Knowledge

Semigroup with involution

Source 📝

3424: 1223: 384:. As noted in the previous example, the inversion map is not necessarily the only map with this property in an inverse semigroup. There may well be other involutions that leave all idempotents invariant; for example the identity map on a commutative regular, hence inverse, semigroup, in particular, an abelian group. A 1047:
The first of these looks like the definition of a regular element, but is actually in terms of the involution. Likewise, the second axiom appears to be describing the commutation of two idempotents. It is known however that regular semigroups do not form a variety because their class does not contain
1056:
in 1968). This line of reasoning motivated Nordahl and Scheiblich to begin in 1977 the study of the (variety of) *-semigroups that satisfy only the first these two axioms; because of the similarity in form with the property defining regular semigroups, they named this variety regular *-semigroups.
1207:
the entire semilattice of idempotents is a p-system. Also, if a regular semigroup S has a p-system that is multiplicatively closed (i.e. subsemigroup), then S is an inverse semigroup. Thus, a p-system may be regarded as a generalization of the semilattice of idempotents of an inverse semigroup.
1868: 1072:
is a regular *-semigroup that is not an inverse semigroup. It is also easy to verify that in a regular *-semigroup the product of any two projections is an idempotent. In the aforementioned rectangular band example, the projections are elements of the form
2292: 1202:
A regular semigroup S is a *-regular semigroup, as defined by Nordahl & Scheiblich, if and only if it has a p-system F(S). In this case F(S) is the set of projections of S with respect to the operation ° defined by F(S). In an
2899: 1751: 2996: 3360: 3254: 2938: 2641: 2159: 2028: 1657: 2549: 978:
There are two related, but not identical notions of regularity in *-semigroups. They were introduced nearly simultaneously by Nordahl & Scheiblich (1978) and respectively Drazin (1979).
3108: 3054: 2373: 965: 1578: 2831: 994:
are a subclass of *-semigroups. It is also textbook knowledge that an inverse semigroup can be characterized as a regular semigroup in which any two idempotents commute. In 1963,
3300: 3185:. It can be shown than the order of rewriting (deleting) such pairs does not matter, i.e. any order of deletions produces the same result. (Otherwise put, these rules define a 1715: 3389: 2400: 2718: 2573: 2195: 3411:. (This latter choice of terminology conflicts however with the use of "involutive" to denote any semigroup with involution—a practice also encountered in the literature.) 3183: 3153: 78:
It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.
2435: 1442: 1416: 1136:
The problem of characterizing when a regular semigroup is a regular *-semigroup (in the sense of Nordahl & Scheiblich) was addressed by M. Yamada (1982). He defined a
2064: 2669: 1599: 2087: 2774: 2746: 2608: 2494: 2455: 2327: 2187: 1952: 1899: 1735: 1677: 3264:
to multiple kinds of "parentheses" However simplification in the Dyck congruence takes place regardless of order. For example, if ")" is the inverse of "(", then
2799: 2690: 1924: 2107: 1494:) is a *-regular semigroup with this involution. The Moore–Penrose inverse of A in this *-regular semigroup is the classical Moore–Penrose inverse of 3395:. The quotient of a free monoid with involution by the Shamir congruence is not a group, but a monoid ; nevertheless it has been called the 2839: 1081:) and are idempotent. However, two different projections in this band need not commute, nor is their product necessarily a projection since ( 3994: 3966: 3934: 3909: 3868: 3820: 3682: 3644: 3619: 1863:{\displaystyle y^{\dagger }={\begin{cases}\theta (y)&{\text{if }}y\in X\\\theta ^{-1}(y)&{\text{if }}y\in X^{\dagger }\end{cases}}} 801:
In terms of examples for these notions, in the *-semigroup of binary relations on a set, the partial isometries are the relations that are
2465:
is a distinct element in an alphabet with involution, and consequently the same observation extends to a free semigroup with involution.
3718:
Easdown, David, and W. D. Munn. "On semigroups with involution." Bulletin of the Australian Mathematical Society 48.01 (1993): 93–100.
4061: 2943: 3186: 2457:
in this choice of terminology is explained below in terms of the universal property of the construction.) Note that unlike in
4090: 3454:
A Baer *-semigroup is a *-semigroup with (two-sided) zero in which the right annihilator of every element coincides with the
3305: 3199: 311: 2904: 314:
remarked that it "becomes clear when we think of and as the operations of putting on our socks and shoes, respectively."
4153: 3590: 3117:
is not very far off from that of a free monoid with involution. The additional ingredient needed is to define a notion of
2613: 2112: 1394:
One motivation for studying these semigroups is that they allow generalizing the Moore–Penrose inverse's properties from
3190: 806: 1964: 1623: 366:
both this map and the one from the previous example are involutions satisfying the axioms of semigroup with involution.
4083:
Semigroup theory and its applications: proceedings of the 1994 conference commemorating the work of Alfred H. Clifford
2502: 1611: 999: 155: 1388: 575:
are always hermitian, and so are all powers of a hermitian element. As noted in the examples section, a semigroup
4158: 464: 163: 3067: 3013: 2332: 3003: 1124:(but not necessarily the antidistributivity of * over multiplication) have also been studied under the name of 457: 183: 66: 48: 3189:
rewriting system.) Equivalently, a free group is constructed from a free monoid with involution by taking the
912: 1544: 1526: 381: 2834: 2804: 1680: 594:
Certain basic concepts may be defined on *-semigroups in a way that parallels the notions stemming from a
3900:(2009). "Algebraic Systems and Pushdown Automata". In Manfred Droste; Werner Kuich; Heiko Vogler (eds.). 3267: 1450: 877: 86: 2287:{\displaystyle w^{\dagger }=w_{k}^{\dagger }w_{k-1}^{\dagger }\cdots w_{2}^{\dagger }w_{1}^{\dagger }.} 1686: 1060:
It is a simple calculation to establish that a regular *-semigroup is also a regular semigroup because
3563: 998:
showed that the following two axioms provide an analogous characterization of inverse semigroups as a
762: 3567: 3365: 3007: 2378: 1293: 1286: 1053: 424: 131: 97: 2695: 2557: 1773: 1292:. This defining property can be formulated in several equivalent ways. Another is to say that every 3194: 3158: 3128: 3061: 1475: 846: 434: 343: 55: 2780:. In the case of the free semigroup with involution, given an arbitrary semigroup with involution 2413: 1425: 1399: 4134: 4032:
Foulis, D. J. Relative inverses in Baer *-semigroups. Michigan Math. J. 10 (1963), no. 1, 65–84.
3510: 2033: 105: 2653: 1583: 4086: 4057: 3990: 3962: 3930: 3905: 3864: 3816: 3678: 3640: 3615: 3529: 2777: 2776:). The qualifier "free" for these constructions is justified in the usual sense that they are 2072: 1372: 1204: 991: 595: 588: 580: 531: 453: 389: 385: 374: 332: 179: 109: 51: 2751: 2723: 2585: 2471: 2440: 2304: 2164: 1929: 1876: 1720: 1662: 1140:
F(S) as subset of the idempotents of S, denoted as usual by E(S). Using the usual notation V(
62:, exhibits certain fundamental properties of the operation of taking the inverse in a group: 4054: 4033: 4014: 3556: 3548: 2576: 1738: 813: 766: 552: 475: 307: 32: 471:
under the operation of concatenation of sequences, with sequence reversal as an involution.
130:, which has the same form of interaction with multiplication as taking inverses has in the 17: 4115: 4104: 3579: 3455: 3125:
rule for producing such words simply by deleting any adjacent pairs of letter of the form
1507: 995: 445: 218: 175: 143: 139: 2783: 2674: 1908: 1514:. The construction of a free semigroup (or monoid) with involution is based on that of a 116:
is an involution because the transpose is well defined for any matrix and obeys the law
2092: 1902: 1602: 1515: 429: 147: 82: 74:
The same interaction law with the binary operation as in the case of the group inverse.
59: 3813:
The Theory of 2-structures: A Framework for Decomposition and Transformation of Graphs
3423: 1222: 193:(in Russian) as result of his attempt to bridge the theory of semigroups with that of 4147: 4122: 3544: 3261: 2999: 1955: 1534: 1522:
can easily be derived by refining the construction of a free monoid with involution.
694: 363: 299:
Semigroups that satisfy only the first of these axioms belong to the larger class of
190: 159: 3612:
Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups
3897: 3118: 1530: 802: 392:
if and only if it admits an involution under which each idempotent is an invariant.
167: 151: 134:(which is a subgroup of the full linear monoid). However, for an arbitrary matrix, 3675:
Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions
3533: 3057: 2497: 1511: 1125: 1049: 893: 468: 328: 300: 93: 28: 4125:", Bulletin of the Society of Mathematicians of Banja Luka Vol. 9 (2002), 7–47. 4053:
Mark V. Lawson (1998). "Inverse semigroups: the theory of partial symmetries".
1383:′ satisfying these axioms is unique. It is called the Moore–Penrose inverse of 1299:
contains a projection. An axiomatic definition is the condition that for every
4130: 4018: 3400: 3114: 3060:. An analogous argument holds for the free monoid with involution in terms of 2552: 1519: 400: 396: 378: 171: 4071: 4037: 3585: 3122: 1742: 1538: 210: 113: 44: 4009:
Harding, John. "Daggers, Kernels, Baer *-Semigroups, and Orthomodularity".
3555:
is a Baer *-semigroup. The involution in this case maps an operator to its
2894:{\displaystyle {\overline {\Phi }}:(X\sqcup X^{\dagger })^{+}\rightarrow S} 514:), with the involution being the order reversal of the elements of a pair ( 4129:
This article incorporates material from Free semigroup with involution on
1529:
of a free semigroup with involution are the elements of the union of two (
1518:(and respectively that of a free monoid). Moreover, the construction of a 816:
in a C*-algebra are exactly those defined in this section. In the case of
1183:
is in F(S), where ° is the well-defined operation from the previous axiom
650:. Every projection is a partial isometry, and for every partial isometry 194: 4093:. This is a recent survey article on semigroup with (special) involution 189:
Semigroups with involution appeared explicitly named in a 1953 paper of
460:. This is an example of a *-semigroup which is not a regular semigroup. 2650:
The construction above is actually the only way to extend a given map
4123:
Varieties of involution semigroups and involution semirings: a survey
2580: 970:
Another simple example of these notions appears in the next section.
213:
with its binary operation written multiplicatively. An involution in
89: 3458:
of some projection; this property is expressed formally as: for all
3302:; the one-sided congruence that appears in the Dyck language proper 1233: with: clarify motivation for studying these. You can help by 591:
and admits an involution such that every idempotent is hermitian.
306:
In some applications, the second of these axioms has been called
162:
as the binary operation, and the involution being the map which
3418: 2991:{\displaystyle \iota :X\rightarrow (X\sqcup X^{\dagger })^{+}} 1217: 296:
with the involution * is called a semigroup with involution.
3952: 3950: 3948: 3946: 3064:
and the uniqueness up to isomorphism of the construction of
3989:. Springer Science & Business Media. pp. 101–102. 1856: 4103:
Nordahl, T.E., and H.E. Scheiblich, Regular * Semigroups,
3811:
Andrzej Ehrenfeucht; T. Harju; Grzegorz Rozenberg (1999).
1926:
in the usual way with the binary (semigroup) operation on
4100:, Proc. Symp. on Regular Semigroups (DeKalb, 1979), 29–46 3677:. Springer Science & Business Media. pp. 87–88. 3673:
C. van den Berg; J. P. R. Christensen; P. Ressel (2012).
1605:.) In the case were the two sets are finite, their union 377:
then the inversion map is an involution which leaves the
3705: 3703: 463:
If X is a set, then the set of all finite sequences (or
178:
between a set and itself, with the involution being the
170:
of the letters in a string. A third example, from basic
3806: 3804: 3582:(aka category with involution) — generalizes the notion 3505:
More recently, Baer *-semigroups have been also called
3435: 3355:{\displaystyle \{(xx^{\dagger },\varepsilon ):x\in X\}} 3249:{\displaystyle \{(yy^{\dagger },\varepsilon ):y\in Y\}} 1234: 555:) when it is left invariant by the involution, meaning 3368: 3308: 3270: 3202: 3161: 3131: 3070: 3016: 2946: 2933:{\displaystyle \Phi =\iota \circ {\overline {\Phi }}} 2907: 2842: 2807: 2786: 2754: 2726: 2698: 2677: 2656: 2616: 2588: 2560: 2551:, which is just the free semigroup extended with the 2505: 2474: 2443: 2416: 2381: 2335: 2307: 2198: 2167: 2115: 2095: 2075: 2036: 1967: 1932: 1911: 1879: 1754: 1723: 1689: 1665: 1626: 1586: 1547: 1428: 1402: 915: 3532:, in particular as the multiplicative semigroups of 2636:{\displaystyle \varepsilon ^{\dagger }=\varepsilon } 2154:{\displaystyle {}^{\dagger }:Y^{+}\rightarrow Y^{+}} 3635:Chris Brink; Wolfram Kahl; Gunther Schmidt (1997). 1387:. This agrees with the classical definition of the 547:of a semigroup with involution is sometimes called 4070:, PhD Thesis, Tulane University, New Orleans, LA. 3957:Enrico G. Beltrametti; Gianni Cassinelli (2010) . 3383: 3354: 3294: 3248: 3177: 3147: 3102: 3048: 2990: 2932: 2893: 2825: 2793: 2768: 2740: 2712: 2684: 2663: 2635: 2602: 2567: 2543: 2488: 2449: 2429: 2394: 2367: 2321: 2286: 2181: 2161:defined as the string reversal of the elements of 2153: 2101: 2081: 2058: 2022: 1946: 1918: 1893: 1862: 1729: 1709: 1671: 1651: 1593: 1572: 1436: 1410: 959: 310:. Regarding the natural philosophy of this axiom, 2023:{\displaystyle w=w_{1}w_{2}\cdots w_{k}\in Y^{+}} 1652:{\displaystyle \theta :X\rightarrow X^{\dagger }} 4135:Creative Commons Attribution/Share-Alike License 4081:, in A.H. Clifford, K.H. Hofmann, M.W. Mislove, 2544:{\displaystyle Y^{*}=Y^{+}\cup \{\varepsilon \}} 138:does not equal the identity element (namely the 3854: 3852: 3850: 3843:. Cambridge University Press. pp. 305–306. 3521:The set of all binary relations on a set (from 3403:—although more recently it has been called the 3056:as a semigroup with involution is unique up to 2410:. (The irrelevance of the concrete identity of 982:Regular *-semigroups (Nordahl & Scheiblich) 618:; the set of partial isometries of a semigroup 54:, which—roughly speaking—brings it closer to a 3834: 3832: 3614:. American Mathematical Society. p. 265. 1148:, F(S) needs to satisfy the following axioms: 805:. The projections in this *-semigroup are the 909:) form an inverse semigroup with the product 8: 3980: 3978: 3349: 3309: 3243: 3203: 2538: 2532: 1717:essentially by taking the disjoint union of 456:, and the multiplication given by the usual 182:, and the multiplication given by the usual 4028: 4026: 3961:. Cambridge University Press. p. 178. 3547:, then the multiplicative semigroup of all 2610:), and suitably extend the involution with 71:Double application "cancelling itself out". 3528:Baer *-semigroups are also encountered in 3103:{\displaystyle (X\sqcup X^{\dagger })^{*}} 3049:{\displaystyle (X\sqcup X^{\dagger })^{+}} 2368:{\displaystyle (X\sqcup X^{\dagger })^{+}} 3987:Lattices and Ordered Algebraic Structures 3863:. American Mathematical Soc. p. 86. 3367: 3322: 3307: 3269: 3216: 3201: 3166: 3160: 3139: 3130: 3094: 3084: 3069: 3040: 3030: 3015: 2982: 2972: 2945: 2920: 2906: 2879: 2869: 2843: 2841: 2806: 2790: 2785: 2765: 2759: 2753: 2737: 2731: 2725: 2709: 2703: 2697: 2681: 2676: 2660: 2655: 2621: 2615: 2599: 2593: 2587: 2564: 2559: 2523: 2510: 2504: 2485: 2479: 2473: 2442: 2421: 2415: 2402:is a semigroup with involution, called a 2391: 2385: 2383: 2380: 2359: 2349: 2334: 2318: 2312: 2306: 2275: 2270: 2260: 2255: 2242: 2231: 2221: 2216: 2203: 2197: 2178: 2172: 2166: 2145: 2132: 2119: 2117: 2114: 2094: 2074: 2041: 2035: 2014: 2001: 1988: 1978: 1966: 1943: 1937: 1931: 1915: 1910: 1890: 1884: 1878: 1847: 1832: 1812: 1790: 1768: 1759: 1753: 1722: 1690: 1688: 1664: 1643: 1625: 1590: 1585: 1564: 1546: 1430: 1429: 1427: 1404: 1403: 1401: 1198:is in E(S); note: not necessarily in F(S) 945: 926: 914: 490:, with the semigroup product defined as ( 452:is a *-semigroup with the * given by the 4118:, 24(1), December 1982, pp. 173–187 2468:If in the above construction instead of 1601:emphasized that the union is actually a 241:*) satisfying the following conditions: 3882: 3880: 3602: 960:{\displaystyle A(A^{*}A\wedge BB^{*})B} 58:because this involution, considered as 3927:Holomorphy and Convexity in Lie Theory 3794: 3792: 3737: 3735: 3733: 3637:Relational Methods in Computer Science 2298: 2189:that consist of more than one letter: 1573:{\displaystyle Y=X\sqcup X^{\dagger }} 1261:(in the sense of Drazin) if for every 1510:of semigroups with involution admits 634:that is also hermitian, meaning that 482:with itself, i.e. with elements from 362:is an involution. Furthermore, on an 7: 4085:, Cambridge University Press, 1996, 3815:. World Scientific. pp. 13–14. 3391:is (perhaps confusingly) called the 2826:{\displaystyle \Phi :X\rightarrow S} 1156:in S, there exists a unique a° in V( 3786:Nordahl and Scheiblich, Theorem 2.5 3260:—in a certain sense it generalizes 4098:Regular semigroups with involution 3498:is in fact uniquely determined by 3295:{\displaystyle ()=)(=\varepsilon } 2922: 2908: 2845: 2808: 1481:* is an involution. The semigroup 25: 4121:S. Crvenkovic and Igor Dolinka, " 3929:. Walter de Gruyter. p. 21. 1710:{\displaystyle {}\dagger :Y\to Y} 1470:, the map which assigns a matrix 1257:with an involution * is called a 3422: 3256:, which is sometimes called the 2109:is then extended as a bijection 1221: 1064:* turns out to be an inverse of 892:. Since projections form a meet- 478:on a Cartesian product of a set 346:then the inversion map * : 142:). Another example, coming from 4112:P-systems in regular semigroups 3384:{\displaystyle ()=\varepsilon } 2395:{\displaystyle {}^{\dagger }\,} 1277:-equivalent to some inverse of 399:is a *-semigroup. An important 225:(or, a transformation * : 4133:, which is licensed under the 4011:Journal of Philosophical Logic 3959:The Logic of Quantum Mechanics 3372: 3369: 3334: 3312: 3283: 3280: 3274: 3271: 3228: 3206: 3091: 3071: 3037: 3017: 2979: 2959: 2956: 2885: 2876: 2856: 2817: 2713:{\displaystyle X^{\dagger }\,} 2568:{\displaystyle \varepsilon \,} 2404:free semigroup with involution 2356: 2336: 2138: 1827: 1821: 1785: 1779: 1701: 1636: 1502:Free semigroup with involution 1466:) of square matrices of order 951: 919: 596:regular element in a semigroup 1: 3902:Handbook of Weighted Automata 3610:Christopher Hollings (2014). 3591:Special classes of semigroups 3362:, which instantiates only to 3178:{\displaystyle x^{\dagger }x} 3148:{\displaystyle xx^{\dagger }} 3110:as a monoid with involution. 1212:*-regular semigroups (Drazin) 1108:Semigroups that satisfy only 987: 868:, then the unique projection 856:. For any two projection, if 807:partial equivalence relations 539:Basic concepts and properties 3861:Symmetric Inverse Semigroups 2925: 2848: 2430:{\displaystyle X^{\dagger }} 1437:{\displaystyle \mathbb {C} } 1411:{\displaystyle \mathbb {R} } 1068:. The rectangular band from 896:, the partial isometries on 705:defined as holding whenever 530:). This semigroup is also a 112:which sends a matrix to its 4072:Publications of D.J. Foulis 3841:Elements of Automata Theory 3562:Baer *-semigroup allow the 3513:who studied them in depth. 2645:free monoid with involution 2059:{\displaystyle w_{i}\in Y.} 1506:As with all varieties, the 18:Free monoid with involution 4175: 3925:Karl-Hermann Neeb (2000). 3466:there exists a projection 693:Partial isometries can be 622:is usually abbreviated PI( 467:) of members of X forms a 4019:10.1007/s10992-013-9275-5 3904:. Springer. p. 271. 3859:Stephen Lipscomb (1996). 3525:) is a Baer *-semigroup. 3517:Examples and applications 2664:{\displaystyle \theta \,} 1594:{\displaystyle \sqcup \,} 1052:(a result established by 630:is an idempotent element 444:is a set, the set of all 37:semigroup with involution 4074:(Accessed on 5 May 2009) 3661:Introduction to Geometry 3522: 3399:by its first discoverer— 3004:composition of functions 2458: 2082:{\displaystyle \dagger } 1539:bijective correspondence 1375:first proved that given 1307:there exists an element 1069: 458:composition of relations 184:composition of relations 3639:. Springer. p. 4. 2778:universal constructions 2769:{\displaystyle Y^{*}\,} 2741:{\displaystyle Y^{+}\,} 2603:{\displaystyle Y^{*}\,} 2489:{\displaystyle Y^{+}\,} 2450:{\displaystyle \theta } 2322:{\displaystyle Y^{+}\,} 2182:{\displaystyle Y^{+}\,} 1947:{\displaystyle Y^{+}\,} 1894:{\displaystyle Y^{+}\,} 1730:{\displaystyle \theta } 1672:{\displaystyle \theta } 1609:is sometimes called an 829:) more can be said. If 757:. In a *-semigroup, PI( 563:. Elements of the form 4038:10.1307/mmj/1028998825 3777:Crvenkovic and Dolinka 3709:Nordahl and Scheiblich 3385: 3356: 3296: 3250: 3179: 3149: 3113:The construction of a 3104: 3050: 3010:. The construction of 2992: 2934: 2895: 2835:semigroup homomorphism 2827: 2795: 2770: 2742: 2720:, to an involution on 2714: 2686: 2665: 2637: 2604: 2569: 2545: 2490: 2451: 2431: 2396: 2369: 2329:. Thus, the semigroup 2323: 2288: 2183: 2155: 2103: 2083: 2060: 2024: 1948: 1920: 1895: 1864: 1731: 1711: 1673: 1653: 1595: 1574: 1446:to more general sets. 1438: 1412: 1144:) for the inverses of 961: 837:are projections, then 753:* for some projection 674:are projections, then 666:* are projections. If 335:of S is an involution. 4068:Involution Semigroups 3839:Jacques Sakarovitch. 3759:Lawson p.122 and p.35 3568:orthomodular lattices 3386: 3357: 3297: 3251: 3193:of the latter by the 3180: 3150: 3105: 3051: 2993: 2935: 2896: 2828: 2796: 2771: 2743: 2715: 2687: 2666: 2638: 2605: 2570: 2546: 2491: 2452: 2437:and of the bijection 2432: 2397: 2370: 2324: 2289: 2184: 2156: 2104: 2084: 2061: 2025: 1949: 1921: 1896: 1865: 1732: 1712: 1674: 1654: 1596: 1580:. (Here the notation 1575: 1439: 1413: 1389:Moore–Penrose inverse 1179:in S, and b in F(S), 974:Notions of regularity 962: 878:orthogonal complement 4154:Algebraic structures 4107:, 16(1978), 369–377. 3366: 3306: 3268: 3200: 3159: 3129: 3068: 3062:monoid homomorphisms 3014: 2944: 2905: 2840: 2805: 2784: 2752: 2724: 2696: 2675: 2654: 2614: 2586: 2558: 2503: 2472: 2441: 2414: 2379: 2333: 2305: 2196: 2165: 2113: 2093: 2073: 2034: 1965: 1930: 1909: 1877: 1752: 1737:(as a set) with its 1721: 1687: 1663: 1624: 1584: 1545: 1426: 1400: 1391:of a square matrix. 986:As mentioned in the 913: 174:, is the set of all 132:general linear group 4079:Special Involutions 4066:D J Foulis (1958). 3985:T.S. Blyth (2006). 2794:{\displaystyle S\,} 2685:{\displaystyle X\,} 2280: 2265: 2247: 2226: 1919:{\displaystyle Y\,} 1476:Hermitian conjugate 1259:*-regular semigroup 551:(by analogy with a 534:, as all bands are. 435:conjugate transpose 331:semigroup then the 3511:David James Foulis 3434:. You can help by 3381: 3352: 3292: 3246: 3175: 3145: 3100: 3046: 2988: 2930: 2891: 2823: 2791: 2766: 2738: 2710: 2682: 2661: 2633: 2600: 2565: 2541: 2486: 2447: 2427: 2392: 2365: 2319: 2284: 2266: 2251: 2227: 2212: 2179: 2151: 2099: 2079: 2056: 2020: 1944: 1916: 1891: 1860: 1855: 1727: 1707: 1669: 1649: 1618:symmetric alphabet 1591: 1570: 1434: 1408: 992:inverse semigroups 957: 814:partial isometries 106:full linear monoid 31:, particularly in 3996:978-1-84628-127-3 3968:978-0-521-16849-6 3936:978-3-11-015669-0 3911:978-3-642-01492-5 3870:978-0-8218-0627-2 3822:978-981-02-4042-4 3684:978-1-4612-1128-0 3646:978-3-211-82971-4 3621:978-1-4704-1493-1 3549:bounded operators 3530:quantum mechanics 3507:Foulis semigroups 3452: 3451: 3415:Baer *-semigroups 3405:involutive monoid 3393:Shamir congruence 2928: 2901:exists such that 2851: 2748:(and likewise on 2461:, the involution 2301:on the semigroup 2102:{\displaystyle Y} 2030:for some letters 1835: 1793: 1373:Michael P. Drazin 1251: 1250: 1205:inverse semigroup 1002:of *-semigroups: 988:previous examples 729:*. Equivalently, 695:partially ordered 589:regular semigroup 581:inverse semigroup 532:regular semigroup 454:converse relation 395:Underlying every 390:inverse semigroup 386:regular semigroup 375:inverse semigroup 201:Formal definition 180:converse relation 52:anti-automorphism 47:equipped with an 16:(Redirected from 4166: 4159:Semigroup theory 4055:World Scientific 4041: 4030: 4021: 4013:. 6 April 2013. 4007: 4001: 4000: 3982: 3973: 3972: 3954: 3941: 3940: 3922: 3916: 3915: 3893: 3887: 3884: 3875: 3874: 3856: 3845: 3844: 3836: 3827: 3826: 3808: 3799: 3796: 3787: 3784: 3778: 3775: 3769: 3766: 3760: 3757: 3751: 3748: 3742: 3739: 3728: 3725: 3719: 3716: 3710: 3707: 3698: 3695: 3689: 3688: 3670: 3664: 3659:H.S.M. Coxeter, 3657: 3651: 3650: 3632: 3626: 3625: 3607: 3564:coordinatization 3447: 3444: 3426: 3419: 3390: 3388: 3387: 3382: 3361: 3359: 3358: 3353: 3327: 3326: 3301: 3299: 3298: 3293: 3255: 3253: 3252: 3247: 3221: 3220: 3184: 3182: 3181: 3176: 3171: 3170: 3154: 3152: 3151: 3146: 3144: 3143: 3109: 3107: 3106: 3101: 3099: 3098: 3089: 3088: 3055: 3053: 3052: 3047: 3045: 3044: 3035: 3034: 2997: 2995: 2994: 2989: 2987: 2986: 2977: 2976: 2939: 2937: 2936: 2931: 2929: 2921: 2900: 2898: 2897: 2892: 2884: 2883: 2874: 2873: 2852: 2844: 2832: 2830: 2829: 2824: 2800: 2798: 2797: 2792: 2775: 2773: 2772: 2767: 2764: 2763: 2747: 2745: 2744: 2739: 2736: 2735: 2719: 2717: 2716: 2711: 2708: 2707: 2691: 2689: 2688: 2683: 2670: 2668: 2667: 2662: 2642: 2640: 2639: 2634: 2626: 2625: 2609: 2607: 2606: 2601: 2598: 2597: 2577:identity element 2574: 2572: 2571: 2566: 2550: 2548: 2547: 2542: 2528: 2527: 2515: 2514: 2495: 2493: 2492: 2487: 2484: 2483: 2456: 2454: 2453: 2448: 2436: 2434: 2433: 2428: 2426: 2425: 2401: 2399: 2398: 2393: 2390: 2389: 2384: 2374: 2372: 2371: 2366: 2364: 2363: 2354: 2353: 2328: 2326: 2325: 2320: 2317: 2316: 2293: 2291: 2290: 2285: 2279: 2274: 2264: 2259: 2246: 2241: 2225: 2220: 2208: 2207: 2188: 2186: 2185: 2180: 2177: 2176: 2160: 2158: 2157: 2152: 2150: 2149: 2137: 2136: 2124: 2123: 2118: 2108: 2106: 2105: 2100: 2088: 2086: 2085: 2080: 2065: 2063: 2062: 2057: 2046: 2045: 2029: 2027: 2026: 2021: 2019: 2018: 2006: 2005: 1993: 1992: 1983: 1982: 1953: 1951: 1950: 1945: 1942: 1941: 1925: 1923: 1922: 1917: 1900: 1898: 1897: 1892: 1889: 1888: 1869: 1867: 1866: 1861: 1859: 1858: 1852: 1851: 1836: 1833: 1820: 1819: 1794: 1791: 1764: 1763: 1736: 1734: 1733: 1728: 1716: 1714: 1713: 1708: 1691: 1678: 1676: 1675: 1670: 1659:be a bijection; 1658: 1656: 1655: 1650: 1648: 1647: 1600: 1598: 1597: 1592: 1579: 1577: 1576: 1571: 1569: 1568: 1445: 1443: 1441: 1440: 1435: 1433: 1419: 1417: 1415: 1414: 1409: 1407: 1370: 1351: 1339: 1325: 1287:Green's relation 1246: 1243: 1225: 1218: 966: 964: 963: 958: 950: 949: 931: 930: 763:ordered groupoid 737:if and only if 600:partial isometry 553:Hermitian matrix 476:rectangular band 446:binary relations 308:antidistributive 176:binary relations 129: 81:An example from 33:abstract algebra 21: 4174: 4173: 4169: 4168: 4167: 4165: 4164: 4163: 4144: 4143: 4116:Semigroup Forum 4110:Miyuki Yamada, 4105:Semigroup Forum 4050: 4045: 4044: 4031: 4024: 4008: 4004: 3997: 3984: 3983: 3976: 3969: 3956: 3955: 3944: 3937: 3924: 3923: 3919: 3912: 3895: 3894: 3890: 3885: 3878: 3871: 3858: 3857: 3848: 3838: 3837: 3830: 3823: 3810: 3809: 3802: 3797: 3790: 3785: 3781: 3776: 3772: 3767: 3763: 3758: 3754: 3749: 3745: 3740: 3731: 3726: 3722: 3717: 3713: 3708: 3701: 3696: 3692: 3685: 3672: 3671: 3667: 3658: 3654: 3647: 3634: 3633: 3629: 3622: 3609: 3608: 3604: 3599: 3580:Dagger category 3576: 3519: 3494:The projection 3448: 3442: 3439: 3432:needs expansion 3417: 3397:free half group 3364: 3363: 3318: 3304: 3303: 3266: 3265: 3258:Dyck congruence 3212: 3198: 3197: 3162: 3157: 3156: 3135: 3127: 3126: 3090: 3080: 3066: 3065: 3036: 3026: 3012: 3011: 2978: 2968: 2942: 2941: 2903: 2902: 2875: 2865: 2838: 2837: 2803: 2802: 2782: 2781: 2755: 2750: 2749: 2727: 2722: 2721: 2699: 2694: 2693: 2673: 2672: 2652: 2651: 2617: 2612: 2611: 2589: 2584: 2583: 2556: 2555: 2519: 2506: 2501: 2500: 2475: 2470: 2469: 2463:of every letter 2439: 2438: 2417: 2412: 2411: 2382: 2377: 2376: 2355: 2345: 2331: 2330: 2308: 2303: 2302: 2297:This map is an 2199: 2194: 2193: 2168: 2163: 2162: 2141: 2128: 2116: 2111: 2110: 2091: 2090: 2071: 2070: 2037: 2032: 2031: 2010: 1997: 1984: 1974: 1963: 1962: 1933: 1928: 1927: 1907: 1906: 1880: 1875: 1874: 1854: 1853: 1843: 1830: 1808: 1805: 1804: 1788: 1769: 1755: 1750: 1749: 1719: 1718: 1685: 1684: 1683:to a bijection 1661: 1660: 1639: 1622: 1621: 1614:with involution 1582: 1581: 1560: 1543: 1542: 1504: 1489: 1461: 1424: 1423: 1421: 1398: 1397: 1395: 1353: 1341: 1327: 1312: 1247: 1241: 1238: 1231:needs expansion 1214: 1134: 1054:D. B. McAlister 996:Boris M. Schein 984: 976: 941: 922: 911: 910: 904: 884:is the meet of 876:and kernel the 845:if and only if 824: 799: 767:partial product 682:if and only if 583:if and only if 541: 411: 403:is the algebra 320: 219:unary operation 203: 158:), with string 150:generated by a 146:theory, is the 144:formal language 140:diagonal matrix 117: 23: 22: 15: 12: 11: 5: 4172: 4170: 4162: 4161: 4156: 4146: 4145: 4140: 4139: 4126: 4119: 4108: 4101: 4096:Drazin, M.P., 4094: 4075: 4064: 4049: 4046: 4043: 4042: 4022: 4002: 3995: 3974: 3967: 3942: 3935: 3917: 3910: 3888: 3876: 3869: 3846: 3828: 3821: 3800: 3788: 3779: 3770: 3761: 3752: 3750:Lawson, p. 118 3743: 3741:Lawson, p. 117 3729: 3727:Lawson, p. 116 3720: 3711: 3699: 3690: 3683: 3665: 3652: 3645: 3627: 3620: 3601: 3600: 3598: 3595: 3594: 3593: 3588: 3583: 3575: 3572: 3518: 3515: 3492: 3491: 3450: 3449: 3429: 3427: 3416: 3413: 3380: 3377: 3374: 3371: 3351: 3348: 3345: 3342: 3339: 3336: 3333: 3330: 3325: 3321: 3317: 3314: 3311: 3291: 3288: 3285: 3282: 3279: 3276: 3273: 3245: 3242: 3239: 3236: 3233: 3230: 3227: 3224: 3219: 3215: 3211: 3208: 3205: 3174: 3169: 3165: 3142: 3138: 3134: 3097: 3093: 3087: 3083: 3079: 3076: 3073: 3043: 3039: 3033: 3029: 3025: 3022: 3019: 2985: 2981: 2975: 2971: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2927: 2924: 2919: 2916: 2913: 2910: 2890: 2887: 2882: 2878: 2872: 2868: 2864: 2861: 2858: 2855: 2850: 2847: 2822: 2819: 2816: 2813: 2810: 2789: 2762: 2758: 2734: 2730: 2706: 2702: 2680: 2659: 2643:, we obtain a 2632: 2629: 2624: 2620: 2596: 2592: 2575:(which is the 2563: 2540: 2537: 2534: 2531: 2526: 2522: 2518: 2513: 2509: 2482: 2478: 2446: 2424: 2420: 2388: 2362: 2358: 2352: 2348: 2344: 2341: 2338: 2315: 2311: 2295: 2294: 2283: 2278: 2273: 2269: 2263: 2258: 2254: 2250: 2245: 2240: 2237: 2234: 2230: 2224: 2219: 2215: 2211: 2206: 2202: 2175: 2171: 2148: 2144: 2140: 2135: 2131: 2127: 2122: 2098: 2078: 2069:The bijection 2067: 2066: 2055: 2052: 2049: 2044: 2040: 2017: 2013: 2009: 2004: 2000: 1996: 1991: 1987: 1981: 1977: 1973: 1970: 1940: 1936: 1914: 1903:free semigroup 1887: 1883: 1873:Now construct 1871: 1870: 1857: 1850: 1846: 1842: 1839: 1831: 1829: 1826: 1823: 1818: 1815: 1811: 1807: 1806: 1803: 1800: 1797: 1789: 1787: 1784: 1781: 1778: 1775: 1774: 1772: 1767: 1762: 1758: 1726: 1706: 1703: 1700: 1697: 1694: 1668: 1646: 1642: 1638: 1635: 1632: 1629: 1603:disjoint union 1589: 1567: 1563: 1559: 1556: 1553: 1550: 1516:free semigroup 1503: 1500: 1485: 1457: 1451:multiplicative 1432: 1406: 1379:, the element 1249: 1248: 1228: 1226: 1213: 1210: 1200: 1199: 1184: 1173: 1133: 1130: 1045: 1044: 1017: 983: 980: 975: 972: 956: 953: 948: 944: 940: 937: 934: 929: 925: 921: 918: 900: 820: 798: 795: 602:is an element 540: 537: 536: 535: 472: 461: 438: 437:as involution. 407: 393: 367: 336: 319: 316: 312:H.S.M. Coxeter 292:The semigroup 290: 289: 262: 202: 199: 148:free semigroup 100:of order  87:multiplicative 83:linear algebra 76: 75: 72: 69: 60:unary operator 24: 14: 13: 10: 9: 6: 4: 3: 2: 4171: 4160: 4157: 4155: 4152: 4151: 4149: 4142: 4138: 4136: 4132: 4127: 4124: 4120: 4117: 4113: 4109: 4106: 4102: 4099: 4095: 4092: 4088: 4084: 4080: 4076: 4073: 4069: 4065: 4063: 4062:981-02-3316-7 4059: 4056: 4052: 4051: 4047: 4039: 4035: 4029: 4027: 4023: 4020: 4016: 4012: 4006: 4003: 3998: 3992: 3988: 3981: 3979: 3975: 3970: 3964: 3960: 3953: 3951: 3949: 3947: 3943: 3938: 3932: 3928: 3921: 3918: 3913: 3907: 3903: 3899: 3892: 3889: 3886:Lawson p. 172 3883: 3881: 3877: 3872: 3866: 3862: 3855: 3853: 3851: 3847: 3842: 3835: 3833: 3829: 3824: 3818: 3814: 3807: 3805: 3801: 3795: 3793: 3789: 3783: 3780: 3774: 3771: 3765: 3762: 3756: 3753: 3747: 3744: 3738: 3736: 3734: 3730: 3724: 3721: 3715: 3712: 3706: 3704: 3700: 3697:Munn, Lemma 1 3694: 3691: 3686: 3680: 3676: 3669: 3666: 3662: 3656: 3653: 3648: 3642: 3638: 3631: 3628: 3623: 3617: 3613: 3606: 3603: 3596: 3592: 3589: 3587: 3584: 3581: 3578: 3577: 3573: 3571: 3569: 3565: 3560: 3558: 3554: 3550: 3546: 3545:Hilbert space 3542: 3537: 3535: 3531: 3526: 3524: 3516: 3514: 3512: 3508: 3503: 3501: 3497: 3489: 3485: 3481: 3477: 3473: 3472: 3471: 3469: 3465: 3461: 3457: 3446: 3437: 3433: 3430:This section 3428: 3425: 3421: 3420: 3414: 3412: 3410: 3407:generated by 3406: 3402: 3398: 3394: 3378: 3375: 3346: 3343: 3340: 3337: 3331: 3328: 3323: 3319: 3315: 3289: 3286: 3277: 3263: 3262:Dyck language 3259: 3240: 3237: 3234: 3231: 3225: 3222: 3217: 3213: 3209: 3196: 3192: 3188: 3172: 3167: 3163: 3140: 3136: 3132: 3124: 3120: 3116: 3111: 3095: 3085: 3081: 3077: 3074: 3063: 3059: 3041: 3031: 3027: 3023: 3020: 3009: 3008:diagram order 3005: 3001: 3000:inclusion map 2983: 2973: 2969: 2965: 2962: 2953: 2950: 2947: 2917: 2914: 2911: 2888: 2880: 2870: 2866: 2862: 2859: 2853: 2836: 2820: 2814: 2811: 2787: 2779: 2760: 2756: 2732: 2728: 2704: 2700: 2678: 2657: 2648: 2646: 2630: 2627: 2622: 2618: 2594: 2590: 2582: 2578: 2561: 2554: 2535: 2529: 2524: 2520: 2516: 2511: 2507: 2499: 2480: 2476: 2466: 2464: 2460: 2444: 2422: 2418: 2409: 2405: 2386: 2375:with the map 2360: 2350: 2346: 2342: 2339: 2313: 2309: 2300: 2281: 2276: 2271: 2267: 2261: 2256: 2252: 2248: 2243: 2238: 2235: 2232: 2228: 2222: 2217: 2213: 2209: 2204: 2200: 2192: 2191: 2190: 2173: 2169: 2146: 2142: 2133: 2129: 2125: 2120: 2096: 2076: 2053: 2050: 2047: 2042: 2038: 2015: 2011: 2007: 2002: 1998: 1994: 1989: 1985: 1979: 1975: 1971: 1968: 1961: 1960: 1959: 1957: 1956:concatenation 1938: 1934: 1912: 1904: 1885: 1881: 1848: 1844: 1840: 1837: 1824: 1816: 1813: 1809: 1801: 1798: 1795: 1782: 1776: 1770: 1765: 1760: 1756: 1748: 1747: 1746: 1744: 1740: 1724: 1704: 1698: 1695: 1692: 1682: 1679:is naturally 1666: 1644: 1640: 1633: 1630: 1627: 1619: 1615: 1613: 1608: 1604: 1587: 1565: 1561: 1557: 1554: 1551: 1548: 1540: 1536: 1535:disjoint sets 1532: 1528: 1523: 1521: 1517: 1513: 1509: 1501: 1499: 1497: 1493: 1488: 1484: 1480: 1477: 1473: 1469: 1465: 1460: 1456: 1452: 1447: 1392: 1390: 1386: 1382: 1378: 1374: 1369: 1365: 1361: 1357: 1349: 1345: 1338: 1334: 1330: 1323: 1319: 1315: 1310: 1306: 1302: 1298: 1296: 1291: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1245: 1236: 1232: 1229:This section 1227: 1224: 1220: 1219: 1216: 1211: 1209: 1206: 1197: 1193: 1189: 1185: 1182: 1178: 1174: 1171: 1167: 1163: 1159: 1155: 1151: 1150: 1149: 1147: 1143: 1139: 1131: 1129: 1127: 1123: 1119: 1115: 1111: 1106: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1071: 1067: 1063: 1058: 1055: 1051: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1016: 1012: 1008: 1005: 1004: 1003: 1001: 997: 993: 989: 981: 979: 973: 971: 968: 954: 946: 942: 938: 935: 932: 927: 923: 916: 908: 903: 899: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 851: 848: 844: 840: 836: 832: 828: 823: 819: 815: 810: 808: 804: 796: 794: 792: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 691: 689: 685: 681: 677: 673: 669: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 613: 609: 605: 601: 597: 592: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 538: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 470: 466: 462: 459: 455: 451: 447: 443: 439: 436: 432: 431: 426: 423: 419: 415: 410: 406: 402: 398: 394: 391: 387: 383: 380: 376: 372: 368: 365: 364:abelian group 361: 357: 353: 349: 345: 341: 337: 334: 330: 326: 322: 321: 317: 315: 313: 309: 304: 302: 297: 295: 287: 283: 279: 275: 271: 267: 263: 260: 256: 252: 248: 244: 243: 242: 240: 236: 232: 228: 224: 220: 216: 212: 208: 200: 198: 196: 192: 191:Viktor Wagner 187: 185: 181: 177: 173: 169: 165: 161: 160:concatenation 157: 153: 149: 145: 141: 137: 133: 128: 125: 121: 115: 111: 107: 103: 99: 95: 91: 88: 84: 79: 73: 70: 68: 65: 64: 63: 61: 57: 53: 50: 46: 42: 38: 34: 30: 19: 4141: 4128: 4111: 4097: 4082: 4078: 4067: 4010: 4005: 3986: 3958: 3926: 3920: 3901: 3898:Arto Salomaa 3891: 3860: 3840: 3812: 3798:Lawson p. 51 3782: 3773: 3768:Lawson p.120 3764: 3755: 3746: 3723: 3714: 3693: 3674: 3668: 3660: 3655: 3636: 3630: 3611: 3605: 3561: 3552: 3540: 3538: 3534:Baer *-rings 3527: 3520: 3506: 3504: 3499: 3495: 3493: 3487: 3483: 3479: 3475: 3467: 3463: 3459: 3453: 3440: 3436:adding to it 3431: 3408: 3404: 3396: 3392: 3257: 3119:reduced word 3112: 3006:is taken in 2649: 2644: 2467: 2462: 2407: 2403: 2296: 2068: 1872: 1617: 1610: 1606: 1531:equinumerous 1524: 1512:free objects 1505: 1495: 1491: 1486: 1482: 1478: 1471: 1467: 1463: 1458: 1454: 1448: 1393: 1384: 1380: 1376: 1367: 1363: 1359: 1355: 1347: 1343: 1336: 1332: 1328: 1321: 1317: 1313: 1311:′ such that 1308: 1304: 1300: 1294: 1289: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1253:A semigroup 1252: 1239: 1235:adding to it 1230: 1215: 1201: 1195: 1191: 1187: 1180: 1176: 1169: 1165: 1161: 1160:) such that 1157: 1153: 1145: 1141: 1137: 1135: 1126:I-semigroups 1121: 1117: 1113: 1109: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1065: 1061: 1059: 1050:free objects 1046: 1040: 1036: 1032: 1028: 1024: 1020: 1014: 1010: 1006: 985: 977: 969: 906: 901: 897: 889: 885: 881: 873: 869: 865: 861: 857: 853: 849: 842: 838: 834: 830: 826: 821: 817: 811: 803:difunctional 800: 790: 786: 782: 778: 774: 770: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 718: 714: 710: 706: 702: 698: 692: 687: 683: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 635: 631: 627: 623: 619: 615: 611: 607: 603: 599: 593: 584: 576: 572: 568: 564: 560: 556: 548: 544: 542: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 479: 449: 441: 428: 421: 417: 413: 408: 404: 370: 359: 355: 351: 347: 339: 333:identity map 324: 305: 301:U-semigroups 298: 293: 291: 285: 281: 277: 273: 269: 265: 258: 254: 250: 246: 238: 234: 230: 226: 222: 214: 206: 204: 188: 168:linear order 152:nonempty set 135: 126: 123: 119: 104:(called the 101: 80: 77: 40: 36: 26: 4077:W.D. Munn, 3896:Ion Petre; 3456:right ideal 3058:isomorphism 2498:free monoid 2496:we use the 1172:are in F(S) 894:semilattice 872:with image 543:An element 469:free monoid 433:, with the 379:idempotents 354:defined by 329:commutative 41:*-semigroup 29:mathematics 4148:Categories 4131:PlanetMath 4091:0521576695 4048:References 3470:such that 3443:April 2015 3401:Eli Shamir 3195:congruence 3115:free group 2801:and a map 2553:empty word 2299:involution 1745:notation: 1527:generators 1520:free group 1453:semigroup 1242:April 2015 1000:subvariety 628:projection 606:such that 397:C*-algebra 172:set theory 67:Uniqueness 49:involutive 3586:*-algebra 3523:example 5 3379:ε 3344:∈ 3332:ε 3324:† 3290:ε 3238:∈ 3226:ε 3218:† 3187:confluent 3168:† 3141:† 3123:rewriting 3096:∗ 3086:† 3078:⊔ 3032:† 3024:⊔ 2974:† 2966:⊔ 2957:→ 2948:ι 2926:¯ 2923:Φ 2918:∘ 2915:ι 2909:Φ 2886:→ 2871:† 2863:⊔ 2849:¯ 2846:Φ 2833:, then a 2818:→ 2809:Φ 2761:∗ 2705:† 2658:θ 2631:ε 2623:† 2619:ε 2595:∗ 2562:ε 2536:ε 2530:∪ 2512:∗ 2459:Example 6 2445:θ 2423:† 2387:† 2351:† 2343:⊔ 2277:† 2262:† 2249:⋯ 2244:† 2236:− 2223:† 2205:† 2139:→ 2121:† 2077:† 2048:∈ 2008:∈ 1995:⋯ 1849:† 1841:∈ 1814:− 1810:θ 1799:∈ 1777:θ 1761:† 1743:piecewise 1725:θ 1702:→ 1693:† 1667:θ 1645:† 1637:→ 1628:θ 1588:⊔ 1566:† 1558:⊔ 1194:in F(S), 1132:P-systems 1070:Example 7 947:∗ 936:∧ 928:∗ 769:given by 765:with the 549:hermitian 382:invariant 276:we have ( 211:semigroup 195:semiheaps 114:transpose 45:semigroup 3574:See also 3509:, after 3486:= 0 } = 3191:quotient 2940:, where 1834:if  1792:if  1741:, or in 1681:extended 1612:alphabet 1508:category 1281:, where 1186:For any 1175:For any 1152:For any 1138:P-system 797:Examples 761:) is an 425:matrices 401:instance 318:Examples 264:For all 245:For all 164:reverses 156:alphabet 98:matrices 3663:, p. 33 3557:adjoint 2998:is the 2579:of the 1901:as the 1739:inverse 1474:to its 1449:In the 1444:⁠ 1422:⁠ 1418:⁠ 1396:⁠ 1285:is the 773:⋅ 465:strings 108:). The 96:square 85:is the 4089:  4060:  3993:  3965:  3933:  3908:  3867:  3819:  3681:  3643:  3618:  3121:and a 2581:monoid 1954:being 1620:. Let 1346:′)* = 1297:-class 1164:° and 579:is an 522:)* = ( 388:is an 373:is an 257:*)* = 90:monoid 3597:Notes 3543:is a 2671:from 1616:or a 1362:)* = 1273:* is 1112:** = 1097:) = ( 1031:) = ( 626:). A 587:is a 567:* or 506:) = ( 427:over 416:) of 344:group 342:is a 327:is a 280:)* = 221:* on 217:is a 209:be a 56:group 43:is a 39:or a 4087:ISBN 4058:ISBN 3991:ISBN 3963:ISBN 3931:ISBN 3906:ISBN 3865:ISBN 3817:ISBN 3679:ISBN 3641:ISBN 3616:ISBN 3002:and 1525:The 1420:and 1320:′ = 1181:a°ba 888:and 852:⊆ im 833:and 812:The 745:and 721:* = 717:and 670:and 662:and 646:* = 642:and 598:. A 559:* = 420:-by- 358:* = 205:Let 166:the 154:(an 122:) = 94:real 35:, a 4034:doi 4015:doi 3566:of 3551:on 3539:If 3438:. 3155:or 2692:to 2406:on 2089:on 1905:on 1537:in 1303:in 1265:in 1237:. 1105:). 1023:*)( 880:of 793:*. 781:if 751:ett 697:by 448:on 440:If 369:If 338:If 323:If 272:in 253:, ( 249:in 233:, 110:map 92:of 27:In 4150:: 4114:, 4025:^ 3977:^ 3945:^ 3879:^ 3849:^ 3831:^ 3803:^ 3791:^ 3732:^ 3702:^ 3570:. 3559:. 3536:. 3502:. 3488:eS 3484:xy 3482:| 3478:∈ 3474:{ 3462:∈ 2647:. 1958:: 1541:: 1533:) 1498:. 1371:. 1352:, 1348:xx 1344:xx 1340:, 1335:= 1329:xx 1326:, 1318:xx 1269:, 1196:ab 1190:, 1162:aa 1128:. 1118:xx 1116:= 1101:, 1093:, 1089:)( 1085:, 1077:, 1043:*) 1041:xx 1039:)( 1021:xx 1011:xx 1009:= 990:, 967:. 864:= 860:∩ 847:im 841:≤ 809:. 791:tt 789:= 779:st 777:= 749:= 743:et 741:= 733:≤ 727:tt 723:ss 719:ss 711:ss 709:= 701:≤ 690:. 688:fe 686:= 680:ef 678:= 664:ss 654:, 638:= 636:ee 614:= 608:ss 565:xx 526:, 518:, 510:, 502:, 498:)( 494:, 486:× 474:A 350:→ 303:. 288:*. 278:xy 268:, 237:↦ 229:→ 197:. 186:. 136:AA 120:AB 4137:. 4040:. 4036:: 4017:: 3999:. 3971:. 3939:. 3914:. 3873:. 3825:. 3687:. 3649:. 3624:. 3553:H 3541:H 3500:x 3496:e 3490:. 3480:S 3476:y 3468:e 3464:S 3460:x 3445:) 3441:( 3409:X 3376:= 3373:) 3370:( 3350:} 3347:X 3341:x 3338:: 3335:) 3329:, 3320:x 3316:x 3313:( 3310:{ 3287:= 3284:( 3281:) 3278:= 3275:) 3272:( 3244:} 3241:Y 3235:y 3232:: 3229:) 3223:, 3214:y 3210:y 3207:( 3204:{ 3173:x 3164:x 3137:x 3133:x 3092:) 3082:X 3075:X 3072:( 3042:+ 3038:) 3028:X 3021:X 3018:( 2984:+ 2980:) 2970:X 2963:X 2960:( 2954:X 2951:: 2912:= 2889:S 2881:+ 2877:) 2867:X 2860:X 2857:( 2854:: 2821:S 2815:X 2812:: 2788:S 2757:Y 2733:+ 2729:Y 2701:X 2679:X 2628:= 2591:Y 2539:} 2533:{ 2525:+ 2521:Y 2517:= 2508:Y 2481:+ 2477:Y 2419:X 2408:X 2361:+ 2357:) 2347:X 2340:X 2337:( 2314:+ 2310:Y 2282:. 2272:1 2268:w 2257:2 2253:w 2239:1 2233:k 2229:w 2218:k 2214:w 2210:= 2201:w 2174:+ 2170:Y 2147:+ 2143:Y 2134:+ 2130:Y 2126:: 2097:Y 2054:. 2051:Y 2043:i 2039:w 2016:+ 2012:Y 2003:k 1999:w 1990:2 1986:w 1980:1 1976:w 1972:= 1969:w 1939:+ 1935:Y 1913:Y 1886:+ 1882:Y 1845:X 1838:y 1828:) 1825:y 1822:( 1817:1 1802:X 1796:y 1786:) 1783:y 1780:( 1771:{ 1766:= 1757:y 1705:Y 1699:Y 1696:: 1641:X 1634:X 1631:: 1607:Y 1562:X 1555:X 1552:= 1549:Y 1496:A 1492:C 1490:( 1487:n 1483:M 1479:A 1472:A 1468:n 1464:C 1462:( 1459:n 1455:M 1431:C 1405:R 1385:x 1381:x 1377:x 1368:x 1366:′ 1364:x 1360:x 1358:′ 1356:x 1354:( 1350:′ 1342:( 1337:x 1333:x 1331:′ 1324:′ 1322:x 1316:′ 1314:x 1309:x 1305:S 1301:x 1295:L 1290:H 1283:H 1279:x 1275:H 1271:x 1267:S 1263:x 1255:S 1244:) 1240:( 1192:b 1188:a 1177:a 1170:a 1168:° 1166:a 1158:a 1154:a 1146:a 1142:a 1122:x 1120:* 1114:x 1110:x 1103:b 1099:a 1095:b 1091:b 1087:a 1083:a 1079:x 1075:x 1073:( 1066:x 1062:x 1037:x 1035:* 1033:x 1029:x 1027:* 1025:x 1019:( 1015:x 1013:* 1007:x 955:B 952:) 943:B 939:B 933:A 924:A 920:( 917:A 907:C 905:( 902:n 898:M 890:F 886:E 882:V 874:V 870:J 866:V 862:F 858:E 854:F 850:E 843:F 839:E 835:F 831:E 827:C 825:( 822:n 818:M 787:s 785:* 783:s 775:t 771:s 759:S 755:e 747:e 739:s 735:t 731:s 725:* 715:t 713:* 707:s 703:t 699:s 684:e 676:e 672:f 668:e 660:s 658:* 656:s 652:s 648:e 644:e 640:e 632:e 624:S 620:S 616:s 612:s 610:* 604:s 585:S 577:S 573:x 571:* 569:x 561:x 557:x 545:x 528:a 524:b 520:b 516:a 512:d 508:a 504:d 500:c 496:b 492:a 488:A 484:A 480:A 450:X 442:X 430:C 422:n 418:n 414:C 412:( 409:n 405:M 371:S 360:x 356:x 352:S 348:S 340:S 325:S 294:S 286:x 284:* 282:y 274:S 270:y 266:x 261:. 259:x 255:x 251:S 247:x 239:x 235:x 231:S 227:S 223:S 215:S 207:S 127:A 124:B 118:( 102:n 20:)

Index

Free monoid with involution
mathematics
abstract algebra
semigroup
involutive
anti-automorphism
group
unary operator
Uniqueness
linear algebra
multiplicative
monoid
real
matrices
full linear monoid
map
transpose
general linear group
diagonal matrix
formal language
free semigroup
nonempty set
alphabet
concatenation
reverses
linear order
set theory
binary relations
converse relation
composition of relations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.