Knowledge (XXG)

Frequency multiplier

Source 📝

897:, effectively resulting in a multiplier with both whole number and fractional component. Such a multiplier is called a fractional-N synthesizer after its fractional component. Fractional-N synthesizers provide an effective means of achieving fine frequency resolution with lower values of N, allowing loop architectures with tens of thousands of times less phase noise than alternative designs with lower reference frequencies and higher integer N values. They also allow a faster settling time because of their higher reference frequencies, allowing wider closed and open loop bandwidths. 838:, which can provide a high Q and narrow bandpass filtering function. The inherent square-law nonlinearity of the voltage-to-force transfer function of a cantilever resonator's capacitive transducer can be employed for the realization of frequency doubling effect. Due to the low-loss attribute (or equivalently, a high Q) offered by MEMS devices, improved circuit performance can be expected from a micromechanical frequency doubler than semiconductor devices utilized for the same task. 670:. The ideal (but impractical) impulse train generates an infinite number of (weak) harmonics. In practice, an impulse train generated by a monostable circuit will have many usable harmonics. YIG multipliers using step recovery diodes may, for example, take an input frequency of 1 to 2 GHz and produce outputs up to 18 GHz. Sometimes the frequency multiplier circuit will adjust the width of the impulses to improve conversion efficiency for a specific harmonic. 683: 66: 25: 168: 877:
voltage is fed to the VCO to adjust the frequency. This adjustment increases the frequency as the phase of the VCO's signal lags that of the reference signal and decreases the frequency as the lag decreases (or lead increases). The VCO will stabilize at the desired frequency multiple. This type of PLL is a type of
807:
Frequency multipliers use circuits tuned to a harmonic of the input frequency. Non-linear elements such as diodes may be added to enhance the production of harmonic frequencies. Since the power in the harmonics declines rapidly, usually a frequency multiplier is tuned to only a small multiple (twice,
663:. A full wave rectifier, for example, is good for making a doubler. To produce a times-3 multiplier, the original signal may be input to an amplifier that is over driven to produce nearly a square wave. This signal is high in 3rd order harmonics and can be filtered to produce the desired x3 outcome. 658:
From a conversion efficiency standpoint, the nonlinear circuit should maximize the coefficient for the desired harmonic and minimize the others. Consequently, the transcribing function is often specially chosen. Easy choices are to use an even function to generate even harmonics or an odd function
876:
by the multiplication factor. The divided signal and the reference frequency are fed into a phase comparator. The output of the phase comparator is a voltage that is proportional to the phase difference. After passing through a low pass filter and being converted to the proper voltage range, this
726:
Efficiently generating power becomes more important at high power levels. Linear Class A amplifiers are at best 25 percent efficient. Push-pull Class B amplifiers are at best 50 percent efficient. The basic problem is the amplifying element is dissipating power. Switching Class C amplifiers are
799:) produced by the nonlinear device drops off rapidly at the higher harmonics, so most frequency multipliers just double or triple the frequency, and multiplication by higher factors is accomplished by cascading doubler and tripler stages. 815:
Since the tuned circuits have a limited bandwidth, if the base frequency is changed significantly (more than one percent or so), the multiplier stages may have to be adjusted; this can take significant time if there are many stages.
646: 755:
that is tuned with a magnetic field. The step recovery diode impulse generator is driven at a subharmonic of the desired output frequency. An electromagnet then tunes the YIG filter to select the desired harmonic.
516: 889:
In some PLLs the reference frequency may also be divided by an integer multiple before being input to the phase comparator. This allows the synthesis of frequencies that are N/M times the reference frequency.
285:
circuits. It can be more economical to develop a lower frequency signal with lower power and less expensive devices, and then use a frequency multiplier chain to generate an output frequency in the
384: 1173:
Wang, Zhenxing; Zhang, Zhiyong; Xu, Huilong; Ding, Li; Wang, Sheng; Peng, Lian-Mao (2010). "A high-performance top-gate graphene field-effect transistor based frequency doubler".
1208:
Wang, Zhenxing; Liang, Shibo; Zhang, Zhiyong; Liu, Honggang; Zhong, Hua; Ye, Lin-Hui; Wang, Sheng; Zhou, Weiwei; Liu, Jie; Chen, Yabin; Zhang, Jin; Peng, Lian-Mao (2014).
666:
YIG multipliers often want to select an arbitrary harmonic, so they use a stateful distortion circuit that converts the input sine wave into an approximate
538: 193: 83: 38: 988: 856:
can be used for designing frequency multiplier circuits. Graphene can work over a large frequency range due to its unique characteristics.
427: 931: 229: 211: 149: 52: 130: 651:
So a frequency multiplier can be built from a nonlinear electronic component which generates a series of harmonics, followed by a
955: 102: 1307: 872:(VCO) is initially tuned roughly to the range of the desired frequency multiple. The signal from the VCO is divided down using 835: 825: 87: 109: 869: 1114: 791:
or transistors) operate nonlinearly and create harmonics, so an amplifier stage can be made a multiplier by tuning the
183: 116: 1021:
Basu, Joydeep; Bhattacharyya, Tarun K. (2013). "Microelectromechanical system cantilever-based frequency doublers".
727:
nonlinear, but they can be better than 50 percent efficient because an ideal switch does not dissipate any power.
528:
represent the generated harmonics. The Fourier coefficients are given by integrating over the fundamental period
76: 1210:"Scalable Fabrication of Ambipolar Transistors and Radio-Frequency Circuits Using Aligned Carbon Nanotube Arrays" 274:
selects the desired harmonic frequency and removes the unwanted fundamental and other harmonics from the output.
98: 44: 909:
of the fractional-N synthesizer. This is done to shrink sidebands created by periodic changes of an integer-N
270:
circuit that distorts the input signal and consequently generates harmonics of the input signal. A subsequent
397:, the output is still a sine wave (but may acquire a phase shift). However, if the sine wave is applied to a 329: 893:
This can be accomplished in a different manner by periodically changing the integer value of an integer-N
660: 812:
are inserted in a chain of frequency multipliers to ensure adequate signal level at the final frequency.
878: 278: 1264: 1221: 1182: 1129: 853: 780: 730:
A clever design can use the nonlinear Class C amplifier for both gain and as a frequency multiplier.
298: 294: 255: 189: 849:
based FETs have also been employed for frequency doubling with more than 90% converting efficiency.
178: 741: 1209: 123: 1284: 1245: 1155: 1095: 1048: 1030: 997: 796: 251: 1237: 1087: 927: 910: 906: 894: 873: 865: 398: 1276: 1229: 1190: 1145: 1137: 1079: 1040: 305: 747:
Microwave generators may use a step recovery diode impulse generator followed by a tunable
772: 652: 290: 271: 308:. The nonlinear distortion in crystals can be used to generate harmonics of laser light. 1225: 1186: 1133: 960: 414: 390: 282: 267: 682: 1301: 792: 1288: 1249: 1159: 1099: 1052: 788: 738:
Generating a large number of useful harmonics requires a fast nonlinear device.
243: 65: 1280: 1083: 1067: 942: 936: 828: 776: 752: 748: 667: 641:{\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{T}x(t)\,e^{-j2\pi kt/T}\,dt} 1141: 1044: 868:(PLL) uses a reference frequency to generate a multiple of that frequency. A 831: 809: 394: 317: 286: 259: 1241: 1233: 1091: 297:, survive the nonlinear distortion without ill effect (but schemes such as 846: 402: 263: 1150: 795:
at the output to a multiple of the input frequency. Usually the power (
765: 655:
which passes one of the harmonics to the output and blocks the others.
266:(multiple) of its input frequency. Frequency multipliers consist of a 1194: 1072:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
511:{\displaystyle x(t)=\sum _{k=-\infty }^{\infty }c_{k}e^{j2\pi kft}.} 1265:"A frequency multiplier using three ambipolar graphene transistors" 1035: 784: 1068:"1.156-GHz self-aligned vibrating micromechanical disk resonator" 905:
A delta sigma synthesizer adds a randomization to programmable-N
834:
is one of the most fundamental and widely studied structures in
937:
Fractional N frequency synthesizer with modulation compensation
677: 161: 59: 18: 808:
three times, or five times) of the input frequency. Usually
787:. In transmitting circuits many of the amplifying devices ( 775:, and some of the same nonlinear devices are used for both: 945:
U.S. Patent 5,224,132, Bar-Giora Goldberg, (1993, June 29)
939:
U.S. Patent 4,686,488, Attenborough, C. (1987, August 11)
1113:
Wang, Han; Nezich, D.; Kong, Jing; Palacios, T. (2009).
1263:
Kabir, Hussain Mohammed Dipu; Salahuddin, S.M. (2017).
694: 1023:
Journal of Intelligent Material Systems and Structures
541: 430: 332: 996:, Fremont, CA: Micro Lambda Wireless, archived from 90:. Unsourced material may be challenged and removed. 640: 510: 378: 943:Programmable fractional-N frequency synthesizer 820:Microelectromechanical (MEMS) frequency doubler 771:Frequency multipliers have much in common with 990:Technology Description: YIG Tuned Oscillators 718:Clipping circuits. Full wave bridge doubler. 413:. The distorted signal can be described by a 8: 1066:Jing Wang; Ren, Z.; Nguyen, C.T.-C. (2004). 978:For example, the old Hewlett Packard 83590A. 405:; frequency components at integer multiples 53:Learn how and when to remove these messages 860:Phase-locked loops with frequency dividers 1149: 1034: 631: 621: 602: 597: 579: 574: 555: 546: 540: 484: 474: 464: 450: 429: 375: 331: 304:Frequency multiplication is also used in 230:Learn how and when to remove this message 212:Learn how and when to remove this message 150:Learn how and when to remove this message 293:range. Some modulation schemes, such as 277:Frequency multipliers are often used in 971: 379:{\displaystyle x(t)=A\sin(2\pi ft)\,} 7: 842:Graphene based frequency multipliers 768:. Regenerative varactors. Penfield. 88:adding citations to reliable sources 401:, the resulting distortion creates 926:, 2nd Ed., John Wiley & Sons, 465: 460: 14: 924:Frequency Synthesis by Phase-lock 389:If the sine wave is applied to a 34:This article has multiple issues. 1115:"Graphene Frequency Multipliers" 956:Heterostructure barrier varactor 722:Class C amplifier and multiplier 681: 661:Even and odd functions#Harmonics 192:has been specified. Please help 166: 64: 23: 75:needs additional citations for 42:or discuss these issues on the 594: 588: 440: 434: 372: 357: 342: 336: 1: 870:voltage controlled oscillator 409:of the fundamental frequency 1122:IEEE Electron Device Letters 393:, such as a non–distortion 1326: 1281:10.1016/j.mejo.2017.10.002 1084:10.1109/TUFFC.2004.1386679 753:yttrium iron garnet sphere 182:to meet Knowledge (XXG)'s 824:An electric-field driven 254:that generates an output 1269:Microelectronics Journal 1142:10.1109/LED.2009.2016443 1045:10.1177/1045389X12461695 885:Fractional-N synthesizer 751:. The YIG filter has a 1175:Applied Physics Letters 922:Egan, William F. 2000. 901:Delta sigma synthesizer 659:for odd harmonics. See 320:has a single frequency 1308:Communication circuits 1234:10.1002/adma.201302793 642: 512: 469: 380: 279:frequency synthesizers 99:"Frequency multiplier" 879:frequency synthesizer 854:ambipolar transistors 643: 513: 446: 381: 742:Step recovery diodes 539: 428: 330: 299:amplitude modulation 295:frequency modulation 248:frequency multiplier 194:improve this article 84:improve this article 1226:2014AdM....26..645W 1187:2010ApPhL..96q3104W 1134:2009IEDL...30..547H 1003:on 23 February 2012 734:Step recovery diode 584: 1214:Advanced Materials 874:frequency dividers 693:. You can help by 638: 570: 508: 376: 252:electronic circuit 16:Electronic circuit 1195:10.1063/1.3413959 1078:(12): 1607–1628. 911:frequency divider 907:frequency divider 895:frequency divider 866:phase-locked loop 764:Resistive loaded 711: 710: 568: 399:nonlinear circuit 240: 239: 232: 222: 221: 214: 184:quality standards 175:This article may 160: 159: 152: 134: 57: 1315: 1293: 1292: 1260: 1254: 1253: 1205: 1199: 1198: 1170: 1164: 1163: 1153: 1119: 1110: 1104: 1103: 1063: 1057: 1056: 1038: 1018: 1012: 1011: 1010: 1008: 1002: 995: 985: 979: 976: 773:frequency mixers 706: 703: 685: 678: 647: 645: 644: 639: 630: 629: 625: 583: 578: 569: 567: 556: 551: 550: 517: 515: 514: 509: 504: 503: 479: 478: 468: 463: 385: 383: 382: 377: 306:nonlinear optics 258:and that output 235: 228: 217: 210: 206: 203: 197: 170: 169: 162: 155: 148: 144: 141: 135: 133: 92: 68: 60: 49: 27: 26: 19: 1325: 1324: 1318: 1317: 1316: 1314: 1313: 1312: 1298: 1297: 1296: 1262: 1261: 1257: 1207: 1206: 1202: 1172: 1171: 1167: 1117: 1112: 1111: 1107: 1065: 1064: 1060: 1020: 1019: 1015: 1006: 1004: 1000: 993: 987: 986: 982: 977: 973: 969: 952: 919: 903: 887: 862: 844: 826:micromechanical 822: 805: 762: 736: 724: 716: 707: 701: 698: 691:needs expansion 676: 653:bandpass filter 598: 560: 542: 537: 536: 526: 480: 470: 426: 425: 328: 327: 314: 291:millimeter wave 272:bandpass filter 236: 225: 224: 223: 218: 207: 201: 198: 187: 171: 167: 156: 145: 139: 136: 93: 91: 81: 69: 28: 24: 17: 12: 11: 5: 1323: 1322: 1319: 1311: 1310: 1300: 1299: 1295: 1294: 1255: 1220:(4): 645–652. 1200: 1181:(17): 173104. 1165: 1128:(5): 547–549. 1105: 1058: 1029:(2): 240–246. 1013: 980: 970: 968: 965: 964: 963: 961:CPU multiplier 958: 951: 948: 947: 946: 940: 934: 918: 917:PLL References 915: 902: 899: 886: 883: 861: 858: 843: 840: 821: 818: 804: 801: 761: 760:Varactor diode 758: 735: 732: 723: 720: 715: 712: 709: 708: 688: 686: 675: 672: 649: 648: 637: 634: 628: 624: 620: 617: 614: 611: 608: 605: 601: 596: 593: 590: 587: 582: 577: 573: 566: 563: 559: 554: 549: 545: 524: 519: 518: 507: 502: 499: 496: 493: 490: 487: 483: 477: 473: 467: 462: 459: 456: 453: 449: 445: 442: 439: 436: 433: 415:Fourier series 391:linear circuit 387: 386: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 313: 310: 283:communications 238: 237: 220: 219: 190:cleanup reason 174: 172: 165: 158: 157: 72: 70: 63: 58: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1321: 1320: 1309: 1306: 1305: 1303: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1204: 1201: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1166: 1161: 1157: 1152: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1116: 1109: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1062: 1059: 1054: 1050: 1046: 1042: 1037: 1032: 1028: 1024: 1017: 1014: 999: 992: 991: 984: 981: 975: 972: 966: 962: 959: 957: 954: 953: 949: 944: 941: 938: 935: 933: 932:0-471-32104-4 929: 925: 921: 920: 916: 914: 912: 908: 900: 898: 896: 891: 884: 882: 880: 875: 871: 867: 859: 857: 855: 852:In fact, all 850: 848: 841: 839: 837: 833: 830: 827: 819: 817: 813: 811: 803:Previous uses 802: 800: 798: 794: 793:tuned circuit 790: 786: 782: 778: 774: 769: 767: 759: 757: 754: 750: 745: 743: 739: 733: 731: 728: 721: 719: 713: 705: 696: 692: 689:This section 687: 684: 680: 679: 673: 671: 669: 668:impulse train 664: 662: 656: 654: 635: 632: 626: 622: 618: 615: 612: 609: 606: 603: 599: 591: 585: 580: 575: 571: 564: 561: 557: 552: 547: 543: 535: 534: 533: 531: 527: 505: 500: 497: 494: 491: 488: 485: 481: 475: 471: 457: 454: 451: 447: 443: 437: 431: 424: 423: 422: 420: 416: 412: 408: 404: 400: 396: 392: 369: 366: 363: 360: 354: 351: 348: 345: 339: 333: 326: 325: 324: 323: 319: 311: 309: 307: 302: 300: 296: 292: 288: 284: 280: 275: 273: 269: 265: 261: 257: 253: 249: 245: 234: 231: 216: 213: 205: 195: 191: 185: 181: 180: 173: 164: 163: 154: 151: 143: 132: 129: 125: 122: 118: 115: 111: 108: 104: 101: –  100: 96: 95:Find sources: 89: 85: 79: 78: 73:This article 71: 67: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 1272: 1268: 1258: 1217: 1213: 1203: 1178: 1174: 1168: 1151:1721.1/54736 1125: 1121: 1108: 1075: 1071: 1061: 1026: 1022: 1016: 1005:, retrieved 998:the original 989: 983: 974: 923: 904: 892: 888: 863: 851: 845: 823: 814: 806: 789:vacuum tubes 779:operated in 770: 763: 746: 740: 737: 729: 725: 717: 699: 695:adding to it 690: 665: 657: 650: 529: 522: 521:The nonzero 520: 418: 410: 406: 388: 321: 315: 303: 276: 247: 241: 226: 208: 199: 176: 146: 137: 127: 120: 113: 106: 94: 82:Please help 77:verification 74: 50: 43: 37: 36:Please help 33: 777:transistors 244:electronics 196:if you can. 967:References 829:cantilever 810:amplifiers 749:YIG filter 110:newspapers 39:improve it 1275:: 12–15. 1036:1210.3491 832:resonator 766:varactors 613:π 604:− 572:∫ 565:π 492:π 466:∞ 461:∞ 458:− 448:∑ 403:harmonics 395:amplifier 364:π 355:⁡ 318:sine wave 301:do not). 287:microwave 268:nonlinear 260:frequency 202:July 2011 140:July 2011 45:talk page 1302:Category 1289:31657795 1250:20376132 1242:24458579 1092:15690722 950:See also 847:Graphene 702:May 2019 674:Circuits 264:harmonic 177:require 1222:Bibcode 1183:Bibcode 1160:9317247 1130:Bibcode 1100:9498440 1053:1266952 781:Class C 316:A pure 179:cleanup 124:scholar 1287:  1248:  1240:  1158:  1098:  1090:  1051:  1007:18 May 930:  785:diodes 312:Theory 256:signal 250:is an 126:  119:  112:  105:  97:  1285:S2CID 1246:S2CID 1156:S2CID 1118:(PDF) 1096:S2CID 1049:S2CID 1031:arXiv 1001:(PDF) 994:(PDF) 714:Diode 262:is a 131:JSTOR 117:books 1238:PMID 1088:PMID 1009:2012 928:ISBN 836:MEMS 797:gain 783:and 281:and 246:, a 103:news 1277:doi 1230:doi 1191:doi 1146:hdl 1138:doi 1080:doi 1041:doi 697:. 417:in 352:sin 289:or 242:In 188:No 86:by 1304:: 1283:. 1273:70 1271:. 1267:. 1244:. 1236:. 1228:. 1218:26 1216:. 1212:. 1189:. 1179:96 1177:. 1154:. 1144:. 1136:. 1126:30 1124:. 1120:. 1094:. 1086:. 1076:51 1074:. 1070:. 1047:. 1039:. 1027:24 1025:. 913:. 881:. 864:A 744:. 532:: 421:. 407:nf 48:. 1291:. 1279:: 1252:. 1232:: 1224:: 1197:. 1193:: 1185:: 1162:. 1148:: 1140:: 1132:: 1102:. 1082:: 1055:. 1043:: 1033:: 704:) 700:( 636:t 633:d 627:T 623:/ 619:t 616:k 610:2 607:j 600:e 595:) 592:t 589:( 586:x 581:T 576:0 562:2 558:1 553:= 548:k 544:c 530:T 525:k 523:c 506:. 501:t 498:f 495:k 489:2 486:j 482:e 476:k 472:c 455:= 452:k 444:= 441:) 438:t 435:( 432:x 419:f 411:f 373:) 370:t 367:f 361:2 358:( 349:A 346:= 343:) 340:t 337:( 334:x 322:f 233:) 227:( 215:) 209:( 204:) 200:( 186:. 153:) 147:( 142:) 138:( 128:· 121:· 114:· 107:· 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Frequency multiplier"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
cleanup
quality standards
cleanup reason
improve this article
Learn how and when to remove this message
Learn how and when to remove this message
electronics
electronic circuit
signal
frequency
harmonic
nonlinear
bandpass filter
frequency synthesizers
communications
microwave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.