Knowledge (XXG)

Flat topology

Source đź“ť

296:"Fppf" is an abbreviation for "fidèlement plate de présentation finie", that is, "faithfully flat and of finite presentation". Every surjective family of flat and finitely presented morphisms is a covering family for this topology, hence the name. The definition of the fppf pretopology can also be given with an extra quasi-finiteness condition; it follows from Corollary 17.16.2 in EGA IV 94:, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat. In both categories, a covering family is defined be a family which is a cover on Zariski open subsets. In the fpqc topology, any faithfully flat and quasi-compact morphism is a cover. These topologies are closely related to 101:
Unfortunately the terminology for flat topologies is not standardized. Some authors use the term "topology" for a pretopology, and there are several slightly different pretopologies sometimes called the fppf or fpqc (pre)topology, which sometimes give the same topology.
98:. The "pure" faithfully flat topology without any further finiteness conditions such as quasi compactness or finite presentation is not used much as it is not subcanonical; in other words, representable functors need not be sheaves. 463:"Fpqc" is an abbreviation for "fidèlement plate quasi-compacte", that is, "faithfully flat and quasi-compact". Every surjective family of flat and quasi-compact morphisms is a covering family for this topology, hence the name. 523:
at this point, which is a discrete valuation ring whose spectrum has one closed point and one open (generic) point. We glue these spectra together by identifying their open points to get a scheme
272:
which is part of some covering family. (This does not imply that the morphism is flat, finitely presented.) The morphisms are morphisms of schemes compatible with the fixed maps to
707: 486:
While such groups have a number of applications, they are not in general easy to compute, except in cases where they reduce to other theories, such as the
655: 726: 681: 82:, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat and of finite presentation. 498:
The following example shows why the "faithfully flat topology" without any finiteness conditions does not behave well. Suppose
606: 774: 714: 601: 596: 439:
which is part of some covering family. The morphisms are morphisms of schemes compatible with the fixed maps to
173: 95: 48: 471:
The procedure for defining the cohomology groups is the standard one: cohomology is defined as the sequence of
233:
and took covering families to be jointly surjective families of flat, finitely presented morphisms.) We write
755: 480: 754:, online book by James Milne, explains at the level of flat cohomology duality theorems originating in the 647: 476: 779: 36: 669: 552:, and these maps are the same on intersections. However they cannot be combined to give a map from 487: 659: 40: 759: 722: 677: 548:) which are open in the faithfully flat topology, and each of these sets has a natural map to 691: 400:
and took covering families to be jointly surjective families of flat morphisms.) We write
687: 472: 673: 62:
There are several slightly different flat topologies, the most common of which are the
768: 731: 577: 352: 169: 118: 389:. (This is not the same as the topology we would get if we started with arbitrary 222:. (This is not the same as the topology we would get if we started with arbitrary 177: 56: 28: 17: 748: 381:} which is an fpqc cover after base changing to an open affine subscheme of 214:
which is an fppf cover after base changing to an open affine subscheme of
664: 105:
Flat cohomology was introduced by Grothendieck in about 1960.
734:
and J. S. Milne, "Duality in the flat cohomology of curves",
320:
to be a finite and jointly surjective family of morphisms {
129:
to be a finite and jointly surjective family of morphisms
654:, Documents MathĂ©matiques (Paris) , vol. 3, Paris: 456:, that is, the category of schemes with a fixed map to 289:, that is, the category of schemes with a fixed map to 502:
is the affine line over an algebraically closed field
404:
for the category of schemes with the fpqc topology.
385:. This pretopology generates a topology called the 237:
for the category of schemes with the fppf topology.
47:; it also plays a fundamental role in the theory of 218:. This pretopology generates a topology called the 652:RevĂŞtements Ă©tales et groupe fondamental (SGA 1) 8: 88: 76: 663: 588: 359:arbitrary, we define an fpqc cover of 184:arbitrary, we define an fppf cover of 78:fidèlement plate de prĂ©sentation finie 738:, Volume 35, Number 1, December, 1976 560:, because the underlying spaces of 460:, considered with the fpqc topology. 355:. This generates a pretopology: For 293:, considered with the fppf topology. 43:. It is used to define the theory of 7: 51:(faithfully flat descent). The term 312:be an affine scheme. We define an 300:that this gives the same topology. 597:"Form of an (algebraic) structure" 90:fidèlement plate et quasi-compacte 25: 708:ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique 636:, IV 6.3, Proposition 6.3.1(v). 514:we can consider the local ring 721:, Princeton University Press, 656:SociĂ©tĂ© MathĂ©matique de France 527:. There is a natural map from 1: 650:; Raynaud, Michèle (2003) , 539:is covered by the sets Spec( 427:) whose objects are schemes 304:The big and small fpqc sites 260:) whose objects are schemes 109:The big and small fppf sites 750:Arithmetic Duality Theorems 602:Encyclopedia of Mathematics 568:have different topologies. 796: 475:of the functor taking the 736:Inventiones Mathematicae 506:. For each closed point 648:Grothendieck, Alexander 481:sheaf of abelian groups 431:with a fixed morphism 264:with a fixed morphism 89: 77: 37:Grothendieck topology 176:. This generates a 756:Tate–Poitou duality 674:2002math......6203G 535:. The affine line 445:large fpqc site of 409:small fpqc site of 278:large fppf site of 242:small fppf site of 775:Algebraic geometry 658:, p. XI.4.8, 174:finitely presented 41:algebraic geometry 760:Galois cohomology 727:978-0-691-08238-7 683:978-2-85629-141-2 16:(Redirected from 787: 719:Étale Cohomology 695: 694: 667: 643: 637: 630: 624: 617: 611: 610: 593: 488:Ă©tale cohomology 473:derived functors 452:is the category 416:is the category 363:to be a family { 345:affine and each 285:is the category 249:is the category 162:affine and each 121:. We define an 92: 80: 55:here comes from 21: 795: 794: 790: 789: 788: 786: 785: 784: 765: 764: 745: 703: 698: 684: 646: 644: 640: 635: 631: 627: 622: 618: 614: 595: 594: 590: 586: 574: 547: 522: 496: 469: 467:Flat cohomology 426: 399: 376: 369: 351: 344: 333: 326: 306: 299: 259: 232: 205: 198: 188:to be a family 168: 161: 146: 139: 111: 45:flat cohomology 23: 22: 15: 12: 11: 5: 793: 791: 783: 782: 777: 767: 766: 763: 762: 744: 743:External links 741: 740: 739: 729: 715:Milne, James S 712: 702: 699: 697: 696: 682: 638: 633: 625: 620: 612: 587: 585: 582: 581: 580: 573: 570: 543: 518: 495: 492: 468: 465: 424: 397: 374: 367: 349: 342: 331: 324: 305: 302: 297: 257: 230: 212: 211: 203: 196: 166: 159: 153: 152: 144: 137: 110: 107: 24: 14: 13: 10: 9: 6: 4: 3: 2: 792: 781: 778: 776: 773: 772: 770: 761: 757: 753: 751: 747: 746: 742: 737: 733: 732:Michael Artin 730: 728: 724: 720: 716: 713: 710: 709: 705: 704: 700: 693: 689: 685: 679: 675: 671: 666: 661: 657: 653: 649: 642: 639: 629: 626: 616: 613: 608: 604: 603: 598: 592: 589: 583: 579: 578:fpqc morphism 576: 575: 571: 569: 567: 563: 559: 555: 551: 546: 542: 538: 534: 530: 526: 521: 517: 513: 509: 505: 501: 493: 491: 489: 484: 482: 478: 474: 466: 464: 461: 459: 455: 451: 449: 446: 442: 438: 434: 430: 423: 419: 415: 413: 410: 405: 403: 396: 392: 388: 387:fpqc topology 384: 380: 373: 366: 362: 358: 354: 348: 341: 337: 330: 323: 319: 315: 311: 303: 301: 294: 292: 288: 284: 282: 279: 275: 271: 267: 263: 256: 252: 248: 246: 243: 238: 236: 229: 225: 221: 220:fppf topology 217: 209: 202: 195: 191: 190: 189: 187: 183: 179: 175: 171: 165: 158: 150: 143: 136: 132: 131: 130: 128: 124: 120: 119:affine scheme 116: 108: 106: 103: 99: 97: 93: 91: 85: 81: 79: 73: 69: 68:fpqc topology 65: 64:fppf topology 60: 58: 54: 50: 46: 42: 38: 34: 33:flat topology 30: 19: 18:Fpqc topology 780:Sheaf theory 749: 735: 718: 711:, Vol. IV. 2 706: 665:math/0206203 651: 641: 628: 615: 600: 591: 565: 561: 557: 553: 549: 544: 540: 536: 532: 528: 524: 519: 515: 511: 507: 503: 499: 497: 485: 470: 462: 457: 453: 450: 447: 444: 440: 436: 432: 428: 421: 417: 414: 411: 408: 406: 401: 394: 390: 386: 382: 378: 371: 364: 360: 356: 346: 339: 338:} with each 335: 328: 321: 317: 313: 309: 307: 295: 290: 286: 283: 280: 277: 273: 269: 265: 261: 254: 250: 247: 244: 241: 239: 234: 227: 223: 219: 215: 213: 207: 200: 193: 185: 181: 163: 156: 154: 148: 141: 134: 126: 122: 114: 112: 104: 100: 87: 83: 75: 71: 67: 63: 61: 57:flat modules 52: 44: 32: 26: 178:pretopology 86:stands for 74:stands for 29:mathematics 769:Categories 717:. (1980), 701:References 314:fpqc cover 155:with each 123:fppf cover 623:, IV 6.3. 607:EMS Press 572:See also 477:sections 370: : 327: : 199: : 140: : 66:and the 39:used in 692:2017446 670:Bibcode 632:SGA III 619:SGA III 609:, 2001 494:Example 443:. The 276:. The 96:descent 49:descent 725:  690:  680:  454:Fpqc/X 287:Fppf/X 180:: for 117:be an 31:, the 752:(PDF) 660:arXiv 584:Notes 479:of a 35:is a 723:ISBN 678:ISBN 564:and 425:fpqc 407:The 402:Fpqc 393:and 353:flat 308:Let 258:fppf 240:The 235:Fppf 226:and 170:flat 113:Let 84:fpqc 72:fppf 53:flat 758:of 556:to 531:to 510:of 316:of 125:of 70:. 27:In 771:: 688:MR 686:, 676:, 668:, 605:, 599:, 490:. 483:. 435:→ 377:→ 334:→ 268:→ 206:→ 172:, 147:→ 59:. 672:: 662:: 645:* 634:1 621:1 566:Y 562:X 558:Y 554:X 550:Y 545:x 541:R 537:X 533:X 529:Y 525:Y 520:x 516:R 512:X 508:x 504:k 500:X 458:X 448:X 441:X 437:X 433:U 429:U 422:X 420:( 418:O 412:X 398:α 395:X 391:X 383:X 379:X 375:α 372:X 368:α 365:u 361:X 357:X 350:α 347:u 343:α 340:X 336:X 332:α 329:X 325:α 322:u 318:X 310:X 298:4 291:X 281:X 274:X 270:X 266:U 262:U 255:X 253:( 251:O 245:X 231:a 228:X 224:X 216:X 210:) 208:X 204:a 201:X 197:a 194:φ 192:( 186:X 182:X 167:a 164:φ 160:a 157:X 151:) 149:X 145:a 142:X 138:a 135:φ 133:( 127:X 115:X 20:)

Index

Fpqc topology
mathematics
Grothendieck topology
algebraic geometry
descent
flat modules
descent
affine scheme
flat
finitely presented
pretopology
flat
derived functors
sections
sheaf of abelian groups
Ă©tale cohomology
fpqc morphism
"Form of an (algebraic) structure"
Encyclopedia of Mathematics
EMS Press
Grothendieck, Alexander
Société Mathématique de France
arXiv
math/0206203
Bibcode
2002math......6203G
ISBN
978-2-85629-141-2
MR
2017446

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑