Knowledge (XXG)

Fresnel number

Source 📝

375: 359: 383: 25: 571:
the surface wavefront maintains itself nearly flat along its path, which means that no sampling rescaling is requested for the phase measurement. In this case the beam is said to be near field at the observation point and angular spectrum method is adopted for the propagation. On the contrary, once
595:
the surface wavefront gets curvature along the path. In this case a rescaling of the sampling is mandatory for a measurement of the phase preventing aliasing. The beam is said to be far field at the observation point and Fresnel diffraction is adopted for the propagation. Fraunhofer diffraction
528:
This criterion, firstly described by G.N. Lawrence and now adopted in propagation codes like PROPER, allows one to determine the realm of application of near and far field approximations taking into account the actual wavefront surface shape at the observation point, to sample its phase without
596:
returns then to be an asymptotic case that applies only when the input/output propagation distance is large enough to consider the quadratic phase term, within the Fresnel diffraction integral, negligible irrespectively to the actual curvature of the wavefront at the observation point.
488:
is not used in all cases, is that for large propagation distances it burdens a larger computation time than the other methods. Depending on the specific problem, any memory size of computers is too small to solve the problem.
599:
As the figures explain, the Gaussian pilot beam criterion allows describing the diffractive propagation for all the near/far field approximation cases set by the coarse criterion based on Fresnel number.
394:. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the 307:
amplitude, counted from the center to the edge of the aperture, as seen from the observation point (the center of the imaging screen), where a half-period zone is defined so that the wavefront
215: 443: 479: 289: 569: 593: 416:. This approximation works well when at the observation point the distance to the aperture is bigger than the aperture size. This propagation regime corresponds to 329: 267: 241: 386:
Aperture real amplitude as estimated at focus of a half inch perfect lens having Fresnel number equal to 0.01. Adopted wavelength for propagation is 1 μm.
378:
Aperture real amplitude as estimated at focus of a half inch perfect lens having Fresnel number equal to 1. Adopted wavelength for propagation is 1 μm.
548:
and by its comparison with the input/output propagation distance. If the ratio between input/output propagation distance and Rayleigh length returns
448:
Finally, once at the observation point the distance to the aperture is much bigger than the aperture size, propagation becomes well described by
374: 358: 382: 108: 537:
and fixes the best propagation method (among angular spectrum, Fresnel and Fraunhofer diffraction) by looking at the behavior of a
42: 89: 46: 61: 402:. However this criterion does not depend on any actual measurement of the wavefront properties at the observation point. 68: 501:
allowing to define far and near field conditions, consists to measure the actual wavefront surface curvature for an
334:
An equivalent definition is that the Fresnel number is the difference, expressed in half-wavelengths, between the
175: 35: 75: 485: 406: 57: 449: 746:
Krist, J.E. (September 2007). "PROPER: An optical propagation library for IDL". In Kahan, Mark A (ed.).
138: 831: 751: 158: 142: 615: 610: 413: 572:
the ratio between input/output propagation distance and Gaussian pilot beam Rayleigh range yields
767: 635: 502: 419: 16:
Dimensionless number describing the pattern a light beam through an aperture forms on a surface
455: 366:
perfect lens having Fresnel number equal to 100. Adopted wavelength for propagation is 1 
300: 274: 759: 625: 551: 521:– the amount of wavefront curvature is high. This concept applies equivalently close to the 82: 575: 544:
Near/far field approximations are fixed by the analytical calculation of the Gaussian beam
545: 510: 391: 314: 755: 620: 522: 252: 226: 825: 771: 735: 640: 538: 308: 145:
relating to the pattern a beam of light forms on a surface when projected through an
630: 505:. In this case the wavefront is planar at the aperture position, when the beam is 126: 24: 645: 506: 292: 304: 530: 409:
is an exact propagation method. It is applicable to all Fresnel numbers.
162: 146: 763: 244: 122: 517:– the amount of wavefront curvature is low. Outside this distance – 381: 373: 367: 357: 783:(7th Expanded ed.). Cambridge University Press. p. 486. 541:
piloted from the aperture position and the observation position.
363: 412:
A good approximation for the propagation in the near field is
18: 398:. If Fresnel number is larger than 1, the beam is said to be 816: 748:
Proceedings Optical Modeling and Performance Predictions III
513:. In detail, within a certain distance from the aperture – 362:
Aperture real amplitude as estimated at focus of a half
733:
Jenkins, Francis Arthur; White, Harvey Elliott (1957).
578: 554: 458: 422: 317: 277: 255: 229: 178: 676: 674: 331:when moving from one half-period zone to the next. 49:. Unsourced material may be challenged and removed. 734: 587: 563: 473: 437: 323: 283: 261: 235: 209: 269:is the distance of the screen from the aperture 509:, or at its focus when the beam is converging/ 8: 665: 210:{\displaystyle F={\frac {a^{2}}{L\lambda }}} 788:Lawrence, G.N. (1992). "Optical Modeling". 346:distance from the observation point to the 338:distance from the observation point to the 390:The Fresnel number is a useful concept in 577: 553: 457: 452:. This propagation regime corresponds to 421: 316: 276: 254: 228: 191: 185: 177: 165:and hitting a screen, the Fresnel number 109:Learn how and when to remove this message 704: 692: 716: 658: 299:Conceptually, it is the number of half- 805:(3rd ed.). New York: McGraw-Hill. 790:Applied Optics and Optical Engineering 741:(3rd ed.). New York: McGraw-Hill. 680: 7: 750:. Vol. 6675, art. 66750P. 47:adding citations to reliable sources 14: 817:Coyote's Guide to IDL Programming 243:is the characteristic size (e.g. 23: 34:needs additional citations for 803:Introduction to Fourier optics 1: 137:), named after the physicist 779:Born, M.; Wolf, E. (2000). 848: 666:Jenkins & White (1957) 533:. This criterion is named 497:Another criterion called 438:{\displaystyle \ F\sim 1} 127:scalar diffraction theory 474:{\displaystyle \ F\ll 1} 342:of the aperture and the 284:{\displaystyle \lambda } 493:The Gaussian pilot beam 486:angular spectrum method 407:angular spectrum method 801:Goodman, J.W. (2005). 737:Fundamentals of optics 693:Born & Wolf (2000) 589: 565: 564:{\displaystyle \leq 1} 475: 450:Fraunhofer diffraction 439: 387: 379: 371: 325: 285: 263: 237: 211: 590: 588:{\displaystyle >1} 566: 476: 440: 385: 377: 361: 326: 286: 264: 238: 212: 139:Augustin-Jean Fresnel 781:Principles of optics 576: 552: 456: 420: 324:{\displaystyle \pi } 315: 275: 253: 227: 176: 159:electromagnetic wave 143:dimensionless number 43:improve this article 756:2007SPIE.6675E..0PK 616:Fresnel diffraction 611:Fraunhofer distance 535:Gaussian pilot beam 499:Gaussian pilot beam 484:The reason why the 414:Fresnel diffraction 161:passing through an 636:Near and far field 585: 561: 503:unaberrated system 471: 435: 388: 380: 372: 321: 281: 259: 233: 207: 764:10.1117/12.731179 461: 425: 350:of the aperture. 262:{\displaystyle L} 247:) of the aperture 236:{\displaystyle a} 205: 119: 118: 111: 93: 839: 806: 797: 784: 775: 742: 740: 720: 714: 708: 702: 696: 690: 684: 678: 669: 663: 626:Fresnel integral 594: 592: 591: 586: 570: 568: 567: 562: 480: 478: 477: 472: 459: 444: 442: 441: 436: 423: 330: 328: 327: 322: 291:is the incident 290: 288: 287: 282: 268: 266: 265: 260: 242: 240: 239: 234: 216: 214: 213: 208: 206: 204: 196: 195: 186: 136: 125:, in particular 114: 107: 103: 100: 94: 92: 58:"Fresnel number" 51: 27: 19: 847: 846: 842: 841: 840: 838: 837: 836: 822: 821: 813: 800: 787: 778: 745: 732: 729: 724: 723: 715: 711: 705:Lawrence (1992) 703: 699: 691: 687: 679: 672: 664: 660: 655: 650: 606: 574: 573: 550: 549: 546:Rayleigh length 495: 454: 453: 418: 417: 392:physical optics 356: 313: 312: 273: 272: 251: 250: 225: 224: 197: 187: 174: 173: 155: 134: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 845: 843: 835: 834: 824: 823: 820: 819: 812: 811:External links 809: 808: 807: 798: 785: 776: 743: 728: 725: 722: 721: 717:Goodman (2005) 709: 697: 685: 670: 657: 656: 654: 651: 649: 648: 643: 638: 633: 628: 623: 621:Fresnel imager 618: 613: 607: 605: 602: 584: 581: 560: 557: 519:the far field 515:the near field 494: 491: 470: 467: 464: 434: 431: 428: 355: 352: 320: 297: 296: 280: 270: 258: 248: 232: 218: 217: 203: 200: 194: 190: 184: 181: 169:is defined as 154: 151: 131:Fresnel number 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 844: 833: 830: 829: 827: 818: 815: 814: 810: 804: 799: 795: 791: 786: 782: 777: 773: 769: 765: 761: 757: 753: 749: 744: 739: 738: 731: 730: 726: 718: 713: 710: 706: 701: 698: 694: 689: 686: 682: 677: 675: 671: 667: 662: 659: 652: 647: 644: 642: 641:Talbot effect 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 608: 603: 601: 597: 582: 579: 558: 555: 547: 542: 540: 539:Gaussian beam 536: 532: 526: 524: 520: 516: 512: 508: 504: 500: 492: 490: 487: 482: 468: 465: 462: 451: 446: 432: 429: 426: 415: 410: 408: 403: 401: 397: 393: 384: 376: 369: 365: 360: 353: 351: 349: 345: 341: 337: 332: 318: 310: 306: 303:zones in the 302: 294: 278: 271: 256: 249: 246: 230: 223: 222: 221: 201: 198: 192: 188: 182: 179: 172: 171: 170: 168: 164: 160: 152: 150: 148: 144: 140: 132: 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 802: 793: 789: 780: 747: 736: 727:Bibliography 712: 700: 688: 681:Krist (2007) 661: 631:Fresnel zone 598: 543: 534: 527: 518: 514: 498: 496: 483: 447: 411: 404: 399: 395: 389: 347: 343: 339: 335: 333: 298: 219: 166: 156: 130: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 832:Diffraction 354:Application 311:changes by 99:August 2021 653:References 646:Zone plate 507:collimated 400:near field 344:orthogonal 293:wavelength 153:Definition 69:newspapers 772:119742001 556:≤ 511:diverging 466:≪ 430:∼ 396:far field 319:π 305:wavefront 279:λ 202:λ 826:Category 604:See also 531:aliasing 163:aperture 147:aperture 129:, the 752:Bibcode 220:where 157:For an 141:, is a 83:scholar 796:: 125. 770:  460:  424:  348:center 301:period 245:radius 123:optics 85:  78:  71:  64:  56:  768:S2CID 523:focus 336:slant 309:phase 90:JSTOR 76:books 580:> 405:The 364:inch 340:edge 62:news 760:doi 121:In 45:by 828:: 794:11 792:. 766:. 758:. 673:^ 525:. 481:. 445:. 368:μm 149:. 774:. 762:: 754:: 719:. 707:. 695:. 683:. 668:. 583:1 559:1 469:1 463:F 433:1 427:F 370:. 295:. 257:L 231:a 199:L 193:2 189:a 183:= 180:F 167:F 135:F 133:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Fresnel number"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
optics
scalar diffraction theory
Augustin-Jean Fresnel
dimensionless number
aperture
electromagnetic wave
aperture
radius
wavelength
period
wavefront
phase

inch
μm


physical optics
angular spectrum method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.