Knowledge

Linking number

Source 📝

1699: 1218: 1694:{\displaystyle {\begin{aligned}\operatorname {link} (\gamma _{1},\gamma _{2})&={\frac {1}{4\pi }}\oint _{\gamma _{1}}\oint _{\gamma _{2}}{\frac {\mathbf {r} _{1}-\mathbf {r} _{2}}{|\mathbf {r} _{1}-\mathbf {r} _{2}|^{3}}}\cdot (d\mathbf {r} _{1}\times d\mathbf {r} _{2})\\&={\frac {1}{4\pi }}\int _{S^{1}\times S^{1}}{\frac {\det \left({\dot {\gamma }}_{1}(s),{\dot {\gamma }}_{2}(t),\gamma _{1}(s)-\gamma _{2}(t)\right)}{\left|\gamma _{1}(s)-\gamma _{2}(t)\right|^{3}}}\,ds\,dt\end{aligned}}} 724: 310: 4432: 158: 151: 213: 206: 199: 165: 3398: 337: 2186: 4444: 38: 2798: 3368: 1927: 3035:, it is clear that there will be terms describing the self-interaction of the particles, and these are uninteresting since they would be there even in the presence of just one loop. Therefore, we normalize the path integral by a factor precisely cancelling these terms. Going through the algebra, we obtain 2219:
is needed. Therefore, the topological invariance of right hand side ensures that the result of the path integral will be a topological invariant. The only thing left to do is provide an overall normalization factor, and a natural choice will present itself. Since the theory is Gaussian and abelian,
3384:
The Chern-Simons gauge theory lives in 3 spacetime dimensions. More generally, there exists higher dimensional topological quantum field theories. There exists more complicated multi-loop/string-braiding statistics of 4-dimensional gauge theories captured by the link invariants of exotic
1186:
of Γ covers the sphere). Isotopy invariance of the linking number is automatically obtained as the degree is invariant under homotopic maps. Any other regular value would give the same number, so the linking number doesn't depend on any particular link diagram.
2615: 2325: 1067: 2181:{\displaystyle Z=\int {\mathcal {D}}A_{\mu }\exp \left({\frac {ik}{4\pi }}\int d^{3}x\varepsilon ^{\lambda \mu \nu }A_{\lambda }\partial _{\mu }A_{\nu }+i\int _{\gamma _{1}}dx^{\mu }\,A_{\mu }+i\int _{\gamma _{2}}dx^{\mu }\,A_{\mu }\right)} 3170: 2604: 3010: 282:
to a solid torus with a point removed (this can be seen by interpreting 3-space as the 3-sphere with the point at infinity removed, and the 3-sphere as two solid tori glued along the boundary), or the complement can be analyzed
892: 2465: 431: 630: 266:
This fact (that the linking number is the only invariant) is most easily proven by placing one circle in standard position, and then showing that linking number is the only invariant of the other circle. In detail:
3159: 251:, not just any map. However, this added condition does not change the definition of linking number (it does not matter if the curves are required to always be immersions or not), which is an example of an 1877: 1223: 3377:, where the path integral computes topological invariants. This also served as a hint that the nonabelian variant of Chern–Simons theory computes other knot invariants, and it was shown explicitly by 2514: 2793:{\displaystyle A_{\lambda }({\vec {x}})={\frac {1}{2k}}\int d^{3}{\vec {y}}\,{\frac {\varepsilon _{\lambda \mu \nu }\partial ^{\mu }J^{\nu }({\vec {y}})}{|{\vec {x}}-{\vec {y}}|}}} 3703:
Putrov, Pavel; Wang, Juven; Yau, Shing-Tung (September 2017). "Braiding Statistics and Link Invariants of Bosonic/Fermionic Topological Quantum Matter in 2+1 and 3+1 dimensions".
1919: 2368: 546: 504: 2887: 2249: 934: 275:
is clear, since 3-space is contractible and thus all maps into it are homotopic, though the fact that this can be done through immersions requires some geometric argument.
1144: 1117: 713: 673: 2209: 3363:{\displaystyle \Phi ={\frac {1}{4\pi }}\int _{\gamma _{1}}dx^{\lambda }\int _{\gamma _{2}}dy^{\mu }\,{\frac {(x-y)^{\nu }}{|x-y|^{3}}}\varepsilon _{\lambda \mu \nu },} 918: 3464: 1755: 294:(either adding the point at infinity to get a solid torus, or adding the circle to get 3-space, allows one to compute the fundamental group of the desired space). 3033: 2841: 2821: 2522: 2388: 2238: 1804: 1781: 2895: 271:
A single curve is regular homotopic to a standard circle (any knot can be unknotted if the curve is allowed to pass through itself). The fact that it is
1158:
preserving or reversing orientation depending on the sign of the crossing. Thus in order to compute the linking number of the diagram corresponding to
829: 2396: 3530:
is an embedding into three-dimensional space such that every two cycles have zero linking number. The graphs that have a linkless embedding have a
353: 743:
Reversing the orientation of either of the curves negates the linking number, while reversing the orientation of both curves leaves it unchanged.
554: 3809: 4377: 4296: 2843:
field. To get the path integral for the Wilson loops, we substitute for a source describing two particles moving in closed loops, i.e.
3386: 2390:, we can get back the Wilson loops. Since we are in 3 dimensions, we can rewrite the equations of motion in a more familiar notation: 3041: 1812: 241:
Each curve may pass through itself during this motion, but the two curves must remain separated throughout. This is formalized as
3531: 3374: 3843: 1705: 736:
Any two unlinked curves have linking number zero. However, two curves with linking number zero may still be linked (e.g. the
291: 3489:
along the framing vectors. The self-linking number obtained by moving vertically (along the blackboard framing) is known as
3467: 1179: 300:
It is also true that regular homotopy classes are determined by linking number, which requires additional geometric argument.
4286: 4291: 4162: 3781: 3763: 3863: 3925: 3776: 3758: 814: 3931: 3995: 3990: 3802: 2476: 4470: 2212: 69:. Intuitively, the linking number represents the number of times that each curve winds around the other. In 4123: 3638:
represent the number of times that the red curve crosses in and out of the region bounded by the blue curve.
747: 246: 66: 58: 4448: 4337: 4306: 793: 3753: 4167: 2823:
is now easily done by substituting this into the Chern–Simons action to get an effective action for the
1889: 1883: 105: 2333: 3496:
The linking number is defined for two linked circles; given three or more circles, one can define the
2320:{\displaystyle \varepsilon ^{\lambda \mu \nu }\partial _{\mu }A_{\nu }={\frac {2\pi }{k}}J^{\lambda }} 4436: 4207: 3795: 3771: 3722: 3661: 3607: 3551: 3538: 1721: 1062:{\displaystyle \Gamma (s,t)={\frac {\gamma _{1}(s)-\gamma _{2}(t)}{|\gamma _{1}(s)-\gamma _{2}(t)|}}} 896: 509: 467: 290:
of 3-space minus a circle is the integers, corresponding to linking number. This can be seen via the
89: 1704:
This integral computes the total signed area of the image of the Gauss map (the integrand being the
4244: 4227: 3478: 2846: 1183: 4265: 4212: 3826: 3822: 3712: 3594: 3523: 3504: 3415: 3405:
generalize linking number to links with three or more components, allowing one to prove that the
1122: 1095: 678: 638: 136:
Any two closed curves in space, if allowed to pass through themselves but not each other, can be
101: 343:
The total number of positive crossings minus the total number of negative crossings is equal to
2194: 4362: 4311: 4261: 4217: 4177: 4172: 4090: 3516: 3497: 3402: 797: 754:
of link negates the linking number. The convention for positive linking number is based on a
287: 117: 78: 27:
Numerical invariant that describes the linking of two closed curves in three-dimensional space
1757: 903: 313:
With six positive crossings and two negative crossings, these curves have linking number two.
4397: 4222: 4118: 3853: 3730: 3685: 3669: 3527: 2220:
the path integral can be done simply by solving the theory classically and substituting for
297:
Thus homotopy classes of a curve in 3-space minus a circle are determined by linking number.
242: 121: 3681: 3437: 806:. In this case, the linking number is determined by the homology class of the other curve. 140:
into exactly one of the following standard positions. This determines the linking number:
4475: 4357: 4321: 4256: 4202: 4157: 4150: 4040: 3952: 3835: 3689: 3677: 3535: 3431: 3419: 3406: 2599:{\displaystyle \nabla ^{2}{\vec {A}}=-{\frac {2\pi }{k}}{\vec {\nabla }}\times {\vec {J}}} 2216: 1731: 755: 70: 3726: 3665: 4417: 4316: 4278: 4110: 3985: 3977: 3937: 3563: 3557: 3512: 3018: 3005:{\displaystyle J_{i}^{\mu }(x)=\int _{\gamma _{i}}dx_{i}^{\mu }\delta ^{3}(x-x_{i}(t))} 2826: 2806: 2373: 2223: 1789: 1766: 762: 737: 728: 723: 309: 17: 4464: 4352: 4140: 4133: 4128: 3378: 1205: 1175: 125: 4367: 4347: 4251: 4234: 4030: 3967: 3597:, though in this case we only label crossings that involve both curves of the link. 2471: 1760: 751: 279: 62: 4050: 3889: 3881: 3873: 3649: 1724:, Gauss's integral definition arises when computing the expectation value of the 4382: 4145: 3919: 3899: 3818: 3787: 3508: 3474: 1725: 925: 322: 252: 157: 150: 109: 97: 50: 3381:
that the nonabelian theory gives the invariant known as the Jones polynomial.
2211:
is the antisymmetric symbol. Since the theory is just Gaussian, no ultraviolet
887:{\displaystyle \gamma _{1},\gamma _{2}\colon S^{1}\rightarrow \mathbb {R} ^{3}} 212: 205: 198: 164: 4402: 4387: 4342: 4239: 4192: 4187: 4182: 4012: 3909: 3734: 2460:{\displaystyle {\vec {\nabla }}\times {\vec {A}}={\frac {2\pi }{k}}{\vec {J}}} 82: 42: 31: 1763:. Explicitly, the abelian Chern–Simons action for a gauge potential one-form 4407: 4075: 3610:
if either curve is simple. For example, if the blue curve is simple, then
3397: 3373:
which is simply Gauss's linking integral. This is the simplest example of a
426:{\displaystyle {\text{linking number}}={\frac {n_{1}+n_{2}-n_{3}-n_{4}}{2}}} 336: 318: 3511:
is a far-reaching algebraic generalization of the linking number, with the
1076:, so that orthogonal projection of the link to the plane perpendicular to 464:
represent the number of crossings of each of the four types. The two sums
4392: 4002: 1784: 782: 137: 85:, where linking numbers can also be fractions or just not exist at all). 1092:
under the Gauss map corresponds to a crossing in the link diagram where
625:{\displaystyle {\text{linking number}}\,=\,n_{1}-n_{4}\,=\,n_{2}-n_{3}.} 3673: 810: 802: 113: 74: 4412: 4060: 4020: 3590: 3569: 2330:
Here, we have coupled the Chern–Simons field to a source with a term
675:
involves only the undercrossings of the blue curve by the red, while
3717: 548:
are always equal, which leads to the following alternative formula
37: 4301: 3396: 921: 789: 722: 308: 36: 258:(homotopy-principle), meaning that geometry reduces to topology. 4372: 3791: 3154:{\displaystyle Z=\exp {\left({\frac {2\pi i}{k}}\Phi \right)},} 3500:, which are a numerical invariant generalizing linking number. 2370:
in the Lagrangian. Obviously, by substituting the appropriate
3409:
are linked, though any two components have linking number 0.
1971: 1872:{\displaystyle S_{CS}={\frac {k}{4\pi }}\int _{M}A\wedge dA} 1708:
of Γ) and then divides by the area of the sphere (which is 4
335: 3485:
with a new curve obtained by slightly moving the points of
1182:
of the Gauss map (i.e. the signed number of times that the
3554: – Study of curves from a differential point of view 321:
to compute the linking number of two curves from a link
30:"Link number" redirects here. For the logic puzzle, see 81:
of the two curves (this is not true for curves in most
3481:
obtained by computing the linking number of the knot
3440: 3173: 3044: 3021: 2898: 2849: 2829: 2809: 2618: 2525: 2479: 2399: 2376: 2336: 2252: 2226: 2197: 1930: 1892: 1815: 1792: 1769: 1734: 1221: 1154:) is mapped under the Gauss map to a neighborhood of 1125: 1098: 937: 906: 832: 681: 641: 557: 512: 470: 356: 3560: – Homotopy invariant of maps between n-spheres 3466:. Any such link has an associated Gauss map, whose 4330: 4274: 4109: 4011: 3976: 3834: 77:, but may be positive or negative depending on the 3458: 3362: 3153: 3027: 3004: 2881: 2835: 2815: 2792: 2598: 2508: 2459: 2382: 2362: 2319: 2232: 2203: 2180: 1913: 1871: 1798: 1775: 1749: 1693: 1138: 1111: 1061: 912: 886: 707: 667: 624: 540: 498: 425: 826:Given two non-intersecting differentiable curves 537: 495: 1496: 3650:"Quantum field theory and the Jones polynomial" 245:, which further requires that each curve be an 3589:This is the same labeling used to compute the 773:plane is equal to its linking number with the 3803: 1080:gives a link diagram. Observe that a point ( 8: 3015:Since the effective action is quadratic in 2470:Taking the curl of both sides and choosing 788:More generally, if either of the curves is 142: 3810: 3796: 3788: 3470:is a generalization of the linking number. 2509:{\displaystyle \partial ^{\mu }A_{\mu }=0} 1190:This formulation of the linking number of 3716: 3439: 3345: 3332: 3327: 3312: 3304: 3285: 3284: 3278: 3263: 3258: 3248: 3233: 3228: 3209: 3197: 3184: 3172: 3133: 3120: 3092: 3086: 3068: 3055: 3043: 3020: 2984: 2965: 2955: 2950: 2935: 2930: 2908: 2903: 2897: 2873: 2860: 2848: 2828: 2808: 2782: 2771: 2770: 2756: 2755: 2750: 2734: 2733: 2724: 2714: 2698: 2691: 2690: 2679: 2678: 2672: 2650: 2633: 2632: 2623: 2617: 2585: 2584: 2570: 2569: 2554: 2537: 2536: 2530: 2524: 2494: 2484: 2478: 2446: 2445: 2430: 2416: 2415: 2401: 2400: 2398: 2375: 2354: 2344: 2335: 2311: 2292: 2283: 2273: 2257: 2251: 2225: 2196: 2167: 2162: 2156: 2141: 2136: 2120: 2115: 2109: 2094: 2089: 2073: 2063: 2053: 2037: 2024: 1997: 1980: 1970: 1969: 1954: 1941: 1929: 1905: 1901: 1900: 1891: 1851: 1832: 1820: 1814: 1791: 1768: 1733: 1680: 1673: 1665: 1645: 1623: 1592: 1570: 1548: 1537: 1536: 1517: 1506: 1505: 1493: 1485: 1472: 1467: 1448: 1429: 1424: 1411: 1406: 1387: 1382: 1375: 1370: 1360: 1355: 1349: 1341: 1336: 1326: 1321: 1317: 1309: 1304: 1292: 1287: 1268: 1252: 1239: 1222: 1220: 1130: 1124: 1103: 1097: 1051: 1036: 1014: 1005: 988: 966: 959: 936: 905: 878: 874: 873: 863: 850: 837: 831: 699: 686: 680: 659: 646: 640: 613: 600: 595: 591: 585: 572: 567: 563: 558: 556: 536: 530: 517: 511: 494: 488: 475: 469: 411: 398: 385: 372: 365: 357: 355: 96:. It is an important object of study in 1204:enables an explicit formula as a double 813:, the linking number is an example of a 3582: 278:The complement of a standard circle is 2243:The classical equations of motion are 2609:From electrostatics, the solution is 1166:number of times the Gauss map covers 88:The linking number was introduced by 7: 4443: 3515:being the algebraic analogs for the 3572: – Invariant of a knot diagram 821: 333:, according to the following rule: 108:, and has numerous applications in 3387:topological quantum field theories 3174: 3110: 2711: 2572: 2527: 2481: 2403: 2270: 2060: 1914:{\displaystyle M=\mathbb {R} ^{3}} 938: 907: 73:, the linking number is always an 61:that describes the linking of two 25: 2363:{\displaystyle -J_{\mu }A^{\mu }} 1072:Pick a point in the unit sphere, 715:involves only the overcrossings. 4442: 4431: 4430: 3532:forbidden minor characterization 3375:topological quantum field theory 2803:The path integral for arbitrary 1425: 1407: 1371: 1356: 1337: 1322: 211: 204: 197: 163: 156: 149: 1882:We are interested in doing the 781:-axis as a closed curve in the 541:{\displaystyle n_{2}+n_{4}\,\!} 499:{\displaystyle n_{1}+n_{3}\,\!} 4297:Dowker–Thistlethwaite notation 3491:Kauffman's self-linking number 3328: 3313: 3301: 3288: 3203: 3177: 3139: 3113: 3074: 3048: 2999: 2996: 2990: 2971: 2920: 2914: 2783: 2776: 2761: 2751: 2745: 2739: 2730: 2684: 2644: 2638: 2629: 2590: 2575: 2542: 2451: 2421: 2406: 1960: 1934: 1744: 1738: 1657: 1651: 1635: 1629: 1604: 1598: 1582: 1576: 1560: 1554: 1529: 1523: 1435: 1399: 1383: 1350: 1258: 1232: 1052: 1048: 1042: 1026: 1020: 1006: 1000: 994: 978: 972: 953: 941: 869: 347:the linking number. That is: 41:The two curves of this (2, 8)- 1: 3418:in three dimensions, any two 3414:Just as closed curves can be 2882:{\displaystyle J=J_{1}+J_{2}} 3389:in 4 spacetime dimensions. 1146:. Also, a neighborhood of ( 765:of an oriented curve in the 305:Computing the linking number 3777:Encyclopedia of Mathematics 3759:Encyclopedia of Mathematics 1139:{\displaystyle \gamma _{2}} 1112:{\displaystyle \gamma _{1}} 822:Gauss's integral definition 708:{\displaystyle n_{2}-n_{3}} 668:{\displaystyle n_{1}-n_{4}} 4492: 3770:A.V. Chernavskii (2001) , 3752:A.V. Chernavskii (2001) , 815:topological quantum number 325:. Label each crossing as 292:Seifert–Van Kampen theorem 29: 4426: 4287:Alexander–Briggs notation 3735:10.1016/j.aop.2017.06.019 3566: – Geometric concept 2204:{\displaystyle \epsilon } 1162:it suffices to count the 731:have linking number zero. 45:have linking number four. 2516:, the equations become 1178:, this is precisely the 4378:List of knots and links 3926:Kinoshita–Terasaka knot 1716:In quantum field theory 913:{\displaystyle \Gamma } 777:-axis (thinking of the 719:Properties and examples 67:three-dimensional space 3606:This follows from the 3534:as the graphs with no 3460: 3410: 3364: 3155: 3029: 3006: 2883: 2837: 2817: 2794: 2600: 2510: 2461: 2384: 2364: 2321: 2234: 2205: 2182: 1915: 1873: 1800: 1777: 1751: 1695: 1210:Gauss linking integral 1140: 1113: 1063: 914: 888: 746:The linking number is 732: 727:The two curves of the 709: 669: 626: 542: 500: 427: 340: 314: 46: 18:Gauss linking integral 4168:Finite type invariant 3754:"Linking coefficient" 3461: 3459:{\displaystyle m+n+1} 3400: 3365: 3156: 3030: 3007: 2884: 2838: 2818: 2795: 2601: 2511: 2462: 2385: 2365: 2322: 2235: 2206: 2183: 1916: 1884:Feynman path integral 1874: 1801: 1778: 1752: 1696: 1141: 1114: 1064: 915: 889: 796:of its complement is 726: 710: 670: 627: 543: 501: 428: 339: 312: 106:differential geometry 40: 3608:Jordan curve theorem 3552:Differentiable curve 3438: 3171: 3042: 3019: 2896: 2847: 2827: 2807: 2616: 2523: 2477: 2397: 2374: 2334: 2250: 2224: 2195: 1928: 1890: 1886:for Chern–Simons in 1813: 1790: 1767: 1750:{\displaystyle U(1)} 1732: 1722:quantum field theory 1219: 1123: 1096: 935: 904: 830: 679: 639: 555: 510: 468: 354: 4338:Alexander's theorem 3727:2017AnPhy.384..254P 3666:1989CMaPh.121..351W 3648:Witten, E. (1989). 3479:self-linking number 3430:may be linked in a 2960: 2913: 124:, and the study of 92:in the form of the 3674:10.1007/bf01217730 3524:linkless embedding 3505:algebraic topology 3456: 3411: 3360: 3151: 3025: 3002: 2946: 2899: 2879: 2833: 2813: 2790: 2596: 2506: 2457: 2380: 2360: 2317: 2230: 2201: 2178: 1911: 1869: 1796: 1773: 1747: 1691: 1689: 1136: 1109: 1059: 910: 884: 733: 705: 665: 622: 538: 496: 423: 341: 315: 181:linking number −1 178:linking number −2 102:algebraic topology 47: 4458: 4457: 4312:Reidemeister move 4178:Khovanov homology 4173:Hyperbolic volume 3772:"Writhing number" 3705:Annals of Physics 3517:Milnor invariants 3498:Milnor invariants 3403:Milnor invariants 3339: 3222: 3108: 3028:{\displaystyle J} 2836:{\displaystyle J} 2816:{\displaystyle J} 2788: 2779: 2764: 2742: 2687: 2663: 2641: 2593: 2578: 2567: 2545: 2454: 2443: 2424: 2409: 2383:{\displaystyle J} 2305: 2233:{\displaystyle A} 2015: 1845: 1799:{\displaystyle M} 1776:{\displaystyle A} 1671: 1545: 1514: 1461: 1394: 1281: 1057: 792:, then the first 561: 421: 360: 288:fundamental group 239: 238: 233:linking number 3 230:linking number 2 227:linking number 1 184:linking number 0 118:quantum mechanics 16:(Redirected from 4483: 4446: 4445: 4434: 4433: 4398:Tait conjectures 4101: 4100: 4086: 4085: 4071: 4070: 3963: 3962: 3948: 3947: 3932:(−2,3,7) pretzel 3812: 3805: 3798: 3789: 3784: 3766: 3739: 3738: 3720: 3700: 3694: 3693: 3654:Comm. Math. Phys 3645: 3639: 3604: 3598: 3587: 3528:undirected graph 3465: 3463: 3462: 3457: 3420:closed manifolds 3369: 3367: 3366: 3361: 3356: 3355: 3340: 3338: 3337: 3336: 3331: 3316: 3310: 3309: 3308: 3286: 3283: 3282: 3270: 3269: 3268: 3267: 3253: 3252: 3240: 3239: 3238: 3237: 3223: 3221: 3210: 3202: 3201: 3189: 3188: 3160: 3158: 3157: 3152: 3147: 3146: 3142: 3138: 3137: 3125: 3124: 3109: 3104: 3093: 3073: 3072: 3060: 3059: 3034: 3032: 3031: 3026: 3011: 3009: 3008: 3003: 2989: 2988: 2970: 2969: 2959: 2954: 2942: 2941: 2940: 2939: 2912: 2907: 2888: 2886: 2885: 2880: 2878: 2877: 2865: 2864: 2842: 2840: 2839: 2834: 2822: 2820: 2819: 2814: 2799: 2797: 2796: 2791: 2789: 2787: 2786: 2781: 2780: 2772: 2766: 2765: 2757: 2754: 2748: 2744: 2743: 2735: 2729: 2728: 2719: 2718: 2709: 2708: 2692: 2689: 2688: 2680: 2677: 2676: 2664: 2662: 2651: 2643: 2642: 2634: 2628: 2627: 2605: 2603: 2602: 2597: 2595: 2594: 2586: 2580: 2579: 2571: 2568: 2563: 2555: 2547: 2546: 2538: 2535: 2534: 2515: 2513: 2512: 2507: 2499: 2498: 2489: 2488: 2466: 2464: 2463: 2458: 2456: 2455: 2447: 2444: 2439: 2431: 2426: 2425: 2417: 2411: 2410: 2402: 2389: 2387: 2386: 2381: 2369: 2367: 2366: 2361: 2359: 2358: 2349: 2348: 2326: 2324: 2323: 2318: 2316: 2315: 2306: 2301: 2293: 2288: 2287: 2278: 2277: 2268: 2267: 2239: 2237: 2236: 2231: 2210: 2208: 2207: 2202: 2187: 2185: 2184: 2179: 2177: 2173: 2172: 2171: 2161: 2160: 2148: 2147: 2146: 2145: 2125: 2124: 2114: 2113: 2101: 2100: 2099: 2098: 2078: 2077: 2068: 2067: 2058: 2057: 2048: 2047: 2029: 2028: 2016: 2014: 2006: 1998: 1985: 1984: 1975: 1974: 1959: 1958: 1946: 1945: 1920: 1918: 1917: 1912: 1910: 1909: 1904: 1878: 1876: 1875: 1870: 1856: 1855: 1846: 1844: 1833: 1828: 1827: 1805: 1803: 1802: 1797: 1782: 1780: 1779: 1774: 1756: 1754: 1753: 1748: 1711: 1700: 1698: 1697: 1692: 1690: 1672: 1670: 1669: 1664: 1660: 1650: 1649: 1628: 1627: 1612: 1611: 1607: 1597: 1596: 1575: 1574: 1553: 1552: 1547: 1546: 1538: 1522: 1521: 1516: 1515: 1507: 1494: 1492: 1491: 1490: 1489: 1477: 1476: 1462: 1460: 1449: 1441: 1434: 1433: 1428: 1416: 1415: 1410: 1395: 1393: 1392: 1391: 1386: 1380: 1379: 1374: 1365: 1364: 1359: 1353: 1347: 1346: 1345: 1340: 1331: 1330: 1325: 1318: 1316: 1315: 1314: 1313: 1299: 1298: 1297: 1296: 1282: 1280: 1269: 1257: 1256: 1244: 1243: 1145: 1143: 1142: 1137: 1135: 1134: 1118: 1116: 1115: 1110: 1108: 1107: 1068: 1066: 1065: 1060: 1058: 1056: 1055: 1041: 1040: 1019: 1018: 1009: 1003: 993: 992: 971: 970: 960: 919: 917: 916: 911: 893: 891: 890: 885: 883: 882: 877: 868: 867: 855: 854: 842: 841: 714: 712: 711: 706: 704: 703: 691: 690: 674: 672: 671: 666: 664: 663: 651: 650: 631: 629: 628: 623: 618: 617: 605: 604: 590: 589: 577: 576: 562: 559: 547: 545: 544: 539: 535: 534: 522: 521: 505: 503: 502: 497: 493: 492: 480: 479: 432: 430: 429: 424: 422: 417: 416: 415: 403: 402: 390: 389: 377: 376: 366: 361: 358: 243:regular homotopy 215: 208: 201: 167: 160: 153: 143: 126:DNA supercoiling 122:electromagnetism 94:linking integral 21: 4491: 4490: 4486: 4485: 4484: 4482: 4481: 4480: 4471:Knot invariants 4461: 4460: 4459: 4454: 4422: 4326: 4292:Conway notation 4276: 4270: 4257:Tricolorability 4105: 4099: 4096: 4095: 4094: 4084: 4081: 4080: 4079: 4069: 4066: 4065: 4064: 4056: 4046: 4036: 4026: 4007: 3986:Composite knots 3972: 3961: 3958: 3957: 3956: 3953:Borromean rings 3946: 3943: 3942: 3941: 3915: 3905: 3895: 3885: 3877: 3869: 3859: 3849: 3830: 3816: 3769: 3751: 3748: 3743: 3742: 3702: 3701: 3697: 3647: 3646: 3642: 3637: 3630: 3623: 3616: 3605: 3601: 3588: 3584: 3579: 3548: 3536:Petersen family 3513:Massey products 3436: 3435: 3432:Euclidean space 3407:Borromean rings 3395: 3393:Generalizations 3341: 3326: 3311: 3300: 3287: 3274: 3259: 3254: 3244: 3229: 3224: 3214: 3193: 3180: 3169: 3168: 3129: 3116: 3094: 3091: 3087: 3064: 3051: 3040: 3039: 3017: 3016: 2980: 2961: 2931: 2926: 2894: 2893: 2869: 2856: 2845: 2844: 2825: 2824: 2805: 2804: 2749: 2720: 2710: 2694: 2693: 2668: 2655: 2619: 2614: 2613: 2556: 2526: 2521: 2520: 2490: 2480: 2475: 2474: 2432: 2395: 2394: 2372: 2371: 2350: 2340: 2332: 2331: 2307: 2294: 2279: 2269: 2253: 2248: 2247: 2222: 2221: 2217:renormalization 2193: 2192: 2163: 2152: 2137: 2132: 2116: 2105: 2090: 2085: 2069: 2059: 2049: 2033: 2020: 2007: 1999: 1996: 1992: 1976: 1950: 1937: 1926: 1925: 1899: 1888: 1887: 1847: 1837: 1816: 1811: 1810: 1788: 1787: 1765: 1764: 1730: 1729: 1718: 1709: 1688: 1687: 1641: 1619: 1618: 1614: 1613: 1588: 1566: 1535: 1504: 1503: 1499: 1495: 1481: 1468: 1463: 1453: 1439: 1438: 1423: 1405: 1381: 1369: 1354: 1348: 1335: 1320: 1319: 1305: 1300: 1288: 1283: 1273: 1261: 1248: 1235: 1217: 1216: 1203: 1196: 1126: 1121: 1120: 1099: 1094: 1093: 1088:) that goes to 1032: 1010: 1004: 984: 962: 961: 933: 932: 902: 901: 872: 859: 846: 833: 828: 827: 824: 756:right-hand rule 721: 695: 682: 677: 676: 655: 642: 637: 636: 609: 596: 581: 568: 553: 552: 526: 513: 508: 507: 484: 471: 466: 465: 463: 456: 449: 442: 407: 394: 381: 368: 367: 352: 351: 307: 264: 134: 71:Euclidean space 57:is a numerical 35: 28: 23: 22: 15: 12: 11: 5: 4489: 4487: 4479: 4478: 4473: 4463: 4462: 4456: 4455: 4453: 4452: 4440: 4427: 4424: 4423: 4421: 4420: 4418:Surgery theory 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4370: 4365: 4360: 4355: 4350: 4345: 4340: 4334: 4332: 4328: 4327: 4325: 4324: 4319: 4317:Skein relation 4314: 4309: 4304: 4299: 4294: 4289: 4283: 4281: 4272: 4271: 4269: 4268: 4262:Unknotting no. 4259: 4254: 4249: 4248: 4247: 4237: 4232: 4231: 4230: 4225: 4220: 4215: 4210: 4200: 4195: 4190: 4185: 4180: 4175: 4170: 4165: 4160: 4155: 4154: 4153: 4143: 4138: 4137: 4136: 4126: 4121: 4115: 4113: 4107: 4106: 4104: 4103: 4097: 4088: 4082: 4073: 4067: 4058: 4054: 4048: 4044: 4038: 4034: 4028: 4024: 4017: 4015: 4009: 4008: 4006: 4005: 4000: 3999: 3998: 3993: 3982: 3980: 3974: 3973: 3971: 3970: 3965: 3959: 3950: 3944: 3935: 3929: 3923: 3917: 3913: 3907: 3903: 3897: 3893: 3887: 3883: 3879: 3875: 3871: 3867: 3861: 3857: 3851: 3847: 3840: 3838: 3832: 3831: 3817: 3815: 3814: 3807: 3800: 3792: 3786: 3785: 3767: 3747: 3744: 3741: 3740: 3695: 3660:(3): 351–399. 3640: 3635: 3628: 3621: 3614: 3599: 3581: 3580: 3578: 3575: 3574: 3573: 3567: 3564:Kissing number 3561: 3558:Hopf invariant 3555: 3547: 3544: 3543: 3542: 3520: 3501: 3494: 3471: 3455: 3452: 3449: 3446: 3443: 3422:of dimensions 3394: 3391: 3371: 3370: 3359: 3354: 3351: 3348: 3344: 3335: 3330: 3325: 3322: 3319: 3315: 3307: 3303: 3299: 3296: 3293: 3290: 3281: 3277: 3273: 3266: 3262: 3257: 3251: 3247: 3243: 3236: 3232: 3227: 3220: 3217: 3213: 3208: 3205: 3200: 3196: 3192: 3187: 3183: 3179: 3176: 3162: 3161: 3150: 3145: 3141: 3136: 3132: 3128: 3123: 3119: 3115: 3112: 3107: 3103: 3100: 3097: 3090: 3085: 3082: 3079: 3076: 3071: 3067: 3063: 3058: 3054: 3050: 3047: 3024: 3013: 3012: 3001: 2998: 2995: 2992: 2987: 2983: 2979: 2976: 2973: 2968: 2964: 2958: 2953: 2949: 2945: 2938: 2934: 2929: 2925: 2922: 2919: 2916: 2911: 2906: 2902: 2876: 2872: 2868: 2863: 2859: 2855: 2852: 2832: 2812: 2801: 2800: 2785: 2778: 2775: 2769: 2763: 2760: 2753: 2747: 2741: 2738: 2732: 2727: 2723: 2717: 2713: 2707: 2704: 2701: 2697: 2686: 2683: 2675: 2671: 2667: 2661: 2658: 2654: 2649: 2646: 2640: 2637: 2631: 2626: 2622: 2607: 2606: 2592: 2589: 2583: 2577: 2574: 2566: 2562: 2559: 2553: 2550: 2544: 2541: 2533: 2529: 2505: 2502: 2497: 2493: 2487: 2483: 2468: 2467: 2453: 2450: 2442: 2438: 2435: 2429: 2423: 2420: 2414: 2408: 2405: 2379: 2357: 2353: 2347: 2343: 2339: 2328: 2327: 2314: 2310: 2304: 2300: 2297: 2291: 2286: 2282: 2276: 2272: 2266: 2263: 2260: 2256: 2229: 2213:regularization 2200: 2189: 2188: 2176: 2170: 2166: 2159: 2155: 2151: 2144: 2140: 2135: 2131: 2128: 2123: 2119: 2112: 2108: 2104: 2097: 2093: 2088: 2084: 2081: 2076: 2072: 2066: 2062: 2056: 2052: 2046: 2043: 2040: 2036: 2032: 2027: 2023: 2019: 2013: 2010: 2005: 2002: 1995: 1991: 1988: 1983: 1979: 1973: 1968: 1965: 1962: 1957: 1953: 1949: 1944: 1940: 1936: 1933: 1908: 1903: 1898: 1895: 1880: 1879: 1868: 1865: 1862: 1859: 1854: 1850: 1843: 1840: 1836: 1831: 1826: 1823: 1819: 1795: 1772: 1746: 1743: 1740: 1737: 1728:observable in 1717: 1714: 1702: 1701: 1686: 1683: 1679: 1676: 1668: 1663: 1659: 1656: 1653: 1648: 1644: 1640: 1637: 1634: 1631: 1626: 1622: 1617: 1610: 1606: 1603: 1600: 1595: 1591: 1587: 1584: 1581: 1578: 1573: 1569: 1565: 1562: 1559: 1556: 1551: 1544: 1541: 1534: 1531: 1528: 1525: 1520: 1513: 1510: 1502: 1498: 1488: 1484: 1480: 1475: 1471: 1466: 1459: 1456: 1452: 1447: 1444: 1442: 1440: 1437: 1432: 1427: 1422: 1419: 1414: 1409: 1404: 1401: 1398: 1390: 1385: 1378: 1373: 1368: 1363: 1358: 1352: 1344: 1339: 1334: 1329: 1324: 1312: 1308: 1303: 1295: 1291: 1286: 1279: 1276: 1272: 1267: 1264: 1262: 1260: 1255: 1251: 1247: 1242: 1238: 1234: 1231: 1228: 1225: 1224: 1201: 1194: 1133: 1129: 1106: 1102: 1070: 1069: 1054: 1050: 1047: 1044: 1039: 1035: 1031: 1028: 1025: 1022: 1017: 1013: 1008: 1002: 999: 996: 991: 987: 983: 980: 977: 974: 969: 965: 958: 955: 952: 949: 946: 943: 940: 909: 881: 876: 871: 866: 862: 858: 853: 849: 845: 840: 836: 823: 820: 819: 818: 807: 794:homology group 786: 763:winding number 759: 744: 741: 738:Whitehead link 729:Whitehead link 720: 717: 702: 698: 694: 689: 685: 662: 658: 654: 649: 645: 633: 632: 621: 616: 612: 608: 603: 599: 594: 588: 584: 580: 575: 571: 566: 560:linking number 533: 529: 525: 520: 516: 491: 487: 483: 478: 474: 461: 454: 447: 440: 434: 433: 420: 414: 410: 406: 401: 397: 393: 388: 384: 380: 375: 371: 364: 359:linking number 306: 303: 302: 301: 298: 295: 284: 276: 263: 260: 237: 236: 234: 231: 228: 225: 223: 220: 219: 216: 209: 202: 195: 193: 190: 189: 187: 185: 182: 179: 176: 173: 172: 170: 168: 161: 154: 147: 133: 130: 55:linking number 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4488: 4477: 4474: 4472: 4469: 4468: 4466: 4451: 4450: 4441: 4439: 4438: 4429: 4428: 4425: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4369: 4366: 4364: 4361: 4359: 4356: 4354: 4353:Conway sphere 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4335: 4333: 4329: 4323: 4320: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4284: 4282: 4280: 4273: 4267: 4263: 4260: 4258: 4255: 4253: 4250: 4246: 4243: 4242: 4241: 4238: 4236: 4233: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4205: 4204: 4201: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4152: 4149: 4148: 4147: 4144: 4142: 4139: 4135: 4132: 4131: 4130: 4127: 4125: 4124:Arf invariant 4122: 4120: 4117: 4116: 4114: 4112: 4108: 4092: 4089: 4077: 4074: 4062: 4059: 4052: 4049: 4042: 4039: 4032: 4029: 4022: 4019: 4018: 4016: 4014: 4010: 4004: 4001: 3997: 3994: 3992: 3989: 3988: 3987: 3984: 3983: 3981: 3979: 3975: 3969: 3966: 3954: 3951: 3939: 3936: 3933: 3930: 3927: 3924: 3921: 3918: 3911: 3908: 3901: 3898: 3891: 3888: 3886: 3880: 3878: 3872: 3865: 3862: 3855: 3852: 3845: 3842: 3841: 3839: 3837: 3833: 3828: 3824: 3820: 3813: 3808: 3806: 3801: 3799: 3794: 3793: 3790: 3783: 3779: 3778: 3773: 3768: 3765: 3761: 3760: 3755: 3750: 3749: 3745: 3736: 3732: 3728: 3724: 3719: 3714: 3710: 3706: 3699: 3696: 3691: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3644: 3641: 3634: 3631: +  3627: 3620: 3617: +  3613: 3609: 3603: 3600: 3596: 3592: 3586: 3583: 3576: 3571: 3568: 3565: 3562: 3559: 3556: 3553: 3550: 3549: 3545: 3540: 3537: 3533: 3529: 3525: 3521: 3518: 3514: 3510: 3506: 3502: 3499: 3495: 3492: 3488: 3484: 3480: 3476: 3472: 3469: 3453: 3450: 3447: 3444: 3441: 3434:of dimension 3433: 3429: 3425: 3421: 3417: 3413: 3412: 3408: 3404: 3399: 3392: 3390: 3388: 3382: 3380: 3379:Edward Witten 3376: 3357: 3352: 3349: 3346: 3342: 3333: 3323: 3320: 3317: 3305: 3297: 3294: 3291: 3279: 3275: 3271: 3264: 3260: 3255: 3249: 3245: 3241: 3234: 3230: 3225: 3218: 3215: 3211: 3206: 3198: 3194: 3190: 3185: 3181: 3167: 3166: 3165: 3148: 3143: 3134: 3130: 3126: 3121: 3117: 3105: 3101: 3098: 3095: 3088: 3083: 3080: 3077: 3069: 3065: 3061: 3056: 3052: 3045: 3038: 3037: 3036: 3022: 2993: 2985: 2981: 2977: 2974: 2966: 2962: 2956: 2951: 2947: 2943: 2936: 2932: 2927: 2923: 2917: 2909: 2904: 2900: 2892: 2891: 2890: 2874: 2870: 2866: 2861: 2857: 2853: 2850: 2830: 2810: 2773: 2767: 2758: 2736: 2725: 2721: 2715: 2705: 2702: 2699: 2695: 2681: 2673: 2669: 2665: 2659: 2656: 2652: 2647: 2635: 2624: 2620: 2612: 2611: 2610: 2587: 2581: 2564: 2560: 2557: 2551: 2548: 2539: 2531: 2519: 2518: 2517: 2503: 2500: 2495: 2491: 2485: 2473: 2448: 2440: 2436: 2433: 2427: 2418: 2412: 2393: 2392: 2391: 2377: 2355: 2351: 2345: 2341: 2337: 2312: 2308: 2302: 2298: 2295: 2289: 2284: 2280: 2274: 2264: 2261: 2258: 2254: 2246: 2245: 2244: 2241: 2227: 2218: 2214: 2198: 2174: 2168: 2164: 2157: 2153: 2149: 2142: 2138: 2133: 2129: 2126: 2121: 2117: 2110: 2106: 2102: 2095: 2091: 2086: 2082: 2079: 2074: 2070: 2064: 2054: 2050: 2044: 2041: 2038: 2034: 2030: 2025: 2021: 2017: 2011: 2008: 2003: 2000: 1993: 1989: 1986: 1981: 1977: 1966: 1963: 1955: 1951: 1947: 1942: 1938: 1931: 1924: 1923: 1922: 1906: 1896: 1893: 1885: 1866: 1863: 1860: 1857: 1852: 1848: 1841: 1838: 1834: 1829: 1824: 1821: 1817: 1809: 1808: 1807: 1793: 1786: 1770: 1762: 1759: 1741: 1735: 1727: 1723: 1715: 1713: 1707: 1684: 1681: 1677: 1674: 1666: 1661: 1654: 1646: 1642: 1638: 1632: 1624: 1620: 1615: 1608: 1601: 1593: 1589: 1585: 1579: 1571: 1567: 1563: 1557: 1549: 1542: 1539: 1532: 1526: 1518: 1511: 1508: 1500: 1486: 1482: 1478: 1473: 1469: 1464: 1457: 1454: 1450: 1445: 1443: 1430: 1420: 1417: 1412: 1402: 1396: 1388: 1376: 1366: 1361: 1342: 1332: 1327: 1310: 1306: 1301: 1293: 1289: 1284: 1277: 1274: 1270: 1265: 1263: 1253: 1249: 1245: 1240: 1236: 1229: 1226: 1215: 1214: 1213: 1211: 1207: 1206:line integral 1200: 1193: 1188: 1185: 1181: 1177: 1176:regular value 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1131: 1127: 1104: 1100: 1091: 1087: 1083: 1079: 1075: 1045: 1037: 1033: 1029: 1023: 1015: 1011: 997: 989: 985: 981: 975: 967: 963: 956: 950: 947: 944: 931: 930: 929: 927: 923: 900: 898: 894:, define the 879: 864: 860: 856: 851: 847: 843: 838: 834: 816: 812: 808: 805: 804: 799: 795: 791: 787: 784: 780: 776: 772: 768: 764: 760: 757: 753: 750:: taking the 749: 745: 742: 739: 735: 734: 730: 725: 718: 716: 700: 696: 692: 687: 683: 660: 656: 652: 647: 643: 619: 614: 610: 606: 601: 597: 592: 586: 582: 578: 573: 569: 564: 551: 550: 549: 531: 527: 523: 518: 514: 489: 485: 481: 476: 472: 460: 453: 446: 439: 418: 412: 408: 404: 399: 395: 391: 386: 382: 378: 373: 369: 362: 350: 349: 348: 346: 338: 334: 332: 328: 324: 320: 311: 304: 299: 296: 293: 289: 285: 281: 277: 274: 270: 269: 268: 261: 259: 257: 255: 250: 249: 244: 235: 232: 229: 226: 224: 222: 221: 217: 214: 210: 207: 203: 200: 196: 194: 192: 191: 188: 186: 183: 180: 177: 175: 174: 171: 169: 166: 162: 159: 155: 152: 148: 145: 144: 141: 139: 131: 129: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 86: 84: 80: 76: 72: 68: 64: 63:closed curves 60: 56: 52: 44: 39: 33: 19: 4447: 4435: 4363:Double torus 4348:Braid theory 4197: 4163:Crossing no. 4158:Crosscap no. 3844:Figure-eight 3775: 3757: 3708: 3704: 3698: 3657: 3653: 3643: 3632: 3625: 3618: 3611: 3602: 3585: 3490: 3486: 3482: 3427: 3423: 3383: 3372: 3163: 3014: 2802: 2608: 2472:Lorenz gauge 2469: 2329: 2242: 2190: 1881: 1806:is given by 1761:gauge theory 1758:Chern–Simons 1719: 1703: 1209: 1198: 1191: 1189: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1089: 1085: 1081: 1077: 1073: 1071: 895: 825: 801: 778: 774: 770: 766: 752:mirror image 635:The formula 634: 458: 451: 444: 437: 435: 344: 342: 330: 326: 317:There is an 316: 280:homeomorphic 272: 265: 253: 247: 240: 135: 116:, including 93: 87: 54: 48: 4198:Linking no. 4119:Alternating 3920:Conway knot 3900:Carrick mat 3854:Three-twist 3819:Knot theory 3711:: 254–287. 3509:cup product 3475:framed knot 1783:on a three- 1726:Wilson loop 110:mathematics 98:knot theory 83:3-manifolds 79:orientation 51:mathematics 4465:Categories 4358:Complement 4322:Tabulation 4279:operations 4203:Polynomial 4193:Link group 4188:Knot group 4151:Invertible 4129:Bridge no. 4111:Invariants 4041:Cinquefoil 3910:Perko pair 3836:Hyperbolic 3746:References 3718:1612.09298 3690:0667.57005 798:isomorphic 256:-principle 132:Definition 43:torus link 32:Numberlink 4252:Stick no. 4208:Alexander 4146:Chirality 4091:Solomon's 4051:Septafoil 3978:Satellite 3938:Whitehead 3864:Stevedore 3782:EMS Press 3764:EMS Press 3353:ν 3350:μ 3347:λ 3343:ε 3321:− 3306:ν 3295:− 3280:μ 3261:γ 3256:∫ 3250:λ 3231:γ 3226:∫ 3219:π 3195:γ 3182:γ 3175:Φ 3131:γ 3118:γ 3111:Φ 3099:π 3084:⁡ 3066:γ 3053:γ 2978:− 2963:δ 2957:μ 2933:γ 2928:∫ 2910:μ 2777:→ 2768:− 2762:→ 2740:→ 2726:ν 2716:μ 2712:∂ 2706:ν 2703:μ 2700:λ 2696:ε 2685:→ 2666:∫ 2639:→ 2625:λ 2591:→ 2582:× 2576:→ 2573:∇ 2561:π 2552:− 2543:→ 2528:∇ 2496:μ 2486:μ 2482:∂ 2452:→ 2437:π 2422:→ 2413:× 2407:→ 2404:∇ 2356:μ 2346:μ 2338:− 2313:λ 2299:π 2285:ν 2275:μ 2271:∂ 2265:ν 2262:μ 2259:λ 2255:ε 2199:ϵ 2169:μ 2158:μ 2139:γ 2134:∫ 2122:μ 2111:μ 2092:γ 2087:∫ 2075:ν 2065:μ 2061:∂ 2055:λ 2045:ν 2042:μ 2039:λ 2035:ε 2018:∫ 2012:π 1990:⁡ 1982:μ 1967:∫ 1952:γ 1939:γ 1861:∧ 1849:∫ 1842:π 1643:γ 1639:− 1621:γ 1590:γ 1586:− 1568:γ 1543:˙ 1540:γ 1512:˙ 1509:γ 1479:× 1465:∫ 1458:π 1418:× 1397:⋅ 1367:− 1333:− 1307:γ 1302:∮ 1290:γ 1285:∮ 1278:π 1250:γ 1237:γ 1230:⁡ 1170:. Since 1128:γ 1101:γ 1034:γ 1030:− 1012:γ 986:γ 982:− 964:γ 939:Γ 920:from the 908:Γ 870:→ 857:: 848:γ 835:γ 693:− 653:− 607:− 579:− 405:− 392:− 319:algorithm 283:directly. 273:homotopic 248:immersion 59:invariant 4437:Category 4307:Mutation 4275:Notation 4228:Kauffman 4141:Brunnian 4134:2-bridge 4003:Knot sum 3934:(12n242) 3546:See also 2889:, with 1785:manifold 1706:Jacobian 1119:is over 783:3-sphere 331:negative 327:positive 4449:Commons 4368:Fibered 4266:problem 4235:Pretzel 4213:Bracket 4031:Trefoil 3968:L10a140 3928:(11n42) 3922:(11n34) 3890:Endless 3723:Bibcode 3682:0990772 3662:Bibcode 3164:where 924:to the 811:physics 323:diagram 114:science 75:integer 4476:Curves 4413:Writhe 4383:Ribbon 4218:HOMFLY 4061:Unlink 4021:Unknot 3996:Square 3991:Granny 3688:  3680:  3591:writhe 3570:Writhe 3526:of an 3507:, the 3477:has a 3468:degree 3416:linked 2191:Here, 1208:, the 1180:degree 1164:signed 926:sphere 790:simple 748:chiral 436:where 104:, and 53:, the 4403:Twist 4388:Slice 4343:Berge 4331:Other 4302:Flype 4240:Prime 4223:Jones 4183:Genus 4013:Torus 3827:links 3823:knots 3713:arXiv 3593:of a 3577:Notes 3539:minor 1184:image 1174:is a 922:torus 897:Gauss 345:twice 262:Proof 138:moved 90:Gauss 4408:Wild 4373:Knot 4277:and 4264:and 4245:list 4076:Hopf 3825:and 3709:384C 3624:and 3595:knot 3473:Any 3426:and 3401:The 1921:: 1227:link 1197:and 761:The 506:and 286:The 112:and 4393:Sum 3914:161 3912:(10 3731:doi 3686:Zbl 3670:doi 3658:121 3503:In 3081:exp 2240:. 2215:or 1987:exp 1720:In 1712:). 1497:det 928:by 899:map 809:In 800:to 329:or 65:in 49:In 4467:: 4093:(4 4078:(2 4063:(0 4053:(7 4043:(5 4033:(3 4023:(0 3955:(6 3940:(5 3904:18 3902:(8 3892:(7 3866:(6 3856:(5 3846:(4 3780:, 3774:, 3762:, 3756:, 3729:. 3721:. 3707:. 3684:. 3678:MR 3676:. 3668:. 3656:. 3652:. 3522:A 1212:: 1150:, 1084:, 785:). 740:). 457:, 450:, 443:, 218:⋯ 146:⋯ 128:. 120:, 100:, 4102:) 4098:1 4087:) 4083:1 4072:) 4068:1 4057:) 4055:1 4047:) 4045:1 4037:) 4035:1 4027:) 4025:1 3964:) 3960:2 3949:) 3945:1 3916:) 3906:) 3896:) 3894:4 3884:3 3882:6 3876:2 3874:6 3870:) 3868:1 3860:) 3858:2 3850:) 3848:1 3829:) 3821:( 3811:e 3804:t 3797:v 3737:. 3733:: 3725:: 3715:: 3692:. 3672:: 3664:: 3636:4 3633:n 3629:2 3626:n 3622:3 3619:n 3615:1 3612:n 3541:. 3519:. 3493:. 3487:C 3483:C 3454:1 3451:+ 3448:n 3445:+ 3442:m 3428:n 3424:m 3358:, 3334:3 3329:| 3324:y 3318:x 3314:| 3302:) 3298:y 3292:x 3289:( 3276:y 3272:d 3265:2 3246:x 3242:d 3235:1 3216:4 3212:1 3207:= 3204:] 3199:2 3191:, 3186:1 3178:[ 3149:, 3144:) 3140:] 3135:2 3127:, 3122:1 3114:[ 3106:k 3102:i 3096:2 3089:( 3078:= 3075:] 3070:2 3062:, 3057:1 3049:[ 3046:Z 3023:J 3000:) 2997:) 2994:t 2991:( 2986:i 2982:x 2975:x 2972:( 2967:3 2952:i 2948:x 2944:d 2937:i 2924:= 2921:) 2918:x 2915:( 2905:i 2901:J 2875:2 2871:J 2867:+ 2862:1 2858:J 2854:= 2851:J 2831:J 2811:J 2784:| 2774:y 2759:x 2752:| 2746:) 2737:y 2731:( 2722:J 2682:y 2674:3 2670:d 2660:k 2657:2 2653:1 2648:= 2645:) 2636:x 2630:( 2621:A 2588:J 2565:k 2558:2 2549:= 2540:A 2532:2 2504:0 2501:= 2492:A 2449:J 2441:k 2434:2 2428:= 2419:A 2378:J 2352:A 2342:J 2309:J 2303:k 2296:2 2290:= 2281:A 2228:A 2175:) 2165:A 2154:x 2150:d 2143:2 2130:i 2127:+ 2118:A 2107:x 2103:d 2096:1 2083:i 2080:+ 2071:A 2051:A 2031:x 2026:3 2022:d 2009:4 2004:k 2001:i 1994:( 1978:A 1972:D 1964:= 1961:] 1956:2 1948:, 1943:1 1935:[ 1932:Z 1907:3 1902:R 1897:= 1894:M 1867:A 1864:d 1858:A 1853:M 1839:4 1835:k 1830:= 1825:S 1822:C 1818:S 1794:M 1771:A 1745:) 1742:1 1739:( 1736:U 1710:π 1685:t 1682:d 1678:s 1675:d 1667:3 1662:| 1658:) 1655:t 1652:( 1647:2 1636:) 1633:s 1630:( 1625:1 1616:| 1609:) 1605:) 1602:t 1599:( 1594:2 1583:) 1580:s 1577:( 1572:1 1564:, 1561:) 1558:t 1555:( 1550:2 1533:, 1530:) 1527:s 1524:( 1519:1 1501:( 1487:1 1483:S 1474:1 1470:S 1455:4 1451:1 1446:= 1436:) 1431:2 1426:r 1421:d 1413:1 1408:r 1403:d 1400:( 1389:3 1384:| 1377:2 1372:r 1362:1 1357:r 1351:| 1343:2 1338:r 1328:1 1323:r 1311:2 1294:1 1275:4 1271:1 1266:= 1259:) 1254:2 1246:, 1241:1 1233:( 1202:2 1199:γ 1195:1 1192:γ 1172:v 1168:v 1160:v 1156:v 1152:t 1148:s 1132:2 1105:1 1090:v 1086:t 1082:s 1078:v 1074:v 1053:| 1049:) 1046:t 1043:( 1038:2 1027:) 1024:s 1021:( 1016:1 1007:| 1001:) 998:t 995:( 990:2 979:) 976:s 973:( 968:1 957:= 954:) 951:t 948:, 945:s 942:( 880:3 875:R 865:1 861:S 852:2 844:, 839:1 817:. 803:Z 779:z 775:z 771:y 769:- 767:x 758:. 701:3 697:n 688:2 684:n 661:4 657:n 648:1 644:n 620:. 615:3 611:n 602:2 598:n 593:= 587:4 583:n 574:1 570:n 565:= 532:4 528:n 524:+ 519:2 515:n 490:3 486:n 482:+ 477:1 473:n 462:4 459:n 455:3 452:n 448:2 445:n 441:1 438:n 419:2 413:4 409:n 400:3 396:n 387:2 383:n 379:+ 374:1 370:n 363:= 254:h 34:. 20:)

Index

Gauss linking integral
Numberlink

torus link
mathematics
invariant
closed curves
three-dimensional space
Euclidean space
integer
orientation
3-manifolds
Gauss
knot theory
algebraic topology
differential geometry
mathematics
science
quantum mechanics
electromagnetism
DNA supercoiling
moved






regular homotopy
immersion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.