Knowledge (XXG)

Regular homotopy

Source 📝

297: 340: 1540:, one can also define non-degenerate homotopy. Here, the 1-parameter family of immersions must be non-degenerate (i.e. the curvature may never vanish). There are 2 distinct non-degenerate homotopy classes. Further restrictions of non-vanishing torsion lead to 4 distinct equivalence classes. 1151: 998: 817: 1250: 559: 662: 1003: 822: 699: 283: 203: 1304: 1436: 1507: 492: 389: 1347: 1656: 241: 87: 1474: 436: 165: 122: 47:, one defines two immersions to be in the same regular homotopy class if there exists a regular homotopy between them. Regular homotopy for immersions is similar to 1401: 1374: 694: 591: 463: 1156: 497: 320:
classifies the regular homotopy classes of a circle into the plane; two immersions are regularly homotopic if and only if they have the same
1516:
Both of these examples consist of reducing regular homotopy to homotopy; this has subsequently been substantially generalized in the
596: 1737: 1146:{\displaystyle \pi _{6}(SO(6))\cong \pi _{6}(\operatorname {Spin} (6))\cong \pi _{6}(SU(4))\cong \pi _{6}(U(4))\cong 0} 1742: 993:{\displaystyle \pi _{6}(SO(6))\to \pi _{6}(SO(7))\to \pi _{6}\left(S^{6}\right)\to \pi _{5}(SO(6))\to \pi _{5}(SO(7))} 812:{\displaystyle \pi _{2}(SO(3))\cong \pi _{2}\left(\mathbb {R} P^{3}\right)\cong \pi _{2}\left(S^{3}\right)\cong 0} 250: 170: 1255: 33: 51:
of embeddings: they are both restricted types of homotopies. Stated another way, two continuous functions
1631: 1699: 1406: 125: 1483: 468: 365: 1309: 1716: 1675: 1517: 208: 54: 296: 1626: 1441: 1708: 1665: 1603: 1570: 406: 396: 135: 92: 1379: 1352: 667: 564: 441: 1622: 1510: 392: 344: 325: 301: 1376:
in euclidean spaces of one more dimension are regular homotopic. In particular, spheres
89:
are homotopic if they represent points in the same path-components of the mapping space
1533: 339: 333: 321: 309: 44: 1731: 1687: 1644: 355: 348: 1691: 1648: 293:
Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy.
1537: 1476:. A corollary of his work is that there is only one regular homotopy class of a 17: 1608: 1591: 1575: 1558: 329: 1245:{\displaystyle \pi _{5}(SO(6))\cong \mathbb {Z} ,\ \pi _{5}(SO(7))\cong 0} 48: 37: 29: 21: 1720: 1679: 554:{\displaystyle \pi _{k}\left(V_{k}\left(\mathbb {R} ^{n}\right)\right)} 40:
in another. The homotopy must be a 1-parameter family of immersions.
1712: 1670: 338: 1692:"The classification of immersions of spheres in Euclidean spaces" 657:{\displaystyle V_{n-1}\left(\mathbb {R} ^{n}\right)\cong SO(n)} 403:
partial derivatives not vanishing. More precisely, the set
343:
Smale's classification of immersions of spheres shows that
399:, which is a generalization of the Gauss map, with here 494:
is in one-to-one correspondence with elements of group
247:
if they represent points in the same path-component of
1592:"Third order nondegenerate homotopies of space curves" 1486: 1444: 1409: 1382: 1355: 1312: 1258: 1159: 1006: 825: 702: 670: 599: 567: 500: 471: 444: 409: 368: 253: 211: 173: 138: 95: 57: 1513:
exist, i.e. one can turn the 2-sphere "inside-out".
438:
of regular homotopy classes of embeddings of sphere
1649:"A classification of immersions of the two-sphere" 1501: 1468: 1430: 1395: 1368: 1341: 1298: 1244: 1145: 992: 811: 688: 656: 585: 553: 486: 457: 430: 383: 277: 235: 197: 159: 116: 81: 1657:Transactions of the American Mathematical Society 358:classified the regular homotopy classes of a 8: 1000:and due to Bott periodicity theorem we have 1669: 1607: 1574: 1493: 1489: 1488: 1485: 1443: 1416: 1412: 1411: 1408: 1387: 1381: 1360: 1354: 1333: 1317: 1311: 1263: 1257: 1209: 1195: 1194: 1164: 1158: 1113: 1079: 1045: 1011: 1005: 963: 929: 912: 898: 864: 830: 824: 793: 779: 761: 753: 752: 741: 707: 701: 669: 626: 622: 621: 604: 598: 566: 536: 532: 531: 520: 505: 499: 478: 474: 473: 470: 449: 443: 408: 375: 371: 370: 367: 278:{\displaystyle \operatorname {Imm} (M,N)} 252: 210: 198:{\displaystyle \operatorname {Imm} (M,N)} 172: 137: 94: 56: 295: 1627:"On regular closed curves in the plane" 1549: 1306:. Therefore all immersions of spheres 1299:{\displaystyle \pi _{6}(SO(7))\cong 0} 347:exist, which can be realized via this 1559:"Deformations of closed space curves" 328:; equivalently, if and only if their 167:consisting of immersions, denoted by 7: 1509:. In particular, this means that 1431:{\displaystyle \mathbb {R} ^{n+1}} 14: 1596:Journal of Differential Geometry 1563:Journal of Differential Geometry 1502:{\displaystyle \mathbb {R} ^{3}} 487:{\displaystyle \mathbb {R} ^{n}} 384:{\displaystyle \mathbb {R} ^{n}} 1287: 1284: 1278: 1269: 1233: 1230: 1224: 1215: 1188: 1185: 1179: 1170: 1134: 1131: 1125: 1119: 1103: 1100: 1094: 1085: 1069: 1066: 1060: 1051: 1035: 1032: 1026: 1017: 987: 984: 978: 969: 956: 953: 950: 944: 935: 922: 891: 888: 885: 879: 870: 857: 854: 851: 845: 836: 731: 728: 722: 713: 683: 677: 651: 645: 425: 413: 272: 260: 227: 192: 180: 154: 142: 111: 99: 73: 1: 1342:{\displaystyle S^{0},\ S^{2}} 28:refers to a special kind of 1759: 236:{\displaystyle f,g:M\to N} 82:{\displaystyle f,g:M\to N} 391:– they are classified by 318:Whitney–Graustein theorem 1590:Little, John A. (1971). 1557:Feldman, E. A. (1968). 1528:Non-degenerate homotopy 1469:{\displaystyle n=0,2,6} 1632:Compositio Mathematica 1609:10.4310/jdg/1214430012 1576:10.4310/jdg/1214501138 1524:-principle) approach. 1503: 1470: 1432: 1397: 1370: 1343: 1300: 1246: 1147: 994: 813: 690: 658: 587: 555: 488: 459: 432: 431:{\displaystyle I(n,k)} 385: 352: 313: 279: 237: 199: 161: 160:{\displaystyle C(M,N)} 118: 117:{\displaystyle C(M,N)} 83: 1738:Differential topology 1700:Annals of Mathematics 1504: 1471: 1433: 1398: 1396:{\displaystyle S^{n}} 1371: 1369:{\displaystyle S^{6}} 1344: 1301: 1247: 1148: 995: 814: 691: 689:{\displaystyle SO(1)} 659: 588: 586:{\displaystyle k=n-1} 556: 489: 460: 458:{\displaystyle S^{k}} 433: 386: 362:-sphere immersed in 342: 332:have the same degree/ 299: 280: 238: 200: 162: 126:compact-open topology 119: 84: 1484: 1480:-sphere immersed in 1442: 1407: 1380: 1353: 1310: 1256: 1157: 1004: 823: 700: 668: 597: 565: 498: 469: 442: 407: 366: 251: 209: 171: 136: 93: 55: 696:is path connected, 245:regularly homotopic 132:is the subspace of 130:space of immersions 1743:Algebraic topology 1518:homotopy principle 1499: 1466: 1438:admit eversion if 1428: 1393: 1366: 1339: 1296: 1242: 1143: 990: 809: 686: 654: 583: 551: 484: 455: 428: 381: 353: 314: 275: 233: 195: 157: 114: 79: 1647:(February 1959). 1328: 1204: 397:Stiefel manifolds 205:. Two immersions 1750: 1724: 1696: 1683: 1673: 1653: 1640: 1623:Whitney, Hassler 1614: 1613: 1611: 1587: 1581: 1580: 1578: 1554: 1511:sphere eversions 1508: 1506: 1505: 1500: 1498: 1497: 1492: 1475: 1473: 1472: 1467: 1437: 1435: 1434: 1429: 1427: 1426: 1415: 1402: 1400: 1399: 1394: 1392: 1391: 1375: 1373: 1372: 1367: 1365: 1364: 1348: 1346: 1345: 1340: 1338: 1337: 1326: 1322: 1321: 1305: 1303: 1302: 1297: 1268: 1267: 1251: 1249: 1248: 1243: 1214: 1213: 1202: 1198: 1169: 1168: 1152: 1150: 1149: 1144: 1118: 1117: 1084: 1083: 1050: 1049: 1016: 1015: 999: 997: 996: 991: 968: 967: 934: 933: 921: 917: 916: 903: 902: 869: 868: 835: 834: 818: 816: 815: 810: 802: 798: 797: 784: 783: 771: 767: 766: 765: 756: 746: 745: 712: 711: 695: 693: 692: 687: 663: 661: 660: 655: 635: 631: 630: 625: 615: 614: 592: 590: 589: 584: 560: 558: 557: 552: 550: 546: 545: 541: 540: 535: 525: 524: 510: 509: 493: 491: 490: 485: 483: 482: 477: 464: 462: 461: 456: 454: 453: 437: 435: 434: 429: 390: 388: 387: 382: 380: 379: 374: 345:sphere eversions 324:– equivalently, 284: 282: 281: 276: 242: 240: 239: 234: 204: 202: 201: 196: 166: 164: 163: 158: 123: 121: 120: 115: 88: 86: 85: 80: 45:homotopy classes 26:regular homotopy 1758: 1757: 1753: 1752: 1751: 1749: 1748: 1747: 1728: 1727: 1713:10.2307/1970186 1694: 1686: 1671:10.2307/1993205 1651: 1643: 1621: 1618: 1617: 1589: 1588: 1584: 1556: 1555: 1551: 1546: 1530: 1487: 1482: 1481: 1440: 1439: 1410: 1405: 1404: 1383: 1378: 1377: 1356: 1351: 1350: 1329: 1313: 1308: 1307: 1259: 1254: 1253: 1205: 1160: 1155: 1154: 1109: 1075: 1041: 1007: 1002: 1001: 959: 925: 908: 904: 894: 860: 826: 821: 820: 789: 785: 775: 757: 751: 747: 737: 703: 698: 697: 666: 665: 620: 616: 600: 595: 594: 563: 562: 530: 526: 516: 515: 511: 501: 496: 495: 472: 467: 466: 445: 440: 439: 405: 404: 393:homotopy groups 369: 364: 363: 326:total curvature 302:total curvature 300:This curve has 291: 249: 248: 207: 206: 169: 168: 134: 133: 91: 90: 53: 52: 12: 11: 5: 1756: 1754: 1746: 1745: 1740: 1730: 1729: 1726: 1725: 1707:(2): 327–344. 1690:(March 1959). 1688:Smale, Stephen 1684: 1664:(2): 281–290. 1645:Smale, Stephen 1641: 1616: 1615: 1602:(3): 503–515. 1582: 1548: 1547: 1545: 1542: 1534:locally convex 1529: 1526: 1496: 1491: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1425: 1422: 1419: 1414: 1390: 1386: 1363: 1359: 1336: 1332: 1325: 1320: 1316: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1266: 1262: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1212: 1208: 1201: 1197: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1167: 1163: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1116: 1112: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1082: 1078: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1048: 1044: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1014: 1010: 989: 986: 983: 980: 977: 974: 971: 966: 962: 958: 955: 952: 949: 946: 943: 940: 937: 932: 928: 924: 920: 915: 911: 907: 901: 897: 893: 890: 887: 884: 881: 878: 875: 872: 867: 863: 859: 856: 853: 850: 847: 844: 841: 838: 833: 829: 808: 805: 801: 796: 792: 788: 782: 778: 774: 770: 764: 760: 755: 750: 744: 740: 736: 733: 730: 727: 724: 721: 718: 715: 710: 706: 685: 682: 679: 676: 673: 653: 650: 647: 644: 641: 638: 634: 629: 624: 619: 613: 610: 607: 603: 582: 579: 576: 573: 570: 549: 544: 539: 534: 529: 523: 519: 514: 508: 504: 481: 476: 452: 448: 427: 424: 421: 418: 415: 412: 378: 373: 334:winding number 322:turning number 310:turning number 290: 287: 274: 271: 268: 265: 262: 259: 256: 232: 229: 226: 223: 220: 217: 214: 194: 191: 188: 185: 182: 179: 176: 156: 153: 150: 147: 144: 141: 113: 110: 107: 104: 101: 98: 78: 75: 72: 69: 66: 63: 60: 13: 10: 9: 6: 4: 3: 2: 1755: 1744: 1741: 1739: 1736: 1735: 1733: 1722: 1718: 1714: 1710: 1706: 1702: 1701: 1693: 1689: 1685: 1681: 1677: 1672: 1667: 1663: 1659: 1658: 1650: 1646: 1642: 1638: 1634: 1633: 1628: 1624: 1620: 1619: 1610: 1605: 1601: 1597: 1593: 1586: 1583: 1577: 1572: 1568: 1564: 1560: 1553: 1550: 1543: 1541: 1539: 1535: 1527: 1525: 1523: 1519: 1514: 1512: 1494: 1479: 1463: 1460: 1457: 1454: 1451: 1448: 1445: 1423: 1420: 1417: 1388: 1384: 1361: 1357: 1334: 1330: 1323: 1318: 1314: 1293: 1290: 1281: 1275: 1272: 1264: 1260: 1252:then we have 1239: 1236: 1227: 1221: 1218: 1210: 1206: 1199: 1191: 1182: 1176: 1173: 1165: 1161: 1140: 1137: 1128: 1122: 1114: 1110: 1106: 1097: 1091: 1088: 1080: 1076: 1072: 1063: 1057: 1054: 1046: 1042: 1038: 1029: 1023: 1020: 1012: 1008: 981: 975: 972: 964: 960: 947: 941: 938: 930: 926: 918: 913: 909: 905: 899: 895: 882: 876: 873: 865: 861: 848: 842: 839: 831: 827: 806: 803: 799: 794: 790: 786: 780: 776: 772: 768: 762: 758: 748: 742: 738: 734: 725: 719: 716: 708: 704: 680: 674: 671: 648: 642: 639: 636: 632: 627: 617: 611: 608: 605: 601: 580: 577: 574: 571: 568: 547: 542: 537: 527: 521: 517: 512: 506: 502: 479: 450: 446: 422: 419: 416: 410: 402: 398: 394: 376: 361: 357: 356:Stephen Smale 350: 349:Morin surface 346: 341: 337: 335: 331: 327: 323: 319: 311: 307: 303: 298: 294: 288: 286: 269: 266: 263: 257: 254: 246: 230: 224: 221: 218: 215: 212: 189: 186: 183: 177: 174: 151: 148: 145: 139: 131: 127: 108: 105: 102: 96: 76: 70: 67: 64: 61: 58: 50: 46: 41: 39: 35: 31: 27: 23: 19: 1704: 1698: 1661: 1655: 1636: 1630: 1599: 1595: 1585: 1569:(1): 67–75. 1566: 1562: 1552: 1538:space curves 1531: 1521: 1515: 1477: 1403:embedded in 400: 359: 354: 317: 315: 305: 292: 244: 129: 124:, given the 42: 25: 18:mathematical 15: 43:Similar to 1732:Categories 1639:: 276–284. 1544:References 1153:and since 561:. In case 330:Gauss maps 34:immersions 1536:, closed 1291:≅ 1261:π 1237:≅ 1207:π 1192:≅ 1162:π 1138:≅ 1111:π 1107:≅ 1077:π 1073:≅ 1058:⁡ 1043:π 1039:≅ 1009:π 961:π 957:→ 927:π 923:→ 896:π 892:→ 862:π 858:→ 828:π 804:≅ 777:π 773:≅ 739:π 735:≅ 705:π 637:≅ 609:− 578:− 503:π 258:⁡ 228:→ 178:⁡ 74:→ 20:field of 1625:(1937). 664:. Since 593:we have 289:Examples 38:manifold 32:between 30:homotopy 22:topology 1721:1970186 1680:1993205 49:isotopy 36:of one 16:In the 1719:  1678:  1327:  1203:  308:, and 128:. The 1717:JSTOR 1695:(PDF) 1676:JSTOR 1652:(PDF) 1532:For 1520:(or 1349:and 1055:Spin 819:and 316:The 243:are 24:, a 1709:doi 1666:doi 1604:doi 1571:doi 465:in 395:of 255:Imm 175:Imm 1734:: 1715:. 1705:69 1703:. 1697:. 1674:. 1662:90 1660:. 1654:. 1635:. 1629:. 1598:. 1594:. 1565:. 1561:. 336:. 312:3. 285:. 1723:. 1711:: 1682:. 1668:: 1637:4 1612:. 1606:: 1600:5 1579:. 1573:: 1567:2 1522:h 1495:3 1490:R 1478:2 1464:6 1461:, 1458:2 1455:, 1452:0 1449:= 1446:n 1424:1 1421:+ 1418:n 1413:R 1389:n 1385:S 1362:6 1358:S 1335:2 1331:S 1324:, 1319:0 1315:S 1294:0 1288:) 1285:) 1282:7 1279:( 1276:O 1273:S 1270:( 1265:6 1240:0 1234:) 1231:) 1228:7 1225:( 1222:O 1219:S 1216:( 1211:5 1200:, 1196:Z 1189:) 1186:) 1183:6 1180:( 1177:O 1174:S 1171:( 1166:5 1141:0 1135:) 1132:) 1129:4 1126:( 1123:U 1120:( 1115:6 1104:) 1101:) 1098:4 1095:( 1092:U 1089:S 1086:( 1081:6 1070:) 1067:) 1064:6 1061:( 1052:( 1047:6 1036:) 1033:) 1030:6 1027:( 1024:O 1021:S 1018:( 1013:6 988:) 985:) 982:7 979:( 976:O 973:S 970:( 965:5 954:) 951:) 948:6 945:( 942:O 939:S 936:( 931:5 919:) 914:6 910:S 906:( 900:6 889:) 886:) 883:7 880:( 877:O 874:S 871:( 866:6 855:) 852:) 849:6 846:( 843:O 840:S 837:( 832:6 807:0 800:) 795:3 791:S 787:( 781:2 769:) 763:3 759:P 754:R 749:( 743:2 732:) 729:) 726:3 723:( 720:O 717:S 714:( 709:2 684:) 681:1 678:( 675:O 672:S 652:) 649:n 646:( 643:O 640:S 633:) 628:n 623:R 618:( 612:1 606:n 602:V 581:1 575:n 572:= 569:k 548:) 543:) 538:n 533:R 528:( 522:k 518:V 513:( 507:k 480:n 475:R 451:k 447:S 426:) 423:k 420:, 417:n 414:( 411:I 401:k 377:n 372:R 360:k 351:. 306:π 304:6 273:) 270:N 267:, 264:M 261:( 231:N 225:M 222:: 219:g 216:, 213:f 193:) 190:N 187:, 184:M 181:( 155:) 152:N 149:, 146:M 143:( 140:C 112:) 109:N 106:, 103:M 100:( 97:C 77:N 71:M 68:: 65:g 62:, 59:f

Index

mathematical
topology
homotopy
immersions
manifold
homotopy classes
isotopy
compact-open topology

total curvature
turning number
turning number
total curvature
Gauss maps
winding number

sphere eversions
Morin surface
Stephen Smale
homotopy groups
Stiefel manifolds
sphere eversions
homotopy principle
locally convex
space curves
"Deformations of closed space curves"
doi
10.4310/jdg/1214501138
"Third order nondegenerate homotopies of space curves"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.