Knowledge (XXG)

Significand

Source 📝

658:
Other names are occasionally used for this purpose, notably 'characteristic' and 'mantissa'; but it is an abuse of terminology to call the fraction part a mantissa, since that term has quite a different meaning in connection with logarithms. Furthermore the English word mantissa means 'a worthless
540:. The mantissa is sometimes termed the characteristic and a version of the exponent also has this title from some authors. It is hoped that the terms here will be unambiguous. e use a value which is shifted by half the binary range of the number. This special form is sometimes referred to as a 308:
To understand both terms, notice that in binary, 1 + mantissa ≈ significand, and the correspondence is exact when storing a power of two. This fact allows for a fast approximation of the base-2 logarithm, leading to algorithms e.g. for computing the
216:= 53 for the double-precision format), thus in a way independent from the encoding, and the term to express what is encoded (that is, the significand without its leading bit) is 208:
is commonly described as having either a 53-bit significand, including the hidden bit, or a 52-bit significand, excluding the hidden bit. IEEE 754 defines the precision
301:
in 1967 and is the word used in the IEEE standard as the coefficient in front of a scientific notation number discussed above. The fractional part is called the
842: 958: 694:(Technical report, Institute for Advanced Study, Princeton, New Jersey, USA). Collected Works of John von Neumann. Vol. 5. New York, USA: 205: 430: 1025: 544:, since it is the conventional value plus a constant. Some authors have called it a characteristic, but this term should not be used, since 393:
with a different meaning: it is the fractional part of the significand, i.e. the significand without its explicit or implicit leading bit.
787: 736: 962: 852: 712: 317:. The implicit leading 1 is nothing but the hidden bit in IEEE 754 floating point, and the bitfield storing the remainder is thus the 95: 917: 888: 801: 760: 651: 481: 310: 716: 954: 641: 578: 341: 137: 719:—e.g. 123.45 would be carried in the machine as (0.12345,03), where the 3 is the exponent of 10 associated with the number. 489: 1052: 324:
However, whether or not the implicit 1 is included is a major point of confusion with both terms—and especially so with
188:, this constraint uniquely determines this digit to always be 1. As such, it is not explicitly stored, being called the 614: 748: 464:
Gosling, John B. (1980). "6.1 Floating-Point Notation / 6.8.5 Exponent Representation". In Sumner, Frank H. (ed.).
141: 233: 201:, and depending on the context, the hidden bit may or may not be counted toward the width. For example, the same 59: 707:
Several of the digital computers being built or planned in this country and England are to contain a so-called "
545: 469: 314: 145: 1047: 473: 229: 933: 708: 978: 864: 695: 537: 294: 796:(1 (reprint) ed.). Malabar, Florida, USA: Robert E. Krieger Publishing Company. pp. 204–205. 686: 110:
with the significand 1.2345 as a fractional coefficient, and +2 as the exponent (and 10 as the base):
419: 366: 828: 674: 107: 55: 993: 908:. Prentice-Hall Series in Automatic Computation (1 ed.). Englewood Cliffs, New Jersey, USA: 638: 283: 98:, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: 752: 17: 423: 1021: 982: 945: 913: 884: 868: 848: 797: 756: 647: 477: 298: 181: 75: 63: 567:
English Electric KDF9: Very high speed data processing system for Commerce, Industry, Science
328:. In keeping with the original usage in the context of log tables, it should not be present. 1013: 880: 682: 678: 574: 271: 248:, showing the need for a fixed-sized significand as currently used for floating point data. 122:
Schmid, however, called this representation with a significand ranging between 1.0 and 10 a
937: 541: 336: 212:
to be the number of digits in the significand, including any implicit leading bit (e.g.,
741: 1041: 909: 876: 390: 332: 185: 168:
Schmid called this representation with a significand ranging between 0.1 and 1.0 the
565: 264: 252: 688:
Preliminary discussion of the logical design of an electronic computing instrument
552:' representation, where, for example, - is 64 for a 7-bit exponent (2 = 64). 468:. Macmillan Computer Science Series (1 ed.). Department of Computer Science, 1017: 791: 190: 357:
contexts. In particular, the current IEEE 754 standard does not mention it.
938:"What Every Computer Scientist Should Know About Floating-Point Arithmetic" 606: 815: 549: 548:
and others use this term for the mantissa. It is also referred to as an '
529: 202: 153: 67: 149: 87: 71: 278:
is the integer part of the logarithm (i.e. the exponent), and the
184:, the most significant digit is always non-zero. When working in 136:
Finally, the value can be represented in the format given by the
1009: 140:
standard and several programming language standards, including
198: 831:, pp. 575–583, Revista de Obras Públicas, 19 November 1914. 829:
Automática: Complemento de la Teoría de las Máquinas, (pdf)
555:(NB. Gosling does not mention the term significand at all.) 875:. Automatic Computation (1st ed.). New Jersey, USA: 814:(NB. At least some batches of this reprint edition were 448:
is the significand or coefficient or (wrongly) mantissa
282:
is the fractional part. The usage remains common among
1006:
754-2019 - IEEE Standard for Floating-Point Arithmetic
263:
to describe the two parts of a floating-point number (
711:". This is a mechanism for expressing each word as a 577:. c. 1961. Publication No. DP/103. 096320WP/RP0961. 90:
floating-point number with the integer 12345 as the
331:For those contexts where 1 is considered included, 740: 197:The significand is characterized by its width in 466:Design of Arithmetic Units for Digital Computers 992:(NB. A newer edited version can be found here: 424:"Names for Standardized Floating-Point Formats" 459: 457: 339:, prominent computer programmer and author of 129:For base 2, this 1.xxxx form is also called a 873:Computer Solution of Linear Algebraic Systems 782: 780: 778: 731: 729: 727: 600: 598: 8: 985:, and has generally replaced the older term 669: 667: 414: 412: 410: 349:. This has led to declining use of the term 633: 631: 106:The same value can also be represented in 86:The number 123.45 can be represented as a 66:. Depending on the interpretation of the 54:) is the first (left) part of a number in 959:Association for Computing Machinery, Inc. 747:(1 ed.). Binghamton, New York, USA: 685:(1963) . "5.3.". In Taub, A. H. (ed.). 406: 378: 27:Part of a number in scientific notation 496:is represented by two signed numbers 270:) by analogy with the then-prevalent 7: 957:(PARC), Palo Alto, California, USA: 70:, the significand may represent an 62:representation, consisting of its 25: 94:and a 10 power term, also called 613:. A Note on Field Designations. 335:, lead creator of IEEE 754, and 176:The hidden bit in floating point 18:Fraction (floating point number) 968:from the original on 2016-07-13 955:Xerox Palo Alto Research Center 904:Sterbenz, Pat H. (1974-05-01). 643:The Art of Computer Programming 617:from the original on 2018-07-03 584:from the original on 2020-07-27 436:from the original on 2023-12-27 342:The Art of Computer Programming 240:, where he proposed the format 138:Language Independent Arithmetic 818:with defective pages 115–146.) 1: 490:floating-point representation 1018:10.1109/IEEESTD.2019.8766229 977:This term was introduced by 646:. Vol. 2. p. 214. 605:Savard, John J. G. (2018) . 476:. pp. 74, 91, 137–138. 847:Springer, pp. 84–85, 2017. 749:John Wiley & Sons, Inc. 1069: 906:Floating-Point Computation 827:Torres Quevedo, Leonardo. 218:trailing significand field 234:floating-point arithmetic 607:"Floating-Point Formats" 470:University of Manchester 315:fast inverse-square-root 124:modified normalized form 474:The Macmillan Press Ltd 230:Leonardo Torres Quevedo 224:Floating-point mantissa 206:double-precision format 58:or related concepts in 865:Forsythe, George Elmer 709:floating decimal point 131:normalized significand 42:, or more ambiguously 843:Numbers and Computers 696:The Macmillan Company 420:Kahan, William Morton 345:, condemn the use of 679:Goldstine, Herman H. 675:Burks, Arthur Walter 367:Mantissa (logarithm) 238:Essays on Automatics 170:true normalized form 102:123.45 = 12345 × 10. 1053:Computer arithmetic 840:Ronald T. Kneusel. 793:Decimal Computation 743:Decimal Computation 284:computer scientists 108:scientific notation 56:scientific notation 871:(September 1967). 869:Moler, Cleve Barry 472:, Manchester, UK: 293:was introduced by 64:significant digits 1027:978-1-5044-5924-2 946:Computing Surveys 683:von Neumann, John 573:(Product flyer). 182:normalized number 76:fractional number 16:(Redirected from 1060: 1032: 1031: 1002: 996: 991: 974: 973: 967: 942: 930: 924: 923: 901: 895: 894: 881:Englewood Cliffs 861: 855: 838: 832: 825: 819: 813: 811: 810: 784: 773: 772: 770: 769: 746: 733: 722: 721: 704: 703: 693: 671: 662: 661: 639:Knuth, Donald E. 635: 626: 625: 623: 622: 602: 593: 592: 590: 589: 583: 575:English Electric 572: 562: 556: 554: 461: 452: 450: 442: 441: 435: 428: 416: 394: 383: 311:fast square-root 272:common logarithm 21: 1068: 1067: 1063: 1062: 1061: 1059: 1058: 1057: 1038: 1037: 1036: 1035: 1028: 1004: 1003: 999: 971: 969: 965: 940: 934:Goldberg, David 932: 931: 927: 920: 903: 902: 898: 891: 863: 862: 858: 839: 835: 826: 822: 808: 806: 804: 788:Schmid, Hermann 786: 785: 776: 767: 765: 763: 737:Schmid, Hermann 735: 734: 725: 701: 699: 691: 673: 672: 665: 654: 637: 636: 629: 620: 618: 604: 603: 596: 587: 585: 581: 570: 564: 563: 559: 542:biased exponent 484: 463: 462: 455: 439: 437: 433: 426: 418: 417: 408: 403: 398: 397: 384: 380: 375: 363: 337:Donald E. Knuth 295:George Forsythe 255:used the terms 226: 199:(binary) digits 178: 96:characteristics 84: 28: 23: 22: 15: 12: 11: 5: 1066: 1064: 1056: 1055: 1050: 1048:Floating point 1040: 1039: 1034: 1033: 1026: 997: 936:(March 1991). 925: 918: 896: 889: 856: 853:978-3319505084 833: 820: 802: 774: 761: 723: 713:characteristic 663: 652: 627: 594: 557: 482: 453: 422:(2002-04-19). 405: 404: 402: 399: 396: 395: 377: 376: 374: 371: 370: 369: 362: 359: 276:characteristic 261:characteristic 225: 222: 177: 174: 166: 165: 120: 119: 104: 103: 83: 80: 60:floating-point 52:characteristic 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1065: 1054: 1051: 1049: 1046: 1045: 1043: 1029: 1023: 1019: 1015: 1011: 1007: 1001: 998: 994: 990: 988: 984: 980: 964: 960: 956: 952: 948: 947: 939: 935: 929: 926: 921: 919:0-13-322495-3 915: 911: 910:Prentice Hall 907: 900: 897: 892: 890:0-13-165779-8 886: 882: 878: 877:Prentice-Hall 874: 870: 866: 860: 857: 854: 850: 846: 844: 837: 834: 830: 824: 821: 817: 805: 803:0-89874-318-4 799: 795: 794: 789: 783: 781: 779: 775: 764: 762:0-471-76180-X 758: 754: 750: 745: 744: 738: 732: 730: 728: 724: 720: 718: 714: 710: 697: 690: 689: 684: 680: 676: 670: 668: 664: 660: 655: 653:0-201-89684-2 649: 645: 644: 640: 634: 632: 628: 616: 612: 608: 601: 599: 595: 580: 576: 569: 568: 561: 558: 553: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 485: 483:0-333-26397-9 479: 475: 471: 467: 460: 458: 454: 449: 447: 432: 425: 421: 415: 413: 411: 407: 400: 392: 391:IEEE 754-1985 388: 382: 379: 372: 368: 365: 364: 360: 358: 356: 352: 348: 344: 343: 338: 334: 333:William Kahan 329: 327: 322: 320: 316: 312: 306: 304: 300: 296: 292: 287: 285: 281: 277: 273: 269: 266: 262: 258: 254: 249: 247: 243: 239: 235: 231: 223: 221: 219: 215: 211: 207: 204: 200: 195: 193: 192: 187: 183: 175: 173: 171: 163: 159: 158: 157: 155: 151: 147: 143: 139: 134: 132: 127: 125: 117: 113: 112: 111: 109: 101: 100: 99: 97: 93: 89: 81: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1005: 1000: 986: 976: 970:. Retrieved 950: 944: 928: 905: 899: 872: 859: 841: 836: 823: 807:. Retrieved 792: 766:. Retrieved 742: 706: 700:. Retrieved 698:. p. 42 687: 657: 642: 619:. Retrieved 610: 586:. Retrieved 566: 560: 533: 525: 521: 517: 513: 509: 505: 501: 497: 493: 487: 465: 445: 444: 438:. Retrieved 386: 381: 354: 350: 346: 340: 330: 325: 323: 318: 307: 302: 290: 288: 279: 275: 274:tables: the 267: 260: 256: 253:Arthur Burks 250: 245: 241: 237: 227: 217: 213: 209: 196: 189: 179: 169: 167: 161: 135: 130: 128: 123: 121: 115: 105: 91: 85: 51: 47: 43: 39: 38:, sometimes 35: 31: 29: 659:addition.' 492:, a number 389:is used in 299:Cleve Moler 291:significand 232:introduced 164:12345 × 10. 92:significand 36:coefficient 32:significand 1042:Categories 972:2016-07-13 809:2016-01-03 768:2016-01-03 702:2016-02-07 621:2018-07-16 588:2020-07-27 504:such that 440:2023-12-27 401:References 191:hidden bit 160:123.45 = 0 118:2345 × 10. 114:123.45 = 1 816:misprints 790:(1983) . 611:quadibloc 451:(8 pages) 385:The term 289:The term 251:In 1946, 228:In 1914, 1012:. 2019. 987:mantissa 979:Forsythe 963:Archived 751:p.  739:(1974). 717:mantissa 615:Archived 579:Archived 550:excess - 530:exponent 522:mantissa 508: = 431:Archived 387:fraction 361:See also 351:mantissa 347:mantissa 326:mantissa 319:mantissa 303:fraction 280:mantissa 257:mantissa 203:IEEE 754 154:Modula-2 68:exponent 48:fraction 44:mantissa 40:argument 520:is the 512:· 286:today. 236:in his 150:Fortran 88:decimal 82:Example 72:integer 1024:  916:  887:  851:  800:  759:  755:-205. 715:and a 650:  516:where 480:  268:et al. 186:binary 180:For a 34:(also 983:Moler 966:(PDF) 961:: 7. 953:(1). 941:(PDF) 692:(PDF) 582:(PDF) 571:(PDF) 434:(PDF) 427:(PDF) 373:Notes 265:Burks 156:, as 74:or a 50:, or 1022:ISBN 1010:IEEE 981:and 914:ISBN 885:ISBN 849:ISBN 798:ISBN 757:ISBN 648:ISBN 538:base 536:the 532:and 528:the 500:and 478:ISBN 313:and 297:and 259:and 152:and 30:The 1014:doi 753:204 546:CDC 488:In 355:all 353:in 142:Ada 1044:: 1020:. 1008:. 989:. 975:. 951:23 949:. 943:. 912:. 883:. 879:, 867:; 777:^ 726:^ 705:. 681:; 677:; 666:^ 656:. 630:^ 609:. 597:^ 524:, 486:. 456:^ 443:. 429:. 409:^ 321:. 305:. 244:; 220:. 194:. 172:. 148:, 144:, 133:. 126:. 78:. 46:, 1030:. 1016:: 995:) 922:. 893:. 845:, 812:. 771:. 624:. 591:. 534:b 526:e 518:m 514:b 510:m 506:x 502:e 498:m 494:x 446:m 246:m 242:n 214:p 210:p 162:. 146:C 116:. 20:)

Index

Fraction (floating point number)
scientific notation
floating-point
significant digits
exponent
integer
fractional number
decimal
characteristics
scientific notation
Language Independent Arithmetic
Ada
C
Fortran
Modula-2
normalized number
binary
hidden bit
(binary) digits
IEEE 754
double-precision format
Leonardo Torres Quevedo
floating-point arithmetic
Arthur Burks
Burks
common logarithm
computer scientists
George Forsythe
Cleve Moler
fast square-root

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.