Knowledge (XXG)

Geomagnetic secular variation

Source 📝

176: 210:. The direction and intensity of the dipole change over time. Over the last two centuries the dipole strength has been decreasing at a rate of about 6.3% per century. At this rate of decrease, the field would reach zero in about 1600 years. However, this strength is about average for the last 7 thousand years, and the current rate of change is not unusual. 168: 539: 217:
at a rate of about 0.2 degrees per year. This drift is not the same everywhere and has varied over time. The globally averaged drift has been westward since about 1400 AD but eastward between about 1000 AD and 1400 AD.
153: 122: 91: 53:
or daily variations in currents. Changes over time scales of a year or more mostly reflect changes in the Earth's interior, particularly the iron-rich
206:
part, like the field around a bar magnet, and a non-dipolar part. The dipolar part dominates the geomagnetic field and determines the direction of the
199: 645: 496: 506:
Dumberry, Mathieu; Finlay, Christopher C. (2007). "Eastward and westward drift of the Earth's magnetic field for the last three millennia".
41:
The geomagnetic field changes on time scales from milliseconds to millions of years. Shorter time scales mostly arise from currents in the
537:
Jackson, Andrew; Jonkers, Art R. T.; Walker, Matthew R. (2000). "Four centuries of Geomagnetic Secular Variation from Historical Records".
183:
Secular variation can be observed in measurements at magnetic observatories, some of which have been operating for hundreds of years (the
508: 191:
is observed to vary over tens of degrees. A movie on the right shows how global declinations have changed over the last few centuries.
620: 597: 226:
Changes that predate magnetic observatories are recorded in archaeological and geological materials. Such changes are referred to as
679: 637: 631: 167: 245:
The Levantine Iron Age anomaly was a fast and spatially localized geomagnetic positive anomaly which took place in the
27: 456: 23: 179:
Strength of the axial dipole component of Earth's magnetic field from 1600 to 2020, according to three models.
127: 96: 699: 235: 234:. The records typically include long periods of small change with occasional large changes reflecting 175: 548: 517: 415: 315: 239: 194:
To analyze global patterns of change in the geomagnetic field, geophysicists fit the field data to a
188: 64: 472: 195: 540:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
74: 572: 564: 50: 675: 641: 616: 593: 492: 263: 59: 556: 525: 521: 484: 423: 419: 323: 319: 258: 207: 480: 184: 552: 612: 589: 475:(2007). "Dipole Moment Variation". In Gubbins, David; Herrero-Bervera, Emilio (eds.). 302:
Fournier, Alexandre; Aubert, Julien; Lesur, Vincent; Thébault, Erwan (December 2021).
693: 46: 35: 576: 26:
on time scales of about a year or more. These changes mostly reflect changes in the
651: 488: 529: 428: 403: 328: 303: 609:
The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle
171:
Estimated declination contours by year, 1590 to 1990 (click to see variation).
68: 54: 42: 31: 560: 213:
A prominent feature in the non-dipolar part of the secular variation is a
607:
Merrill, Ronald T.; McElhinny, Michael W.; McFadden, Phillip L. (1996).
568: 671: 402:
Rivera, Pablo; Pavón-Carrasco, F. Javier; Osete, María Luisa (2023).
246: 203: 174: 166: 304:"Physics-based secular variation candidate models for the IGRF" 404:"Modeling geomagnetic spikes: the Levantine Iron Age anomaly" 448: 289: 202:). The terms in this expansion can be divided into a 130: 99: 77: 584:
McElhinny, Michael W.; McFadden, Phillip L. (1998).
342: 30:, while more rapid changes mostly originate in the 147: 116: 85: 611:. International Geophysics Series. Vol. 63. 16:Short-term changes in the Earth's magnetic field 477:Encyclopedia of Geomagnetism and Paleomagnetism 378: 67:, the secular variation is the amortized time 249:, with maxima at about 950, 750 and 500 BCE. 8: 285: 283: 281: 279: 427: 367: 327: 200:International Geomagnetic Reference Field 187:, for example). Over such a time scale, 134: 132: 131: 129: 103: 101: 100: 98: 78: 76: 275: 290:Merrill, McElhinny & McFadden 1996 148:{\displaystyle {\ddot {\mathbf {B} }}} 668:Paleomagnetic Principles and Practice 586:Paleomagnetism: Continents and Oceans 389: 352: 350: 117:{\displaystyle {\dot {\mathbf {B} }}} 7: 57:. These changes are referred to as 49:, and some changes can be traced to 509:Earth and Planetary Science Letters 356: 343:Jackson, Jonkers & Walker 2000 14: 135: 104: 79: 228:paleomagnetic secular variation 222:Paleomagnetic secular variation 638:University of California Press 1: 20:Geomagnetic secular variation 633:Essentials of Paleomagnetism 489:10.1007/978-1-4020-4423-6_67 232:paleosecular variation (PSV) 86:{\displaystyle \mathbf {B} } 716: 530:10.1016/j.epsl.2006.11.026 457:Canadian Geological Survey 429:10.1186/s40623-023-01880-x 379:Dumberry & Finlay 2007 329:10.1186/s40623-021-01507-z 124:. The second derivative, 22:refers to changes in the 408:Earth, Planets and Space 308:Earth, Planets and Space 522:2007E&PSL.254..146D 420:2023EP&S...75..133R 320:2021EP&S...73..190F 561:10.1098/rsta.2000.0569 236:geomagnetic excursions 180: 172: 149: 118: 87: 71:of the magnetic field 24:Earth's magnetic field 240:geomagnetic reversals 178: 170: 150: 119: 88: 666:Tauxe, Lisa (1998). 630:Tauxe, Lisa (2010). 483:. pp. 159–161. 473:Constable, Catherine 189:magnetic declination 157:secular acceleration 128: 97: 75: 553:2000RSPTA.358..957J 449:"Secular variation" 196:spherical harmonic 181: 173: 145: 114: 83: 51:geomagnetic storms 647:978-0-520-26031-3 547:(1768): 957–990. 498:978-1-4020-3992-8 264:Secular variation 208:geomagnetic poles 142: 111: 60:secular variation 707: 685: 662: 660: 659: 650:. Archived from 626: 603: 580: 533: 516:(1–2): 146–157. 502: 468: 466: 464: 434: 433: 431: 399: 393: 387: 381: 376: 370: 365: 359: 354: 345: 340: 334: 333: 331: 299: 293: 287: 259:Geomagnetic jerk 154: 152: 151: 146: 144: 143: 138: 133: 123: 121: 120: 115: 113: 112: 107: 102: 92: 90: 89: 84: 82: 28:Earth's interior 715: 714: 710: 709: 708: 706: 705: 704: 690: 689: 688: 682: 665: 657: 655: 648: 629: 623: 606: 600: 583: 536: 505: 499: 481:Springer-Verlag 471: 462: 460: 447: 443: 438: 437: 401: 400: 396: 388: 384: 377: 373: 366: 362: 355: 348: 341: 337: 301: 300: 296: 288: 277: 272: 255: 224: 198:expansion (see 185:Kew Observatory 165: 126: 125: 95: 94: 73: 72: 17: 12: 11: 5: 713: 711: 703: 702: 692: 691: 687: 686: 680: 663: 646: 627: 622:978-0124912465 621: 613:Academic Press 604: 599:978-0124833555 598: 590:Academic Press 581: 534: 503: 497: 469: 444: 442: 439: 436: 435: 394: 382: 371: 368:Constable 2007 360: 346: 335: 294: 274: 273: 271: 268: 267: 266: 261: 254: 251: 223: 220: 215:westward drift 164: 163:Recent changes 161: 141: 137: 110: 106: 81: 15: 13: 10: 9: 6: 4: 3: 2: 712: 701: 698: 697: 695: 683: 681:0-7923-5258-0 677: 673: 669: 664: 654:on 2016-03-03 653: 649: 643: 639: 635: 634: 628: 624: 618: 614: 610: 605: 601: 595: 591: 587: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 541: 535: 531: 527: 523: 519: 515: 511: 510: 504: 500: 494: 490: 486: 482: 478: 474: 470: 458: 454: 450: 446: 445: 440: 430: 425: 421: 417: 413: 409: 405: 398: 395: 391: 386: 383: 380: 375: 372: 369: 364: 361: 358: 353: 351: 347: 344: 339: 336: 330: 325: 321: 317: 313: 309: 305: 298: 295: 291: 286: 284: 282: 280: 276: 269: 265: 262: 260: 257: 256: 252: 250: 248: 243: 241: 237: 233: 229: 221: 219: 216: 211: 209: 205: 201: 197: 192: 190: 186: 177: 169: 162: 160: 158: 139: 108: 70: 66: 62: 61: 56: 52: 48: 47:magnetosphere 44: 39: 37: 36:magnetosphere 33: 29: 25: 21: 700:Geomagnetism 667: 656:. Retrieved 652:the original 632: 608: 585: 544: 538: 513: 507: 476: 461:. Retrieved 453:Geomagnetism 452: 411: 407: 397: 385: 374: 363: 338: 311: 307: 297: 244: 231: 227: 225: 214: 212: 193: 182: 156: 58: 40: 19: 18: 658:2011-03-17 441:References 390:Tauxe 1998 314:(1): 190. 69:derivative 63:. In most 43:ionosphere 32:ionosphere 140:¨ 109:˙ 694:Category 577:40510741 463:July 18, 357:CGS 2011 253:See also 569:2666741 549:Bibcode 518:Bibcode 416:Bibcode 414:(133). 392:, Ch. 1 316:Bibcode 292:, Ch. 2 204:dipolar 155:is the 678:  672:Kluwer 644:  619:  596:  575:  567:  495:  459:. 2011 247:Levant 65:models 573:S2CID 565:JSTOR 270:Notes 676:ISBN 642:ISBN 617:ISBN 594:ISBN 493:ISBN 465:2011 238:and 55:core 45:and 557:doi 545:358 526:doi 514:254 485:doi 424:doi 324:doi 230:or 34:or 696:: 674:. 670:. 640:. 636:. 615:. 592:. 588:. 571:. 563:. 555:. 543:. 524:. 512:. 491:. 479:. 455:. 451:. 422:. 412:75 410:. 406:. 349:^ 322:. 312:73 310:. 306:. 278:^ 242:. 159:. 93:, 38:. 684:. 661:. 625:. 602:. 579:. 559:: 551:: 532:. 528:: 520:: 501:. 487:: 467:. 432:. 426:: 418:: 332:. 326:: 318:: 136:B 105:B 80:B

Index

Earth's magnetic field
Earth's interior
ionosphere
magnetosphere
ionosphere
magnetosphere
geomagnetic storms
core
secular variation
models
derivative


Kew Observatory
magnetic declination
spherical harmonic
International Geomagnetic Reference Field
dipolar
geomagnetic poles
geomagnetic excursions
geomagnetic reversals
Levant
Geomagnetic jerk
Secular variation




Merrill, McElhinny & McFadden 1996
"Physics-based secular variation candidate models for the IGRF"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.