Knowledge (XXG)

Formally real field

Source 📝

36: 357: 269: 385:
It is easy to see that these three properties are equivalent. It is also easy to see that a field that admits an ordering must satisfy these three properties.
53: 564: 541: 274: 119: 100: 72: 57: 79: 173: 591: 214: 86: 556: 459: 137: 46: 68: 204: 474:. A real closed field can be ordered in a unique way, and the non-negative elements are exactly the squares. 596: 141: 447: 149: 93: 404:
argument shows that the prepositive cone of sums of squares can be extended to a positive cone
560: 537: 451: 169: 165: 570: 574: 529: 467: 196: 401: 585: 397: 188: 153: 525: 172:. However, the following criteria can be coded as (infinitely many) first-order 133: 35: 211:
the element −1 is a sum of 1s.) This can be expressed in first-order logic by
152:
that can be equipped with a (not necessarily unique) ordering that makes it an
17: 183:
is a field that also satisfies one of the following equivalent properties:
176:
in the language of fields and are equivalent to the above definition.
555:. London Mathematical Society Lecture Note Series. Vol. 171. 400:
and positive cones. Suppose −1 is not a sum of squares; then a
352:{\displaystyle \forall x_{1}x_{2}(-1\neq x_{1}^{2}+x_{2}^{2})} 29: 359:, etc., with one sentence for each number of variables. 381:
equals zero, then each of those elements must be zero.
414:. One uses this positive cone to define an ordering: 277: 217: 203:
is infinite. (In particular, such a field must have
446:A formally real field with no formally real proper 60:. Unsourced material may be challenged and removed. 351: 263: 264:{\displaystyle \forall x_{1}(-1\neq x_{1}^{2})} 8: 168:definition, as it requires quantifiers over 27:Field that can be equipped with an ordering 340: 335: 322: 317: 295: 285: 276: 252: 247: 225: 216: 120:Learn how and when to remove this message 483: 392:satisfies these three properties, then 507: 505: 396:admits an ordering uses the notion of 207:0, since in a field of characteristic 377:If any sum of squares of elements of 7: 164:The definition given above is not a 58:adding citations to reliable sources 278: 218: 25: 499:Milnor and Husemoller (1973) p.60 366:that is not a sum of squares in 34: 45:needs additional citations for 466:, then there is a real closed 346: 301: 258: 231: 1: 458:is formally real and Ω is an 370:, and the characteristic of 362:There exists an element of 613: 557:Cambridge University Press 460:algebraically closed field 534:Symmetric bilinear forms 551:Rajwade, A. R. (1993). 195:. In other words, the 160:Alternative definitions 490:Rajwade, Theorem 15.1. 353: 265: 179:A formally real field 354: 266: 69:"Formally real field" 511:Rajwade (1993) p.216 275: 215: 54:improve this article 592:Field (mathematics) 448:algebraic extension 345: 327: 257: 187:−1 is not a sum of 146:formally real field 136:, in particular in 442:Real closed fields 349: 331: 313: 261: 243: 452:real closed field 398:prepositive cones 130: 129: 122: 104: 16:(Redirected from 604: 578: 547: 530:Husemoller, Dale 512: 509: 500: 497: 491: 488: 470:of Ω containing 433: 423: 413: 388:A proof that if 358: 356: 355: 350: 344: 339: 326: 321: 300: 299: 290: 289: 270: 268: 267: 262: 256: 251: 230: 229: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 612: 611: 607: 606: 605: 603: 602: 601: 582: 581: 567: 550: 544: 524: 521: 516: 515: 510: 503: 498: 494: 489: 485: 480: 444: 429: −  425: 424:if and only if 415: 405: 291: 281: 273: 272: 221: 213: 212: 162: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 610: 608: 600: 599: 597:Ordered groups 594: 584: 583: 580: 579: 565: 548: 542: 520: 517: 514: 513: 501: 492: 482: 481: 479: 476: 443: 440: 383: 382: 375: 360: 348: 343: 338: 334: 330: 325: 320: 316: 312: 309: 306: 303: 298: 294: 288: 284: 280: 260: 255: 250: 246: 242: 239: 236: 233: 228: 224: 220: 205:characteristic 161: 158: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 609: 598: 595: 593: 590: 589: 587: 576: 572: 568: 566:0-521-42668-5 562: 558: 554: 549: 545: 543:3-540-06009-X 539: 535: 531: 527: 523: 522: 518: 508: 506: 502: 496: 493: 487: 484: 477: 475: 473: 469: 465: 461: 457: 453: 449: 441: 439: 437: 432: 428: 422: 418: 412: 408: 403: 399: 395: 391: 386: 380: 376: 373: 369: 365: 361: 341: 336: 332: 328: 323: 318: 314: 310: 307: 304: 296: 292: 286: 282: 253: 248: 244: 240: 237: 234: 226: 222: 210: 206: 202: 198: 194: 190: 186: 185: 184: 182: 177: 175: 171: 167: 159: 157: 155: 154:ordered field 151: 147: 143: 139: 135: 124: 121: 113: 110:December 2009 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 18:Formally real 552: 536:. Springer. 533: 526:Milnor, John 495: 486: 471: 463: 455: 445: 435: 430: 426: 420: 416: 410: 406: 402:Zorn's Lemma 393: 389: 387: 384: 378: 371: 367: 363: 208: 200: 192: 180: 178: 163: 145: 142:real algebra 138:field theory 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 462:containing 434:belongs to 166:first-order 134:mathematics 586:Categories 575:0785.11022 519:References 80:newspapers 374:is not 2. 311:≠ 305:− 279:∀ 241:≠ 235:− 219:∀ 174:sentences 532:(1973). 468:subfield 553:Squares 189:squares 94:scholar 573:  563:  540:  454:. If 96:  89:  82:  75:  67:  478:Notes 450:is a 197:Stufe 150:field 148:is a 101:JSTOR 87:books 561:ISBN 538:ISBN 170:sets 144:, a 140:and 73:news 571:Zbl 199:of 191:in 132:In 56:by 588:: 569:. 559:. 528:; 504:^ 438:. 419:≤ 409:⊆ 271:, 156:. 577:. 546:. 472:K 464:K 456:K 436:P 431:a 427:b 421:b 417:a 411:F 407:P 394:F 390:F 379:F 372:F 368:F 364:F 347:) 342:2 337:2 333:x 329:+ 324:2 319:1 315:x 308:1 302:( 297:2 293:x 287:1 283:x 259:) 254:2 249:1 245:x 238:1 232:( 227:1 223:x 209:p 201:F 193:F 181:F 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Formally real

verification
improve this article
adding citations to reliable sources
"Formally real field"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
mathematics
field theory
real algebra
field
ordered field
first-order
sets
sentences
squares
Stufe
characteristic
prepositive cones
Zorn's Lemma
algebraic extension
real closed field
algebraically closed field
subfield

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.