257:Cretaceous 251:stem-group 239:receptacle 222:seed ferns 120:seed ferns 58:reproduced 36:named an " 30:Cretaceous 2091:8 January 1352:235217720 1336:1476-4687 1289:206553839 984:236141481 809:0022-0957 704:205458714 688:2055-0278 479:Paleogene 444:fig wasps 396:radiation 124:ancestors 108:evolution 91:(such as 62:sporangia 44:Paleozoic 2175:4 August 2169:Archived 2085:Archived 2054:18048334 1987:21486926 1930:Archived 1908:21653455 1841:29036288 1792:28763051 1697:Archived 1664:11988572 1621:29324757 1570:29324757 1511:Archived 1507:BBC News 1488:31418869 1447:30681148 1403:30558712 1344:34040260 1281:24357306 1230:Archived 1226:88293665 1169:21478875 1126:91488394 1082:83781896 1047:24106492 988:Archived 976:34282286 926:Archived 875:Archived 853:83801635 817:31538196 766:Archived 762:BBC News 743:21628174 696:28260783 646:10905607 589:Archived 534:Archived 495:magnolia 475:conifers 422:monocots 414:eudicots 292:years BP 156:Devonian 140:Oleanane 131:Triassic 89:conifers 2138:4162574 2118:Bibcode 2045:2148295 2022:Bibcode 1978:3170152 1832:5647803 1783:5543309 1762:Bibcode 1672:1910388 1644:Bibcode 1636:Science 1612:5764239 1561:5764239 1394:6298773 1316:Bibcode 1261:Bibcode 1253:Science 1177:4313258 1149:Bibcode 1106:Bibcode 1038:3788615 1021:: 344. 910:Bibcode 637:1692787 328:in the 325:Sagaria 318:in the 148:Permian 22:flowers 2198:  2161:  2136:  2109:Nature 2077:  2052:  2042:  1985:  1975:  1906:  1839:  1829:  1790:  1780:  1670:  1662:  1619:  1609:  1568:  1558:  1486:  1445:  1401:  1391:  1350:  1342:  1334:  1308:Nature 1287:  1279:  1224:  1210:Nature 1175:  1167:  1141:Nature 1124:  1080:  1045:  1035:  982:  974:  851:  815:  807:  741:  702:  694:  686:  644:  634:  595:12 May 562:Nature 540:12 May 493:, and 436:island 416:, the 412:, the 387:, and 300:fossil 243:ovules 101:Ginkgo 87:, and 85:ginkgo 66:spores 50:spores 2134:S2CID 1668:S2CID 1371:eLife 1348:S2CID 1285:S2CID 1222:S2CID 1173:S2CID 1122:S2CID 1078:S2CID 980:S2CID 849:S2CID 700:S2CID 491:maple 483:beech 467:ferns 294:(the 249:or a 241:with 235:China 230:from 110:that 93:pines 2196:ISBN 2177:2010 2159:ISBN 2093:2016 2075:ISBN 2050:PMID 1983:PMID 1938:2022 1904:PMID 1856:NOVA 1837:PMID 1788:PMID 1705:2019 1660:PMID 1617:PMID 1566:PMID 1519:2021 1484:PMID 1443:PMID 1399:PMID 1340:PMID 1332:ISSN 1277:PMID 1238:2022 1191:link 1165:PMID 1043:PMID 996:2022 972:PMID 934:2021 883:2018 813:PMID 805:ISSN 774:2021 739:PMID 692:PMID 684:ISSN 642:PMID 597:2024 542:2024 469:and 452:bees 440:wasp 352:and 341:. A 193:and 142:, a 97:firs 95:and 16:The 2126:doi 2114:274 2040:PMC 2030:doi 2018:104 1973:PMC 1965:doi 1961:108 1894:doi 1827:PMC 1819:doi 1778:PMC 1770:doi 1652:doi 1640:296 1607:PMC 1597:doi 1556:PMC 1546:doi 1474:doi 1470:228 1433:doi 1429:223 1389:PMC 1379:doi 1324:doi 1312:594 1269:doi 1257:342 1214:doi 1157:doi 1145:473 1114:doi 1070:doi 1066:168 1033:PMC 1023:doi 964:doi 918:doi 906:205 841:doi 797:doi 731:doi 676:doi 632:PMC 624:doi 620:355 579:hdl 571:doi 567:629 487:oak 363:DNA 355:198 348:178 203:160 196:192 189:319 2218:: 2167:. 2132:. 2124:. 2112:. 2083:. 2048:. 2038:. 2028:. 2016:. 2012:. 2004:; 1981:. 1971:. 1959:. 1955:. 1924:. 1902:. 1890:91 1888:. 1884:. 1876:; 1835:. 1825:. 1813:. 1809:. 1786:. 1776:. 1768:. 1756:. 1752:. 1726:. 1722:. 1695:. 1691:. 1680:^ 1666:. 1658:. 1650:. 1638:. 1615:. 1605:. 1593:16 1591:. 1587:. 1564:. 1554:. 1542:16 1540:. 1536:. 1509:. 1505:. 1482:. 1468:. 1464:. 1441:. 1427:. 1423:. 1411:^ 1397:. 1387:. 1373:. 1369:. 1346:. 1338:. 1330:. 1322:. 1310:. 1306:. 1283:. 1275:. 1267:. 1255:. 1228:. 1220:. 1212:. 1208:. 1187:}} 1183:{{ 1171:. 1163:. 1155:. 1143:. 1120:. 1112:. 1102:44 1100:. 1076:. 1064:. 1041:. 1031:. 1017:. 1013:. 986:. 978:. 970:. 958:. 954:. 942:^ 924:. 916:. 904:. 900:. 869:. 847:. 837:32 835:. 811:. 803:. 793:71 791:. 764:. 760:. 737:. 727:96 725:. 721:. 698:. 690:. 682:. 670:. 666:. 654:^ 640:. 630:. 618:. 614:. 587:. 577:. 565:. 559:. 532:. 526:. 489:, 485:, 383:, 359:. 277:. 2204:. 2179:. 2140:. 2128:: 2120:: 2095:. 2056:. 2032:: 2024:: 1989:. 1967:: 1940:. 1910:. 1896:: 1862:. 1843:. 1821:: 1815:9 1794:. 1772:: 1764:: 1758:8 1728:7 1707:. 1674:. 1654:: 1646:: 1623:. 1599:: 1572:. 1548:: 1521:. 1490:. 1476:: 1449:. 1435:: 1405:. 1381:: 1375:7 1354:. 1326:: 1318:: 1291:. 1271:: 1263:: 1240:. 1216:: 1193:) 1179:. 1159:: 1151:: 1128:. 1116:: 1108:: 1084:. 1072:: 1049:. 1025:: 1019:4 998:. 966:: 960:7 936:. 920:: 912:: 885:. 855:. 843:: 819:. 799:: 776:. 745:. 733:: 706:. 678:: 672:3 648:. 626:: 599:. 581:: 573:: 544:. 332:. 264:2 212:.

Index

flowers
angiosperms
Cretaceous
Charles Darwin
abominable mystery
spores
embryophytes
reproduced
sporangia
spores
Charophycean
Selaginella
gymnosperms
ginkgo
conifers
pines
firs
evolution
Charles Darwin
abominable mystery
seed ferns
ancestors
Triassic
Sanmiguelia lewisi
Oleanane
secondary metabolite
Permian
gigantopterids
Devonian
gnetophytes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.