Knowledge (XXG)

Free electron model

Source 📝

3972: 4400: 3045: 3201:, which is just proportional to the heat capacity, so the Drude model predicts a constant that is hundred times larger than the value of the free electron model. While the latter get as coefficient that is linear in temperature and provides much more accurate absolute values in the order of a few tens of ÎŒV/K at room temperature. However this models fails to predict the sign change of the thermopower in 691: 4424: 4436: 4412: 2887: 3220:
The free electron model presents several physical quantities that have the wrong temperature dependence, or no dependence at all like the electrical conductivity. The thermal conductivity and specific heat are well predicted for alkali metals at low temperatures, but fails to predict high temperature
3264:
The conductivity of some metals can depend of the orientation of the sample with respect to the electric field. Sometimes even the electrical current is not parallel to the field. This possibility is not described because the model does not integrate the crystallinity of metals, i.e. the existence
3092:
V/K while the Drude prediction is off by about half the value, which is not a large difference. The close prediction to the Lorenz number in the Drude model was a result of the classical kinetic energy of electron being about 100 smaller than the quantum version, compensating the large value of the
2502:
are constants related to the material. The linear term comes from the electronic contribution while the cubic term comes from Debye model. At high temperature this expression is no longer correct, the electronic heat capacity can be neglected, and the total heat capacity of the metal tends to a
2179:
Nevertheless, such a large additional contribution to the heat capacity of metals was never measured, raising suspicions about the argument above. By using Sommerfeld's expansion one can obtain corrections of the energy density at finite temperature and obtain the volumetric heat capacity of an
860: 1549:, which is null at zero temperature. For an ideal gas to have the same energy as the electron gas, the temperatures would need to be of the order of the Fermi temperature. Thermodynamically, this energy of the electron gas corresponds to a zero-temperature pressure given by 2300: 2032:) coming from the orbital motion of the electrons in the presence of a magnetic field, and a paramagnetic contribution (Pauli's paramagnetism). The latter contribution is three times larger in absolute value than the diamagnetic contribution and comes from the electron 3040:{\displaystyle L=\left\{{\begin{matrix}\displaystyle {\frac {3}{2}}\left({\frac {k_{\rm {B}}}{e}}\right)^{2}\;,&{\text{Drude}}\\\displaystyle {\frac {\pi ^{2}}{3}}\left({\frac {k_{\rm {B}}}{e}}\right)^{2}\;,&{\text{free electron model.}}\end{matrix}}\right.} 154:
Free electron approximation: The interaction between the ions and the valence electrons is mostly neglected, except in boundary conditions. The ions only keep the charge neutrality in the metal. Unlike in the Drude model, the ions are not necessarily the source of
2395:, i.e. the observation that the heat capacity of a metal is still constant at high temperatures. The free electron model can be improved in this sense by adding the contribution of the vibrations of the crystal lattice. Two famous quantum corrections include the 1849:
This expression gives the right order of magnitude for the bulk modulus for alkali metals and noble metals, which show that this pressure is as important as other effects inside the metal. For other metals the crystalline structure has to be taken into account.
1844: 542:
Many properties of the free electron model follow directly from equations related to the Fermi gas, as the independent electron approximation leads to an ensemble of non-interacting electrons. For a three-dimensional electron gas we can define the
2856: 3257:
that have a strong magnetic field dependence. The free electron model also predicts that the traverse magnetoresistance, the resistance in the direction of the current, does not depend on the strength of the field. In almost all the cases it
650: 1645: 129:
The free electron model solved many of the inconsistencies related to the Drude model and gave insight into several other properties of metals. The free electron model considers that metals are composed of a quantum electron gas where
1862:, a classical system at thermodynamic equilibrium cannot have a magnetic response. The magnetic properties of matter in terms of a microscopic theory are purely quantum mechanical. For an electron gas, the total magnetic response is 1955: 1721:
and does not come from repulsion or motion of the electrons but from the restriction that no more than two electrons (due to the two values of spin) can occupy the same energy level. This pressure defines the compressibility or
2627:, at least one order of magnitude larger than any possible classical calculation. The mean free path is then not a result of electron–ion collisions but instead is related to imperfections in the material, either due to 721: 2170: 388: 2106:
at large temperatures, it did correctly predict its behavior at low temperatures. In the case of metals that are good conductors, it was expected that the electrons contributed also the heat capacity.
2700: 2186: 329: 2621: 1192: 2750:
is the mean (square) speed of the electrons or the Fermi speed in the case of the free electron model). This implies that the ratio between thermal and electric conductivity is given by the
1502: 1276: 3339:
showed that a Fermi gas under repulsive interactions, can be seen as a gas of equivalent quasiparticles that slightly modify the properties of the metal. Landau's model is now known as the
3886: 1732: 2456: 2748: 3199: 1547: 2555: 3245:
in Drude's model and in the free electron model. This value is independent of temperature and the strength of the magnetic field. The Hall coefficient is actually dependent on the
3090: 3136: 2515:
should be infinite. The Drude model considered the mean free path of electrons to be close to the distance between ions in the material, implying the earlier conclusion that the
1401: 2366: 1357: 2760: 2104: 439: 413: 168:
Relaxation-time approximation: There is some unknown scattering mechanism such that the electron probability of collision is inversely proportional to the relaxation time
2018: 1309: 961: 2480: 1715: 2639:
While Drude's model predicts a similar value for the electric conductivity as the free electron model, the models predict slightly different thermal conductivities.
2334: 991: 673: 553: 1985: 483: 186: 1555: 924: 889: 3879: 2879: 2500: 1215: 507: 459: 1435: 891:
is the energy of a given electron. This formula takes into account the spin degeneracy but does not consider a possible energy shift due to the bottom of the
3306:
More exact values for the electrical conductivity and Wiedemann–Franz law can be obtained by softening the relaxation-time approximation by appealing to the
2386: 1876: 1668: 1315:). The perturbative approach is justified as the Fermi temperature is usually of about 10 K for a metal, hence at room temperature or lower the Fermi energy 221:
The crystal lattice is not explicitly taken into account in the free electron model, but a quantum-mechanical justification was given a year later (1928) by
2511:
Notice that without the relaxation time approximation, there is no reason for the electrons to deflect their motion, as there are no interactions, thus the
3303:
Other inadequacies are present in the Wiedemann–Franz law at intermediate temperatures and the frequency-dependence of metals in the optical spectrum.
194:: Each quantum state of the system can only be occupied by a single electron. This restriction of available electron states is taken into account by 3872: 855:{\displaystyle g(E)={\frac {m_{e}}{\pi ^{2}\hbar ^{3}}}{\sqrt {2m_{e}E}}={\frac {3}{2}}{\frac {n}{E_{\rm {F}}}}{\sqrt {\frac {E}{E_{\rm {F}}}}},} 3299:
carrying positive electric charge. Conduction of holes leads to an opposite sign for the Hall and Seebeck coefficients predicted by the model.
3810: 3780: 2403:. With the addition of the latter, the volumetric heat capacity of a metal at low temperatures can be more precisely written in the form, 236: 3213:
The free electron model presents several inadequacies that are contradicted by experimental observation. We list some inaccuracies below:
4472: 3771: 276: 3836: 158: 4416: 2115: 4467: 4404: 3855: 3287:, with narrow conduction bands also exist. This diversity is not predicted by the model and can only by explained by analysing the 3694: 2295:{\displaystyle c_{V}=\left({\frac {\partial u}{\partial T}}\right)_{n}={\frac {\pi ^{2}}{2}}{\frac {T}{T_{\rm {F}}}}nk_{\rm {B}}} 334: 4440: 2645: 683:
defines the energy of the highest energy electron at zero temperature. For metals the Fermi energy is in the order of units of
300: 999: 895:. For 2D the density of states is constant and for 1D is inversely proportional to the square root of the electron energy. 4385: 3996: 2560: 2519:
of the electrons was due to collisions with the ions. The mean free paths in the free electron model are instead given by
1717:
is the total energy, the derivative performed at temperature and chemical potential constant. This pressure is called the
3931: 3376: 3100:(thermopower), which relates the generation of a potential difference by applying a temperature gradient across a sample 1859: 3371: 3288: 1718: 892: 3325: 1839:{\displaystyle B=-V\left({\frac {\partial P}{\partial V}}\right)_{T,\mu }={\frac {5}{3}}P={\frac {2}{3}}nE_{\rm {F}}.} 1447: 1220: 195: 188:, which represents the average time between collisions. The collisions do not depend on the electronic configuration. 58: 516:
Other quantities that remain the same under the free electron model as under Drude's are the AC susceptibility, the
4482: 4176: 4085: 3329: 2109:
The classical calculation using Drude's model, based on an ideal gas, provides a volumetric heat capacity given by
2409: 4125: 4100: 2705: 2702:
for free particles, which is proportional to the heat capacity and the mean free path which depend on the model (
191: 4049: 4295: 4039: 3895: 2064: 2054: 2037: 2751: 73: 3141: 161:: The interactions between electrons are ignored. The electrostatic fields in metals are weak because of the 4462: 4141: 3276: 2628: 2176:
If this was the case, the heat capacity of a metals should be 1.5 of that obtained by the Dulong–Petit law.
1867: 1510: 122: 77: 2522: 3053: 88: 68:
Given its simplicity, it is surprisingly successful in explaining many experimental phenomena, especially
3103: 1362: 4192: 4171: 4105: 112: 2392: 2068: 2036:, an intrinsic quantum degree of freedom that can take two discrete values and it is associated to the 3335:
Adding repulsive interactions between electrons does not change very much the picture presented here.
2851:{\displaystyle {\frac {\kappa }{\sigma }}={\frac {m_{\rm {e}}c_{V}\langle v^{2}\rangle }{3ne^{2}}}=LT} 2339: 2059:
One open problem in solid-state physics before the arrival of quantum mechanics was to understand the
1318: 4161: 3936: 3634: 3314: 3272: 964: 203: 81: 4115: 4095: 4029: 3340: 3097: 2074: 1988: 118: 108: 27: 4423: 422: 396: 19:
This article is about the solid-state model for metals. For the model of a free electron gas, see
4262: 4252: 4001: 3734: 3361: 3307: 1312: 1285: 937: 904: 517: 462: 225:: an unbound electron moves in a periodic potential as a free electron in vacuum, except for the 4090: 3356: 3317:
is totally excluded from this model and its inclusion can lead to other magnetic responses like
1994: 715:(number of energy states, per energy per volume) of a non-interacting electron gas is given by: 286:
Mainly, the free electron model and the Drude model predict the same DC electrical conductivity
222: 3669: 645:{\displaystyle E_{\rm {F}}={\frac {\hbar ^{2}}{2m_{e}}}\left(3\pi ^{2}n\right)^{\frac {2}{3}},} 275:, as some equations do not depend on the statistical distribution of the particles. Taking the 214:
The name of the model comes from the first two assumptions, as each electron can be treated as
4477: 4370: 4335: 4242: 4166: 3851: 3832: 3820: 3806: 3776: 3650: 3622: 3344: 1279: 712: 695: 521: 510: 95: 51: 47: 35: 16:
Simple model for the behaviour of valence electrons in a crystal structure of a metallic solid
3291:. Additionally, electrons are not the only charge carriers in a metal, electron vacancies or 2465: 1640:{\displaystyle P=-\left({\frac {\partial U}{\partial V}}\right)_{T,\mu }={\frac {2}{3}}u(0),} 4340: 4232: 4212: 4207: 4202: 4197: 4054: 4034: 3991: 3956: 3926: 3744: 3642: 2309: 1673: 1507:
which does not depend on temperature. Compare with the energy per electron of an ideal gas:
970: 658: 162: 468: 171: 4365: 3986: 3903: 3794: 3722: 1963: 909: 676: 416: 4320: 868: 3638: 4428: 4375: 4257: 4146: 3971: 3766: 3318: 3246: 2864: 2624: 2512: 2485: 2396: 2033: 1950:{\displaystyle \chi ={\frac {2}{3}}\mu _{0}\mu _{\mathrm {B} }^{2}g(E_{\mathrm {F} }),} 1200: 492: 486: 444: 254: 39: 3625:(1928-01-01). "Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik". 4456: 4300: 4282: 4267: 4247: 4151: 4120: 3951: 3799: 3790: 3381: 3366: 3324:
An immediate continuation to the free electron model can be obtained by assuming the
3296: 3292: 3280: 2060: 2021: 1863: 1414: 257:
computations that were not originally taken into account in the free electron model.
250: 226: 215: 3249:
and the difference with the model can be quite dramatic when studying elements like
4237: 4059: 3961: 3748: 3673: 2371: 2029: 2025: 1723: 1653: 931: 684: 680: 544: 135: 291: 4357: 4075: 4044: 4024: 3386: 2400: 1438: 927: 690: 525: 272: 266: 207: 139: 54: 4272: 4110: 3946: 3824: 3336: 3723:"First Principles Explanation of the Positive Seebeck Coefficient of Lithium" 3654: 4330: 4156: 3941: 3284: 3254: 3250: 2516: 537: 280: 199: 20: 3864: 702:
is proportional to the square root of the kinetic energy of the particles.
150:
In the free electron model four main assumptions are taken into account:
2368:, about 100 times smaller at room temperature and much smaller at lower 4380: 4347: 4325: 4305: 3646: 3391: 3347:, where interactions can be attractive, require a more refined theory. 3202: 699: 134:
play almost no role. The model can be very predictive when applied to
4315: 4310: 3916: 3222: 3096:
However, Drude's mode predicts the wrong order of magnitude for the
249:(one can even use negative effective mass to describe conduction by 4290: 3911: 3739: 2391:
Evidently, the electronic contribution alone does not predict the
2024:. This value results from the competition of two contributions: a 689: 218:
with a respective quadratic relation between energy and momentum.
202:). Main predictions of the free-electron model are derived by the 43: 3328:, which forms the basis of the band structure model known as the 283:
only changes the results related to the speed of the electrons.
3868: 2165:{\displaystyle c_{V}^{\text{Drude}}={\frac {3}{2}}nk_{\rm {B}}} 3921: 131: 2631:
and impurities in the metal, or due to thermal fluctuations.
3050:
The free electron model is closer to the measured value of
3034: 383:{\displaystyle \quad \sigma ={\frac {ne^{2}\tau }{m_{e}}},} 3670:"Fermi Energies, Fermi Temperatures, and Fermi Velocities" 2695:{\displaystyle \kappa =c_{V}\tau \langle v^{2}\rangle /3} 2623:
is the Fermi speed) and are in the order of hundreds of
2902: 2563: 2525: 2374: 2342: 1997: 1966: 1676: 1656: 1513: 1417: 1223: 871: 324:{\displaystyle \mathbf {J} =\sigma \mathbf {E} \quad } 3144: 3106: 3056: 2966: 2905: 2890: 2867: 2763: 2708: 2648: 2616:{\textstyle v_{\rm {F}}={\sqrt {2E_{\rm {F}}/m_{e}}}} 2488: 2468: 2412: 2312: 2189: 2118: 2077: 1879: 1735: 1558: 1450: 1365: 1321: 1288: 1203: 1187:{\displaystyle E_{\rm {F}}(T)=E_{\rm {F}}(T=0)\left,} 1002: 973: 940: 912: 724: 661: 556: 495: 471: 447: 425: 399: 337: 303: 206:
of the Fermi–Dirac occupancy for energies around the
174: 4356: 4281: 4225: 4185: 4134: 4068: 4017: 4010: 3979: 3902: 3279:), some can conduct when impurities are added like 3798: 3193: 3130: 3084: 3039: 2873: 2850: 2742: 2694: 2615: 2549: 2494: 2474: 2450: 2380: 2360: 2328: 2294: 2164: 2098: 2012: 1979: 1949: 1838: 1709: 1662: 1639: 1541: 1496: 1429: 1395: 1351: 1303: 1270: 1209: 1186: 985: 955: 918: 883: 854: 667: 644: 501: 477: 453: 433: 407: 382: 323: 279:of an ideal gas or the velocity distribution of a 271:Many physical properties follow directly from the 180: 1437:) can also be calculated by integrating over the 1407:Compressibility of metals and degeneracy pressure 1497:{\displaystyle u(0)={\frac {3}{5}}nE_{\rm {F}},} 1271:{\textstyle T_{\rm {F}}=E_{\rm {F}}/k_{\rm {B}}} 46:solid. It was developed in 1927, principally by 3721:Xu, Bin; Verstraete, Matthieu J. (2014-05-14). 3583: 3562: 3547: 3535: 3518: 3506: 3494: 3477: 3465: 3453: 3441: 3426: 3414: 3275:, some do not conduct electricity very well ( 2336:is considerably smaller than the 3/2 found in 3880: 926:of electrons in a solid is also known as the 687:above the free electron band minimum energy. 8: 3850:(2nd ed.). Cambridge university press. 3775:. University of Michigan: Wiley & Sons. 2815: 2802: 2723: 2709: 2681: 2668: 2451:{\displaystyle c_{V}\approx \gamma T+AT^{3}} 2063:of metals. While most solids had a constant 2743:{\displaystyle \langle v^{2}\rangle ^{1/2}} 4014: 3970: 3887: 3873: 3865: 3231:The Hall coefficient has a constant value 3018: 2950: 967:can be used to calculate the Fermi level ( 524:, and the Hall coefficient related to the 3738: 3185: 3174: 3173: 3168: 3160: 3159: 3154: 3143: 3105: 3073: 3055: 3025: 3012: 2996: 2995: 2989: 2973: 2967: 2957: 2944: 2928: 2927: 2921: 2906: 2901: 2889: 2866: 2830: 2809: 2796: 2785: 2784: 2777: 2764: 2762: 2730: 2726: 2716: 2707: 2684: 2675: 2659: 2647: 2605: 2596: 2589: 2588: 2579: 2569: 2568: 2562: 2537: 2536: 2524: 2487: 2467: 2442: 2417: 2411: 2373: 2352: 2347: 2341: 2320: 2311: 2285: 2284: 2268: 2267: 2258: 2247: 2241: 2232: 2208: 2194: 2188: 2155: 2154: 2137: 2128: 2123: 2117: 2089: 2088: 2076: 2003: 2002: 1996: 1971: 1965: 1934: 1933: 1917: 1911: 1910: 1900: 1886: 1878: 1826: 1825: 1808: 1792: 1777: 1753: 1734: 1675: 1655: 1612: 1597: 1573: 1557: 1529: 1528: 1514: 1512: 1484: 1483: 1466: 1449: 1416: 1371: 1370: 1364: 1327: 1326: 1320: 1294: 1293: 1287: 1261: 1260: 1251: 1244: 1243: 1229: 1228: 1222: 1202: 1164: 1151: 1150: 1141: 1125: 1119: 1110: 1097: 1096: 1087: 1071: 1065: 1032: 1031: 1008: 1007: 1001: 972: 946: 945: 939: 911: 870: 839: 838: 828: 819: 818: 809: 799: 785: 776: 767: 757: 746: 740: 723: 660: 628: 614: 592: 578: 572: 562: 561: 555: 494: 470: 446: 426: 424: 400: 398: 369: 355: 345: 336: 315: 304: 302: 173: 3805:. New York: Holt, Rinehart and Winston. 2503:constant given by the Dulong–petit law. 253:). Effective masses can be derived from 3614: 3592: 3407: 3205:and noble metals like gold and silver. 3194:{\displaystyle S=-{c_{\rm {V}}}/{|ne|}} 3138:. This coefficient can be showed to be 1542:{\textstyle {\frac {3}{2}}k_{\rm {B}}T} 764: 662: 575: 3831:. Berlin Heidelberg: Springer Verlag. 3599: 3550:, p. 23 and 52(Eq. 1.53 and 2.93) 2550:{\textstyle \lambda =v_{\rm {F}}\tau } 3579: 3577: 3575: 3573: 3571: 3558: 3556: 3531: 3529: 3527: 3490: 3488: 3486: 3221:behaviour coming from ion motion and 2642:The thermal conductivity is given by 1411:The total energy per unit volume (at 7: 4411: 3437: 3435: 3085:{\displaystyle L=2.44\times 10^{-8}} 2635:Thermal conductivity and thermopower 242:which may deviate considerably from 4435: 3772:Introduction to Solid State Physics 3131:{\displaystyle \nabla V=-S\nabla T} 1396:{\displaystyle E_{\rm {F}}(T>0)} 101:the range of binding energy values; 3848:Principles of the theory of solids 3161: 3122: 3107: 2997: 2929: 2786: 2590: 2570: 2538: 2286: 2269: 2219: 2211: 2156: 2090: 2004: 1935: 1912: 1827: 1764: 1756: 1584: 1576: 1530: 1485: 1372: 1328: 1295: 1262: 1245: 1230: 1152: 1098: 1033: 1009: 947: 840: 820: 563: 159:Independent electron approximation 87:the temperature dependence of the 61:and hence it is also known as the 14: 3228:Hall effect and magnetoresistance 2361:{\textstyle c_{V}^{\text{Drude}}} 1217:is the temperature and we define 4434: 4422: 4410: 4399: 4398: 1352:{\displaystyle E_{\rm {F}}(T=0)} 441:is the external electric field, 427: 401: 316: 305: 2881:is the Lorenz number, given by 338: 320: 277:classical velocity distribution 3749:10.1103/PhysRevLett.112.196603 3702:University of Nebraska-Lincoln 3265:of a periodic lattice of ions. 3186: 3175: 1941: 1926: 1701: 1695: 1686: 1680: 1631: 1625: 1460: 1454: 1390: 1378: 1346: 1334: 1051: 1039: 1021: 1015: 734: 728: 465:(number of electrons/volume), 1: 3997:Spontaneous symmetry breaking 3829:Elektronentheorie der Metalle 3343:. More exotic phenomena like 3308:Boltzmann transport equations 3268:Diversity in the conductivity 2099:{\displaystyle 3nk_{\rm {B}}} 993:) at higher temperatures as: 532:Properties of an electron gas 3372:Two-dimensional electron gas 3289:valence and conduction bands 2044:Corrections to Drude's model 1719:electron degeneracy pressure 1403:are practically equivalent. 434:{\displaystyle \mathbf {E} } 408:{\displaystyle \mathbf {J} } 94:the shape of the electronic 3326:empty lattice approximation 3209:Inaccuracies and extensions 2399:model and the more refined 2013:{\textstyle \mu _{\rm {B}}} 1359:and the chemical potential 1304:{\displaystyle k_{\rm {B}}} 956:{\displaystyle E_{\rm {F}}} 38:model for the behaviour of 4499: 4473:Electronic band structures 4177:Spin gapless semiconductor 4086:Nearly free electron model 3584:Ashcroft & Mermin 1976 3563:Ashcroft & Mermin 1976 3548:Ashcroft & Mermin 1976 3536:Ashcroft & Mermin 1976 3519:Ashcroft & Mermin 1976 3507:Ashcroft & Mermin 1976 3495:Ashcroft & Mermin 1976 3478:Ashcroft & Mermin 1976 3466:Ashcroft & Mermin 1976 3454:Ashcroft & Mermin 1976 3442:Ashcroft & Mermin 1976 3427:Ashcroft & Mermin 1976 3415:Ashcroft & Mermin 1976 3330:nearly free electron model 2052: 535: 264: 104:electrical conductivities; 18: 4394: 4126:Density functional theory 4101:electronic band structure 3968: 3093:classical heat capacity. 1441:of the system, we obtain 694:In three dimensions, the 192:Pauli exclusion principle 119:thermal electron emission 4468:Condensed matter physics 4296:Bogoliubov quasiparticle 4040:Quantum spin Hall effect 3932:Bose–Einstein condensate 3896:Condensed matter physics 3693:Tsymbal, Evgeny (2008). 3509:, pp. 47 (Eq. 2.81) 3377:Bose–Einstein statistics 2180:electron gas, given by: 2065:volumetric heat capacity 2055:Electronic specific heat 2038:electron magnetic moment 1860:Bohr–Van Leeuwen theorem 511:electron electric charge 57:with quantum mechanical 3727:Physical Review Letters 2475:{\displaystyle \gamma } 2306:where the prefactor to 2028:contribution (known as 1868:magnetic susceptibility 1710:{\textstyle U(T)=u(T)V} 123:field electron emission 78:electrical conductivity 3695:"Electronic Transport" 3627:Zeitschrift fĂŒr Physik 3271:Not all materials are 3217:Temperature dependence 3195: 3132: 3086: 3041: 2875: 2852: 2744: 2696: 2617: 2551: 2496: 2476: 2452: 2382: 2362: 2330: 2329:{\displaystyle nk_{B}} 2296: 2166: 2100: 2014: 1981: 1951: 1840: 1711: 1664: 1641: 1543: 1498: 1431: 1397: 1353: 1305: 1272: 1211: 1188: 987: 986:{\displaystyle T>0} 957: 930:and, like the related 920: 885: 856: 703: 669: 668:{\displaystyle \hbar } 646: 503: 479: 455: 435: 409: 384: 325: 196:Fermi–Dirac statistics 182: 89:electron heat capacity 63:Drude–Sommerfeld model 59:Fermi–Dirac statistics 4172:Topological insulator 4106:Anderson localization 3273:electrical conductors 3196: 3133: 3087: 3042: 2876: 2853: 2745: 2697: 2618: 2552: 2497: 2477: 2453: 2383: 2363: 2331: 2297: 2167: 2101: 2053:Further information: 2043: 2030:Landau's diamagnetism 2015: 1982: 1980:{\textstyle \mu _{0}} 1952: 1841: 1712: 1665: 1642: 1544: 1499: 1432: 1398: 1354: 1306: 1273: 1212: 1189: 988: 958: 921: 886: 857: 693: 670: 647: 504: 480: 478:{\displaystyle \tau } 456: 436: 410: 385: 326: 183: 181:{\displaystyle \tau } 146:Ideas and assumptions 113:thermoelectric effect 4050:Aharonov–Bohm effect 3937:Fermionic condensate 3846:Ziman, J.M. (1972). 3315:exchange interaction 3142: 3104: 3054: 3027:free electron model. 2888: 2865: 2761: 2706: 2646: 2561: 2523: 2486: 2466: 2410: 2372: 2340: 2310: 2187: 2116: 2075: 1995: 1964: 1877: 1733: 1674: 1654: 1556: 1511: 1448: 1415: 1363: 1319: 1286: 1221: 1201: 1000: 971: 965:Sommerfeld expansion 938: 919:{\displaystyle \mu } 910: 884:{\textstyle E\geq 0} 869: 722: 659: 554: 493: 469: 445: 423: 397: 335: 301: 261:From the Drude model 204:Sommerfeld expansion 172: 82:thermal conductivity 4441:Physics WikiProject 4116:tight binding model 4096:Fermi liquid theory 4081:Free electron model 4030:Quantum Hall effect 4011:Electrons in solids 3801:Solid State Physics 3639:1928ZPhy...47....1S 3417:, Ch. 2 & Ch. 3 3341:Fermi liquid theory 3098:Seebeck coefficient 2752:Wiedemann–Franz law 2357: 2133: 1989:vacuum permittivity 1922: 109:Seebeck coefficient 74:Wiedemann–Franz law 50:, who combined the 32:free electron model 28:solid-state physics 4002:Critical phenomena 3821:Sommerfeld, Arnold 3647:10.1007/bf01391052 3623:Sommerfeld, Arnold 3362:Electronic entropy 3191: 3128: 3082: 3037: 3032: 3022: 2954: 2871: 2848: 2740: 2692: 2613: 2547: 2492: 2472: 2448: 2378: 2358: 2343: 2326: 2292: 2162: 2119: 2096: 2010: 1977: 1947: 1906: 1836: 1707: 1670:is the volume and 1660: 1637: 1539: 1494: 1427: 1393: 1349: 1313:Boltzmann constant 1301: 1268: 1207: 1184: 983: 953: 916: 905:chemical potential 881: 852: 704: 665: 642: 499: 475: 463:electronic density 451: 431: 405: 380: 321: 178: 36:quantum mechanical 4483:Arnold Sommerfeld 4450: 4449: 4336:Exciton-polariton 4221: 4220: 4193:Thermoelectricity 3812:978-0-03-083993-1 3782:978-0-471-49024-1 3345:superconductivity 3028: 3006: 2982: 2960: 2938: 2914: 2874:{\displaystyle L} 2837: 2772: 2611: 2495:{\displaystyle A} 2355: 2275: 2256: 2226: 2145: 2131: 1894: 1858:According to the 1854:Magnetic response 1816: 1800: 1771: 1620: 1591: 1522: 1474: 1280:Fermi temperature 1210:{\displaystyle T} 1158: 1134: 1104: 1080: 847: 846: 826: 807: 794: 774: 713:density of states 707:Density of states 696:density of states 636: 599: 522:magnetoresistance 502:{\displaystyle e} 454:{\displaystyle n} 375: 125:from bulk metals. 96:density of states 48:Arnold Sommerfeld 4490: 4438: 4437: 4426: 4414: 4413: 4402: 4401: 4341:Phonon polariton 4233:Amorphous magnet 4213:Electrostriction 4208:Flexoelectricity 4203:Ferroelectricity 4198:Piezoelectricity 4055:Josephson effect 4035:Spin Hall effect 4015: 3992:Phase transition 3974: 3957:Luttinger liquid 3904:States of matter 3889: 3882: 3875: 3866: 3861: 3842: 3816: 3804: 3795:Mermin, N. David 3786: 3753: 3752: 3742: 3718: 3712: 3711: 3709: 3708: 3699: 3690: 3684: 3683: 3681: 3680: 3665: 3659: 3658: 3619: 3603: 3597: 3587: 3586:, pp. 58–59 3581: 3566: 3560: 3551: 3545: 3539: 3533: 3522: 3516: 3510: 3504: 3498: 3497:, pp. 38–39 3492: 3481: 3480:, pp. 45–48 3475: 3469: 3468:, pp. 32–37 3463: 3457: 3451: 3445: 3444:, pp. 49–51 3439: 3430: 3424: 3418: 3412: 3244: 3200: 3198: 3197: 3192: 3190: 3189: 3178: 3172: 3167: 3166: 3165: 3164: 3137: 3135: 3134: 3129: 3091: 3089: 3088: 3083: 3081: 3080: 3046: 3044: 3043: 3038: 3036: 3033: 3029: 3026: 3017: 3016: 3011: 3007: 3002: 3001: 3000: 2990: 2983: 2978: 2977: 2968: 2961: 2958: 2949: 2948: 2943: 2939: 2934: 2933: 2932: 2922: 2915: 2907: 2880: 2878: 2877: 2872: 2857: 2855: 2854: 2849: 2838: 2836: 2835: 2834: 2818: 2814: 2813: 2801: 2800: 2791: 2790: 2789: 2778: 2773: 2765: 2749: 2747: 2746: 2741: 2739: 2738: 2734: 2721: 2720: 2701: 2699: 2698: 2693: 2688: 2680: 2679: 2664: 2663: 2622: 2620: 2619: 2614: 2612: 2610: 2609: 2600: 2595: 2594: 2593: 2580: 2575: 2574: 2573: 2556: 2554: 2553: 2548: 2543: 2542: 2541: 2517:diffusive motion 2501: 2499: 2498: 2493: 2481: 2479: 2478: 2473: 2457: 2455: 2454: 2449: 2447: 2446: 2422: 2421: 2393:Dulong–Petit law 2387: 2385: 2384: 2379: 2367: 2365: 2364: 2359: 2356: 2353: 2351: 2335: 2333: 2332: 2327: 2325: 2324: 2301: 2299: 2298: 2293: 2291: 2290: 2289: 2276: 2274: 2273: 2272: 2259: 2257: 2252: 2251: 2242: 2237: 2236: 2231: 2227: 2225: 2217: 2209: 2199: 2198: 2171: 2169: 2168: 2163: 2161: 2160: 2159: 2146: 2138: 2132: 2129: 2127: 2105: 2103: 2102: 2097: 2095: 2094: 2093: 2069:Dulong–Petit law 2019: 2017: 2016: 2011: 2009: 2008: 2007: 1986: 1984: 1983: 1978: 1976: 1975: 1956: 1954: 1953: 1948: 1940: 1939: 1938: 1921: 1916: 1915: 1905: 1904: 1895: 1887: 1845: 1843: 1842: 1837: 1832: 1831: 1830: 1817: 1809: 1801: 1793: 1788: 1787: 1776: 1772: 1770: 1762: 1754: 1716: 1714: 1713: 1708: 1669: 1667: 1666: 1661: 1646: 1644: 1643: 1638: 1621: 1613: 1608: 1607: 1596: 1592: 1590: 1582: 1574: 1548: 1546: 1545: 1540: 1535: 1534: 1533: 1523: 1515: 1503: 1501: 1500: 1495: 1490: 1489: 1488: 1475: 1467: 1436: 1434: 1433: 1430:{\textstyle T=0} 1428: 1402: 1400: 1399: 1394: 1377: 1376: 1375: 1358: 1356: 1355: 1350: 1333: 1332: 1331: 1310: 1308: 1307: 1302: 1300: 1299: 1298: 1277: 1275: 1274: 1269: 1267: 1266: 1265: 1255: 1250: 1249: 1248: 1235: 1234: 1233: 1216: 1214: 1213: 1208: 1193: 1191: 1190: 1185: 1180: 1176: 1169: 1168: 1163: 1159: 1157: 1156: 1155: 1142: 1135: 1130: 1129: 1120: 1115: 1114: 1109: 1105: 1103: 1102: 1101: 1088: 1081: 1076: 1075: 1066: 1038: 1037: 1036: 1014: 1013: 1012: 992: 990: 989: 984: 962: 960: 959: 954: 952: 951: 950: 934:, often denoted 925: 923: 922: 917: 890: 888: 887: 882: 861: 859: 858: 853: 848: 845: 844: 843: 830: 829: 827: 825: 824: 823: 810: 808: 800: 795: 790: 789: 777: 775: 773: 772: 771: 762: 761: 751: 750: 741: 674: 672: 671: 666: 651: 649: 648: 643: 638: 637: 629: 627: 623: 619: 618: 600: 598: 597: 596: 583: 582: 573: 568: 567: 566: 518:plasma frequency 508: 506: 505: 500: 484: 482: 481: 476: 460: 458: 457: 452: 440: 438: 437: 432: 430: 414: 412: 411: 406: 404: 389: 387: 386: 381: 376: 374: 373: 364: 360: 359: 346: 330: 328: 327: 322: 319: 308: 187: 185: 184: 179: 163:screening effect 4498: 4497: 4493: 4492: 4491: 4489: 4488: 4487: 4453: 4452: 4451: 4446: 4390: 4371:Granular matter 4366:Amorphous solid 4352: 4277: 4263:Antiferromagnet 4253:Superparamagnet 4226:Magnetic phases 4217: 4181: 4130: 4091:Bloch's theorem 4064: 4006: 3987:Order parameter 3980:Phase phenomena 3975: 3966: 3898: 3893: 3858: 3845: 3839: 3819: 3813: 3789: 3783: 3767:Kittel, Charles 3765: 3757: 3756: 3720: 3719: 3715: 3706: 3704: 3697: 3692: 3691: 3687: 3678: 3676: 3667: 3666: 3662: 3621: 3620: 3616: 3606: 3598: 3594: 3590: 3582: 3569: 3561: 3554: 3546: 3542: 3534: 3525: 3517: 3513: 3505: 3501: 3493: 3484: 3476: 3472: 3464: 3460: 3452: 3448: 3440: 3433: 3425: 3421: 3413: 3409: 3400: 3357:Bloch's theorem 3353: 3295:can be seen as 3238: 3232: 3211: 3155: 3140: 3139: 3102: 3101: 3069: 3052: 3051: 3031: 3030: 3023: 2991: 2985: 2984: 2969: 2963: 2962: 2955: 2923: 2917: 2916: 2897: 2886: 2885: 2863: 2862: 2826: 2819: 2805: 2792: 2780: 2779: 2759: 2758: 2722: 2712: 2704: 2703: 2671: 2655: 2644: 2643: 2637: 2601: 2584: 2564: 2559: 2558: 2532: 2521: 2520: 2509: 2484: 2483: 2464: 2463: 2438: 2413: 2408: 2407: 2370: 2369: 2338: 2337: 2316: 2308: 2307: 2280: 2263: 2243: 2218: 2210: 2204: 2203: 2190: 2185: 2184: 2150: 2114: 2113: 2084: 2073: 2072: 2057: 2051: 2046: 1998: 1993: 1992: 1967: 1962: 1961: 1929: 1896: 1875: 1874: 1856: 1821: 1763: 1755: 1749: 1748: 1731: 1730: 1672: 1671: 1652: 1651: 1583: 1575: 1569: 1568: 1554: 1553: 1524: 1509: 1508: 1479: 1446: 1445: 1413: 1412: 1409: 1366: 1361: 1360: 1322: 1317: 1316: 1289: 1284: 1283: 1256: 1239: 1224: 1219: 1218: 1199: 1198: 1146: 1137: 1136: 1121: 1092: 1083: 1082: 1067: 1058: 1054: 1027: 1003: 998: 997: 969: 968: 941: 936: 935: 908: 907: 901: 893:conduction band 867: 866: 834: 814: 781: 763: 753: 752: 742: 720: 719: 709: 677:Planck constant 675:is the reduced 657: 656: 610: 606: 602: 601: 588: 584: 574: 557: 552: 551: 540: 534: 491: 490: 467: 466: 443: 442: 421: 420: 417:current density 395: 394: 365: 351: 347: 333: 332: 299: 298: 269: 263: 247: 233: 223:Bloch's theorem 170: 169: 148: 40:charge carriers 24: 17: 12: 11: 5: 4496: 4494: 4486: 4485: 4480: 4475: 4470: 4465: 4463:Quantum models 4455: 4454: 4448: 4447: 4445: 4444: 4432: 4429:Physics Portal 4420: 4408: 4395: 4392: 4391: 4389: 4388: 4383: 4378: 4376:Liquid crystal 4373: 4368: 4362: 4360: 4354: 4353: 4351: 4350: 4345: 4344: 4343: 4338: 4328: 4323: 4318: 4313: 4308: 4303: 4298: 4293: 4287: 4285: 4283:Quasiparticles 4279: 4278: 4276: 4275: 4270: 4265: 4260: 4255: 4250: 4245: 4243:Superdiamagnet 4240: 4235: 4229: 4227: 4223: 4222: 4219: 4218: 4216: 4215: 4210: 4205: 4200: 4195: 4189: 4187: 4183: 4182: 4180: 4179: 4174: 4169: 4167:Superconductor 4164: 4159: 4154: 4149: 4147:Mott insulator 4144: 4138: 4136: 4132: 4131: 4129: 4128: 4123: 4118: 4113: 4108: 4103: 4098: 4093: 4088: 4083: 4078: 4072: 4070: 4066: 4065: 4063: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4027: 4021: 4019: 4012: 4008: 4007: 4005: 4004: 3999: 3994: 3989: 3983: 3981: 3977: 3976: 3969: 3967: 3965: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3924: 3919: 3914: 3908: 3906: 3900: 3899: 3894: 3892: 3891: 3884: 3877: 3869: 3863: 3862: 3856: 3843: 3838:978-3642950025 3837: 3817: 3811: 3791:Ashcroft, Neil 3787: 3781: 3762: 3761: 3755: 3754: 3733:(19): 196603. 3713: 3685: 3660: 3613: 3612: 3611: 3610: 3605: 3604: 3591: 3589: 3588: 3567: 3552: 3540: 3523: 3511: 3499: 3482: 3470: 3458: 3446: 3431: 3419: 3406: 3405: 3404: 3399: 3396: 3395: 3394: 3389: 3384: 3379: 3374: 3369: 3364: 3359: 3352: 3349: 3319:ferromagnetism 3301: 3300: 3297:quasiparticles 3281:semiconductors 3269: 3266: 3262: 3259: 3247:band structure 3236: 3229: 3226: 3218: 3210: 3207: 3188: 3184: 3181: 3177: 3171: 3163: 3158: 3153: 3150: 3147: 3127: 3124: 3121: 3118: 3115: 3112: 3109: 3079: 3076: 3072: 3068: 3065: 3062: 3059: 3048: 3047: 3035: 3024: 3021: 3015: 3010: 3005: 2999: 2994: 2988: 2981: 2976: 2972: 2965: 2964: 2956: 2953: 2947: 2942: 2937: 2931: 2926: 2920: 2913: 2910: 2904: 2903: 2900: 2896: 2893: 2870: 2859: 2858: 2847: 2844: 2841: 2833: 2829: 2825: 2822: 2817: 2812: 2808: 2804: 2799: 2795: 2788: 2783: 2776: 2771: 2768: 2737: 2733: 2729: 2725: 2719: 2715: 2711: 2691: 2687: 2683: 2678: 2674: 2670: 2667: 2662: 2658: 2654: 2651: 2636: 2633: 2608: 2604: 2599: 2592: 2587: 2583: 2578: 2572: 2567: 2546: 2540: 2535: 2531: 2528: 2513:mean free path 2508: 2507:Mean free path 2505: 2491: 2471: 2460: 2459: 2445: 2441: 2437: 2434: 2431: 2428: 2425: 2420: 2416: 2397:Einstein solid 2381:{\textstyle T} 2377: 2350: 2346: 2323: 2319: 2315: 2304: 2303: 2288: 2283: 2279: 2271: 2266: 2262: 2255: 2250: 2246: 2240: 2235: 2230: 2224: 2221: 2216: 2213: 2207: 2202: 2197: 2193: 2174: 2173: 2158: 2153: 2149: 2144: 2141: 2136: 2126: 2122: 2092: 2087: 2083: 2080: 2050: 2047: 2045: 2042: 2006: 2001: 1974: 1970: 1958: 1957: 1946: 1943: 1937: 1932: 1928: 1925: 1920: 1914: 1909: 1903: 1899: 1893: 1890: 1885: 1882: 1855: 1852: 1847: 1846: 1835: 1829: 1824: 1820: 1815: 1812: 1807: 1804: 1799: 1796: 1791: 1786: 1783: 1780: 1775: 1769: 1766: 1761: 1758: 1752: 1747: 1744: 1741: 1738: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1682: 1679: 1663:{\textstyle V} 1659: 1648: 1647: 1636: 1633: 1630: 1627: 1624: 1619: 1616: 1611: 1606: 1603: 1600: 1595: 1589: 1586: 1581: 1578: 1572: 1567: 1564: 1561: 1538: 1532: 1527: 1521: 1518: 1505: 1504: 1493: 1487: 1482: 1478: 1473: 1470: 1465: 1462: 1459: 1456: 1453: 1426: 1423: 1420: 1408: 1405: 1392: 1389: 1386: 1383: 1380: 1374: 1369: 1348: 1345: 1342: 1339: 1336: 1330: 1325: 1297: 1292: 1264: 1259: 1254: 1247: 1242: 1238: 1232: 1227: 1206: 1195: 1194: 1183: 1179: 1175: 1172: 1167: 1162: 1154: 1149: 1145: 1140: 1133: 1128: 1124: 1118: 1113: 1108: 1100: 1095: 1091: 1086: 1079: 1074: 1070: 1064: 1061: 1057: 1053: 1050: 1047: 1044: 1041: 1035: 1030: 1026: 1023: 1020: 1017: 1011: 1006: 982: 979: 976: 949: 944: 915: 900: 897: 880: 877: 874: 863: 862: 851: 842: 837: 833: 822: 817: 813: 806: 803: 798: 793: 788: 784: 780: 770: 766: 760: 756: 749: 745: 739: 736: 733: 730: 727: 708: 705: 664: 653: 652: 641: 635: 632: 626: 622: 617: 613: 609: 605: 595: 591: 587: 581: 577: 571: 565: 560: 536:Main article: 533: 530: 498: 487:mean free time 474: 450: 429: 403: 391: 390: 379: 372: 368: 363: 358: 354: 350: 344: 341: 318: 314: 311: 307: 265:Main article: 262: 259: 255:band structure 251:electron holes 245: 237:effective mass 231: 212: 211: 189: 177: 166: 156: 147: 144: 127: 126: 116: 105: 102: 99: 92: 85: 76:which relates 15: 13: 10: 9: 6: 4: 3: 2: 4495: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4464: 4461: 4460: 4458: 4443: 4442: 4433: 4431: 4430: 4425: 4421: 4419: 4418: 4409: 4407: 4406: 4397: 4396: 4393: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4363: 4361: 4359: 4355: 4349: 4346: 4342: 4339: 4337: 4334: 4333: 4332: 4329: 4327: 4324: 4322: 4319: 4317: 4314: 4312: 4309: 4307: 4304: 4302: 4299: 4297: 4294: 4292: 4289: 4288: 4286: 4284: 4280: 4274: 4271: 4269: 4266: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4230: 4228: 4224: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4196: 4194: 4191: 4190: 4188: 4184: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4152:Semiconductor 4150: 4148: 4145: 4143: 4140: 4139: 4137: 4133: 4127: 4124: 4122: 4121:Hubbard model 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4077: 4074: 4073: 4071: 4067: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4022: 4020: 4016: 4013: 4009: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3984: 3982: 3978: 3973: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3909: 3907: 3905: 3901: 3897: 3890: 3885: 3883: 3878: 3876: 3871: 3870: 3867: 3859: 3857:0-521-29733-8 3853: 3849: 3844: 3840: 3834: 3830: 3826: 3822: 3818: 3814: 3808: 3803: 3802: 3796: 3792: 3788: 3784: 3778: 3774: 3773: 3768: 3764: 3763: 3759: 3758: 3750: 3746: 3741: 3736: 3732: 3728: 3724: 3717: 3714: 3703: 3696: 3689: 3686: 3675: 3671: 3664: 3661: 3656: 3652: 3648: 3644: 3640: 3636: 3633:(1–2): 1–32. 3632: 3629:(in German). 3628: 3624: 3618: 3615: 3608: 3607: 3601: 3596: 3593: 3585: 3580: 3578: 3576: 3574: 3572: 3568: 3564: 3559: 3557: 3553: 3549: 3544: 3541: 3538:, pp. 52 3537: 3532: 3530: 3528: 3524: 3520: 3515: 3512: 3508: 3503: 3500: 3496: 3491: 3489: 3487: 3483: 3479: 3474: 3471: 3467: 3462: 3459: 3455: 3450: 3447: 3443: 3438: 3436: 3432: 3429:, pp. 60 3428: 3423: 3420: 3416: 3411: 3408: 3402: 3401: 3397: 3393: 3390: 3388: 3385: 3383: 3382:Fermi surface 3380: 3378: 3375: 3373: 3370: 3368: 3367:Tight binding 3365: 3363: 3360: 3358: 3355: 3354: 3350: 3348: 3346: 3342: 3338: 3333: 3331: 3327: 3322: 3320: 3316: 3311: 3309: 3304: 3298: 3294: 3290: 3286: 3282: 3278: 3274: 3270: 3267: 3263: 3260: 3256: 3252: 3248: 3242: 3235: 3230: 3227: 3224: 3219: 3216: 3215: 3214: 3208: 3206: 3204: 3182: 3179: 3169: 3156: 3151: 3148: 3145: 3125: 3119: 3116: 3113: 3110: 3099: 3094: 3077: 3074: 3070: 3066: 3063: 3060: 3057: 3019: 3013: 3008: 3003: 2992: 2986: 2979: 2974: 2970: 2951: 2945: 2940: 2935: 2924: 2918: 2911: 2908: 2898: 2894: 2891: 2884: 2883: 2882: 2868: 2845: 2842: 2839: 2831: 2827: 2823: 2820: 2810: 2806: 2797: 2793: 2781: 2774: 2769: 2766: 2757: 2756: 2755: 2753: 2735: 2731: 2727: 2717: 2713: 2689: 2685: 2676: 2672: 2665: 2660: 2656: 2652: 2649: 2640: 2634: 2632: 2630: 2626: 2606: 2602: 2597: 2585: 2581: 2576: 2565: 2544: 2533: 2529: 2526: 2518: 2514: 2506: 2504: 2489: 2469: 2443: 2439: 2435: 2432: 2429: 2426: 2423: 2418: 2414: 2406: 2405: 2404: 2402: 2398: 2394: 2389: 2375: 2348: 2344: 2321: 2317: 2313: 2281: 2277: 2264: 2260: 2253: 2248: 2244: 2238: 2233: 2228: 2222: 2214: 2205: 2200: 2195: 2191: 2183: 2182: 2181: 2177: 2151: 2147: 2142: 2139: 2134: 2124: 2120: 2112: 2111: 2110: 2107: 2085: 2081: 2078: 2070: 2066: 2062: 2061:heat capacity 2056: 2049:Heat capacity 2048: 2041: 2039: 2035: 2031: 2027: 2023: 2022:Bohr magneton 1999: 1990: 1972: 1968: 1944: 1930: 1923: 1918: 1907: 1901: 1897: 1891: 1888: 1883: 1880: 1873: 1872: 1871: 1869: 1865: 1861: 1853: 1851: 1833: 1822: 1818: 1813: 1810: 1805: 1802: 1797: 1794: 1789: 1784: 1781: 1778: 1773: 1767: 1759: 1750: 1745: 1742: 1739: 1736: 1729: 1728: 1727: 1726:of the metal 1725: 1720: 1704: 1698: 1692: 1689: 1683: 1677: 1657: 1634: 1628: 1622: 1617: 1614: 1609: 1604: 1601: 1598: 1593: 1587: 1579: 1570: 1565: 1562: 1559: 1552: 1551: 1550: 1536: 1525: 1519: 1516: 1491: 1480: 1476: 1471: 1468: 1463: 1457: 1451: 1444: 1443: 1442: 1440: 1424: 1421: 1418: 1406: 1404: 1387: 1384: 1381: 1367: 1343: 1340: 1337: 1323: 1314: 1290: 1281: 1257: 1252: 1240: 1236: 1225: 1204: 1181: 1177: 1173: 1170: 1165: 1160: 1147: 1143: 1138: 1131: 1126: 1122: 1116: 1111: 1106: 1093: 1089: 1084: 1077: 1072: 1068: 1062: 1059: 1055: 1048: 1045: 1042: 1028: 1024: 1018: 1004: 996: 995: 994: 980: 977: 974: 966: 942: 933: 929: 913: 906: 898: 896: 894: 878: 875: 872: 849: 835: 831: 815: 811: 804: 801: 796: 791: 786: 782: 778: 768: 758: 754: 747: 743: 737: 731: 725: 718: 717: 716: 714: 706: 701: 697: 692: 688: 686: 685:electronvolts 682: 678: 639: 633: 630: 624: 620: 615: 611: 607: 603: 593: 589: 585: 579: 569: 558: 550: 549: 548: 546: 539: 531: 529: 527: 523: 519: 514: 512: 496: 488: 472: 464: 448: 418: 377: 370: 366: 361: 356: 352: 348: 342: 339: 312: 309: 297: 296: 295: 293: 289: 284: 282: 278: 274: 268: 260: 258: 256: 252: 248: 241: 238: 234: 228: 227:electron mass 224: 219: 217: 216:free particle 209: 205: 201: 197: 193: 190: 175: 167: 164: 160: 157: 153: 152: 151: 145: 143: 141: 137: 133: 124: 120: 117: 114: 110: 106: 103: 100: 97: 93: 90: 86: 83: 79: 75: 71: 70: 69: 66: 64: 60: 56: 53: 49: 45: 41: 37: 33: 29: 22: 4439: 4427: 4415: 4403: 4321:Pines' demon 4080: 4060:Kondo effect 3962:Time crystal 3847: 3828: 3800: 3770: 3730: 3726: 3716: 3705:. Retrieved 3701: 3688: 3677:. Retrieved 3674:HyperPhysics 3663: 3630: 3626: 3617: 3595: 3565:, p. 23 3543: 3521:, p. 49 3514: 3502: 3473: 3461: 3449: 3422: 3410: 3334: 3323: 3312: 3305: 3302: 3240: 3233: 3212: 3095: 3049: 2860: 2641: 2638: 2510: 2461: 2390: 2305: 2178: 2175: 2108: 2058: 1959: 1864:paramagnetic 1857: 1848: 1724:bulk modulus 1649: 1506: 1410: 1196: 932:Fermi energy 902: 864: 710: 698:of a gas of 681:Fermi energy 654: 545:Fermi energy 541: 515: 392: 287: 285: 270: 243: 239: 235:becoming an 229: 220: 213: 149: 140:noble metals 128: 67: 62: 31: 25: 4358:Soft matter 4258:Ferromagnet 4076:Drude model 4045:Berry phase 4025:Hall effect 3825:Bethe, Hans 3668:Nave, Rod. 3600:Kittel 1972 3456:, p. 7 3387:White dwarf 3261:Directional 3239:= –1/| 3225:scattering. 2401:Debye model 2026:diamagnetic 1439:phase space 928:Fermi level 899:Fermi level 526:Hall effect 273:Drude model 267:Drude model 208:Fermi level 155:collisions. 55:Drude model 4457:Categories 4273:Spin glass 4268:Metamagnet 4248:Paramagnet 4135:Conduction 4111:BCS theory 3952:Superfluid 3947:Supersolid 3707:2018-04-21 3679:2018-03-21 3609:References 3398:References 3337:Lev Landau 3285:Semimetals 3277:insulators 1870:given by 294:, that is 198:(see also 4331:Polariton 4238:Diamagnet 4186:Couplings 4162:Conductor 4157:Semimetal 4142:Insulator 4018:Phenomena 3942:Fermi gas 3740:1311.6805 3655:0044-3328 3403:Citations 3255:aluminium 3251:magnesium 3152:− 3123:∇ 3117:− 3108:∇ 3075:− 3067:× 2971:π 2816:⟩ 2803:⟨ 2770:σ 2767:κ 2724:⟩ 2710:⟨ 2682:⟩ 2669:⟨ 2666:τ 2650:κ 2625:Ă„ngströms 2545:τ 2527:λ 2470:γ 2427:γ 2424:≈ 2245:π 2220:∂ 2212:∂ 2071:of about 2067:given by 2000:μ 1969:μ 1908:μ 1898:μ 1881:χ 1785:μ 1765:∂ 1757:∂ 1743:− 1605:μ 1585:∂ 1577:∂ 1566:− 1174:⋯ 1123:π 1117:− 1069:π 1063:− 914:μ 876:≥ 765:ℏ 755:π 663:ℏ 612:π 576:ℏ 538:Fermi gas 473:τ 362:τ 340:σ 313:σ 292:Ohm's law 281:Fermi gas 200:Fermi gas 176:τ 52:classical 21:Fermi gas 4478:Electron 4405:Category 4386:Colloids 3827:(1933). 3797:(1976). 3769:(1972). 3351:See also 1991:and the 1866:and its 700:fermions 44:metallic 4417:Commons 4381:Polymer 4348:Polaron 4326:Plasmon 4306:Exciton 3760:General 3635:Bibcode 3602:, Ch. 6 3392:Jellium 3203:lithium 2629:defects 2557:(where 2020:is the 1987:is the 1278:as the 711:The 3D 520:, the 509:is the 485:is the 461:is the 415:is the 111:of the 4316:Phonon 4311:Magnon 4069:Theory 3927:Plasma 3917:Liquid 3854:  3835:  3809:  3779:  3653:  3243:| 3223:phonon 2861:where 2462:where 1960:where 1650:where 1197:where 963:. The 865:where 679:. The 655:where 393:where 136:alkali 30:, the 4291:Anyon 3912:Solid 3735:arXiv 3698:(PDF) 3293:holes 3258:does. 2959:Drude 2354:Drude 2130:Drude 331:with 42:in a 34:is a 4301:Hole 3852:ISBN 3833:ISBN 3807:ISBN 3777:ISBN 3651:ISSN 3313:The 3253:and 3064:2.44 2482:and 2034:spin 1385:> 978:> 903:The 489:and 290:for 138:and 132:ions 121:and 107:the 80:and 72:the 3922:Gas 3745:doi 3731:112 3643:doi 1311:is 547:as 26:In 4459:: 3823:; 3793:; 3743:. 3729:. 3725:. 3700:. 3672:. 3649:. 3641:. 3631:47 3570:^ 3555:^ 3526:^ 3485:^ 3434:^ 3332:. 3321:. 3310:. 3283:. 3241:ne 3071:10 2754:, 2388:. 2040:. 1132:80 1078:12 528:. 513:. 419:, 240:m* 142:. 65:. 3888:e 3881:t 3874:v 3860:. 3841:. 3815:. 3785:. 3751:. 3747:: 3737:: 3710:. 3682:. 3657:. 3645:: 3637:: 3237:H 3234:R 3187:| 3183:e 3180:n 3176:| 3170:/ 3162:V 3157:c 3149:= 3146:S 3126:T 3120:S 3114:= 3111:V 3078:8 3061:= 3058:L 3020:, 3014:2 3009:) 3004:e 2998:B 2993:k 2987:( 2980:3 2975:2 2952:, 2946:2 2941:) 2936:e 2930:B 2925:k 2919:( 2912:2 2909:3 2899:{ 2895:= 2892:L 2869:L 2846:T 2843:L 2840:= 2832:2 2828:e 2824:n 2821:3 2811:2 2807:v 2798:V 2794:c 2787:e 2782:m 2775:= 2736:2 2732:/ 2728:1 2718:2 2714:v 2690:3 2686:/ 2677:2 2673:v 2661:V 2657:c 2653:= 2607:e 2603:m 2598:/ 2591:F 2586:E 2582:2 2577:= 2571:F 2566:v 2539:F 2534:v 2530:= 2490:A 2458:, 2444:3 2440:T 2436:A 2433:+ 2430:T 2419:V 2415:c 2376:T 2349:V 2345:c 2322:B 2318:k 2314:n 2302:, 2287:B 2282:k 2278:n 2270:F 2265:T 2261:T 2254:2 2249:2 2239:= 2234:n 2229:) 2223:T 2215:u 2206:( 2201:= 2196:V 2192:c 2172:. 2157:B 2152:k 2148:n 2143:2 2140:3 2135:= 2125:V 2121:c 2091:B 2086:k 2082:n 2079:3 2005:B 1973:0 1945:, 1942:) 1936:F 1931:E 1927:( 1924:g 1919:2 1913:B 1902:0 1892:3 1889:2 1884:= 1834:. 1828:F 1823:E 1819:n 1814:3 1811:2 1806:= 1803:P 1798:3 1795:5 1790:= 1782:, 1779:T 1774:) 1768:V 1760:P 1751:( 1746:V 1740:= 1737:B 1705:V 1702:) 1699:T 1696:( 1693:u 1690:= 1687:) 1684:T 1681:( 1678:U 1658:V 1635:, 1632:) 1629:0 1626:( 1623:u 1618:3 1615:2 1610:= 1602:, 1599:T 1594:) 1588:V 1580:U 1571:( 1563:= 1560:P 1537:T 1531:B 1526:k 1520:2 1517:3 1492:, 1486:F 1481:E 1477:n 1472:5 1469:3 1464:= 1461:) 1458:0 1455:( 1452:u 1425:0 1422:= 1419:T 1391:) 1388:0 1382:T 1379:( 1373:F 1368:E 1347:) 1344:0 1341:= 1338:T 1335:( 1329:F 1324:E 1296:B 1291:k 1282:( 1263:B 1258:k 1253:/ 1246:F 1241:E 1237:= 1231:F 1226:T 1205:T 1182:, 1178:] 1171:+ 1166:4 1161:) 1153:F 1148:T 1144:T 1139:( 1127:4 1112:2 1107:) 1099:F 1094:T 1090:T 1085:( 1073:2 1060:1 1056:[ 1052:) 1049:0 1046:= 1043:T 1040:( 1034:F 1029:E 1025:= 1022:) 1019:T 1016:( 1010:F 1005:E 981:0 975:T 948:F 943:E 879:0 873:E 850:, 841:F 836:E 832:E 821:F 816:E 812:n 805:2 802:3 797:= 792:E 787:e 783:m 779:2 769:3 759:2 748:e 744:m 738:= 735:) 732:E 729:( 726:g 640:, 634:3 631:2 625:) 621:n 616:2 608:3 604:( 594:e 590:m 586:2 580:2 570:= 564:F 559:E 497:e 449:n 428:E 402:J 378:, 371:e 367:m 357:2 353:e 349:n 343:= 317:E 310:= 306:J 288:σ 246:e 244:m 232:e 230:m 210:. 165:. 115:; 98:; 91:; 84:; 23:.

Index

Fermi gas
solid-state physics
quantum mechanical
charge carriers
metallic
Arnold Sommerfeld
classical
Drude model
Fermi–Dirac statistics
Wiedemann–Franz law
electrical conductivity
thermal conductivity
electron heat capacity
density of states
Seebeck coefficient
thermoelectric effect
thermal electron emission
field electron emission
ions
alkali
noble metals
Independent electron approximation
screening effect
Pauli exclusion principle
Fermi–Dirac statistics
Fermi gas
Sommerfeld expansion
Fermi level
free particle
Bloch's theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑