Knowledge (XXG)

Geometric Origami

Source đź“ť

239:, or for undergraduate research projects extending those subjects, although reviewer Mary Fortune cautions that "there is much preliminary material to be covered" before a student would be ready for such a project. Reviewer Georg Gunther summarizes the book as "a delightful addition to a wonderful corner of mathematics where art and geometry meet", recommending it as a reference for "anyone with a working knowledge of elementary geometry, algebra, and the geometry of complex numbers". 229:
Origamist David Raynor suggests that its methods could also be useful in constructing templates from which to cut out clean unfolded pieces of paper in the shape of the regular polygons that it discusses, for use in origami models that use these polygons as a starting shape instead of the traditional square paper.
228:
This book is quite technical, aimed more at mathematicians than at amateur origami enthusiasts looking for folding instructions for origami artworks. However, it may be of interest to origami designers, looking for methods to incorporate folding patterns for regular polygons into their designs.
219:
provides explicit folding instructions for 15 different regular polygons, including those with 3, 5, 6, 7, 8, 9, 10, 12, 13, 17, and 19 sides. Additionally, it discusses approximate constructions for polygons that cannot be constructed exactly in this way.
92:
using origami, and on finding the largest copy of a given regular polygon that can be constructed within a given square sheet of origami paper. With straightedge and compass, it is only possible to exactly construct regular
511: 69:. It goes on to show that, in this mathematical model, origami is strictly more powerful than straightedge and compass: with origami, it is possible to solve any 213: 191: 162: 134: 112: 504: 420: 497: 66: 31: 746: 767: 274: 50: 667: 459: 914: 168:. With a construction system that can trisect angles, such as mathematical origami, more numbers of sides are possible, using 808: 878: 574: 605: 753: 520: 27: 909: 803: 544: 62: 838: 774: 300: 680: 432: 919: 564: 39: 165: 549: 44: 724: 554: 534: 437: 85:, two problems that have been proven to have no exact solution using only straightedge and compass. 691: 672: 354: 49:
and published by Arbelos Publishing (Shipley, UK) in 2008. The Basic Library List Committee of the
853: 676: 651: 342: 317: 873: 631: 454: 82: 61:
The book is divided into two main parts. The first part is more theoretical. It outlines the
833: 798: 729: 701: 686: 569: 468: 397: 309: 236: 78: 74: 480: 813: 641: 626: 476: 401: 262: 89: 600: 883: 858: 848: 843: 828: 823: 706: 539: 198: 176: 169: 147: 119: 97: 70: 903: 636: 888: 818: 590: 141: 137: 868: 559: 489: 863: 696: 621: 313: 88:
The second part of the book focuses on folding instructions for constructing
65:
for mathematical origami, and proves that they are capable of simulating any
781: 235:
may also be useful as teaching material for university-level geometry and
595: 321: 35: 646: 392: 472: 53:
has suggested its inclusion in undergraduate mathematics libraries.
457:(1988), "Angle trisection, the heptagon, and the triskaidecagon", 493: 30:, focusing on the ability to simulate and extend classical 201: 179: 164:
to be 3, 5, 6, 8, 10, 12, etc. These are called the
150: 122: 100: 791: 738: 717: 660: 614: 583: 527: 207: 185: 156: 128: 106: 77:. In particular, origami methods can be used to 505: 8: 443:on 2020-01-28 – via Arbelos Publishing 38:. It was written by Austrian mathematician 512: 498: 490: 336: 334: 332: 330: 289: 287: 285: 283: 200: 178: 149: 121: 99: 414: 412: 410: 18:Book on the mathematics of paper folding 381: 379: 377: 375: 373: 371: 369: 294:Fortune, Mary (March 2010), "Review of 256: 254: 252: 248: 144:(powers of two plus one): this allows 32:straightedge and compass constructions 172:in place of Fermat primes, including 67:straightedge and compass construction 7: 747:Geometric Exercises in Paper Folding 768:A History of Folding in Mathematics 275:Mathematical Association of America 51:Mathematical Association of America 14: 460:The American Mathematical Monthly 215:equal to 7, 13, 14, 17, 19, etc. 668:Alexandrov's uniqueness theorem 419:Raynor, David (February 2009), 1: 606:Regular paperfolding sequence 754:Geometric Folding Algorithms 521:Mathematics of paper folding 386:Hajja, Mowaffaq, "Review of 341:Gunther, Georg (June 2013), 261:Caulk, Suzanne (July 2009), 28:mathematics of paper folding 936: 804:Margherita Piazzola Beloch 575:Yoshizawa–Randlett system 314:10.1017/s002555720000752x 775:Origami Polyhedra Design 433:British Origami Magazine 301:The Mathematical Gazette 915:2008 non-fiction books 565:Napkin folding problem 224:Audience and reception 209: 187: 166:constructible polygons 158: 130: 108: 210: 188: 159: 131: 109: 725:Fold-and-cut theorem 681:Steffen's polyhedron 545:Huzita–Hatori axioms 535:Big-little-big lemma 199: 177: 148: 120: 98: 63:Huzita–Hatori axioms 40:Robert Geretschläger 673:Flexible polyhedron 355:Crux Mathematicorum 854:Toshikazu Kawasaki 677:Bricard octahedron 652:Yoshimura buckling 550:Kawasaki's theorem 455:Gleason, Andrew M. 205: 183: 154: 136:is a product of a 126: 104: 910:Mathematics books 897: 896: 761:Geometric Origami 632:Paper bag problem 555:Maekawa's theorem 423:Geometric Origami 388:Geometric Origami 345:Geometric Origami 296:Geometric Origami 265:Geometric Origami 233:Geometric Origami 217:Geometric Origami 208:{\displaystyle n} 186:{\displaystyle n} 157:{\displaystyle n} 129:{\displaystyle n} 107:{\displaystyle n} 83:doubling the cube 26:is a book on the 23:Geometric Origami 927: 834:David A. Huffman 799:Roger C. Alperin 702:Source unfolding 570:Pureland origami 514: 507: 500: 491: 484: 483: 451: 445: 444: 442: 436:, archived from 429: 416: 405: 404: 383: 364: 363: 351: 338: 325: 324: 308:(529): 189–190, 291: 278: 277: 258: 237:abstract algebra 214: 212: 211: 206: 194: 192: 190: 189: 184: 163: 161: 160: 155: 135: 133: 132: 127: 115: 113: 111: 110: 105: 90:regular polygons 75:quartic equation 48: 935: 934: 930: 929: 928: 926: 925: 924: 900: 899: 898: 893: 879:Joseph O'Rourke 814:Robert Connelly 787: 734: 713: 656: 642:Schwarz lantern 627:Modular origami 610: 579: 523: 518: 488: 487: 473:10.2307/2323624 453: 452: 448: 440: 427: 418: 417: 408: 385: 384: 367: 349: 340: 339: 328: 293: 292: 281: 260: 259: 250: 245: 226: 197: 196: 175: 174: 173: 170:Pierpont primes 146: 145: 118: 117: 96: 95: 94: 59: 42: 19: 12: 11: 5: 933: 931: 923: 922: 917: 912: 902: 901: 895: 894: 892: 891: 886: 884:Tomohiro Tachi 881: 876: 871: 866: 861: 859:Robert J. Lang 856: 851: 849:Humiaki Huzita 846: 841: 836: 831: 829:Rona Gurkewitz 826: 824:Martin Demaine 821: 816: 811: 806: 801: 795: 793: 789: 788: 786: 785: 778: 771: 764: 757: 750: 742: 740: 736: 735: 733: 732: 727: 721: 719: 715: 714: 712: 711: 710: 709: 707:Star unfolding 704: 699: 694: 684: 670: 664: 662: 658: 657: 655: 654: 649: 644: 639: 634: 629: 624: 618: 616: 612: 611: 609: 608: 603: 598: 593: 587: 585: 581: 580: 578: 577: 572: 567: 562: 557: 552: 547: 542: 540:Crease pattern 537: 531: 529: 525: 524: 519: 517: 516: 509: 502: 494: 486: 485: 467:(3): 185–194, 446: 406: 365: 326: 279: 247: 246: 244: 241: 225: 222: 204: 182: 153: 140:with distinct 125: 103: 79:trisect angles 71:cubic equation 58: 55: 17: 13: 10: 9: 6: 4: 3: 2: 932: 921: 920:Paper folding 918: 916: 913: 911: 908: 907: 905: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 796: 794: 790: 784: 783: 779: 777: 776: 772: 770: 769: 765: 763: 762: 758: 756: 755: 751: 749: 748: 744: 743: 741: 737: 731: 730:Lill's method 728: 726: 723: 722: 720: 718:Miscellaneous 716: 708: 705: 703: 700: 698: 695: 693: 690: 689: 688: 685: 682: 678: 674: 671: 669: 666: 665: 663: 659: 653: 650: 648: 645: 643: 640: 638: 637:Rigid origami 635: 633: 630: 628: 625: 623: 620: 619: 617: 615:3d structures 613: 607: 604: 602: 599: 597: 594: 592: 589: 588: 586: 584:Strip folding 582: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 532: 530: 526: 522: 515: 510: 508: 503: 501: 496: 495: 492: 482: 478: 474: 470: 466: 462: 461: 456: 450: 447: 439: 435: 434: 426: 424: 415: 413: 411: 407: 403: 399: 395: 394: 389: 382: 380: 378: 376: 374: 372: 370: 366: 361: 357: 356: 348: 346: 337: 335: 333: 331: 327: 323: 319: 315: 311: 307: 303: 302: 297: 290: 288: 286: 284: 280: 276: 272: 268: 266: 257: 255: 253: 249: 242: 240: 238: 234: 230: 223: 221: 218: 202: 180: 171: 167: 151: 143: 142:Fermat primes 139: 123: 101: 91: 86: 84: 80: 76: 72: 68: 64: 56: 54: 52: 46: 41: 37: 33: 29: 25: 24: 16: 889:Eve Torrence 819:Erik Demaine 780: 773: 766: 760: 759: 752: 745: 739:Publications 601:Möbius strip 591:Dragon curve 528:Flat folding 464: 458: 449: 438:the original 431: 422: 391: 387: 362:(6): 393–394 359: 353: 344: 305: 299: 295: 270: 264: 232: 231: 227: 216: 138:power of two 87: 60: 22: 21: 20: 15: 874:KĹŤryĹŤ Miura 869:Jun Maekawa 844:KĂ´di Husimi 560:Map folding 421:"Review of 343:"Review of 271:MAA Reviews 263:"Review of 43: [ 904:Categories 864:Anna Lubiw 697:Common net 622:Miura fold 402:1256.51001 243:References 116:for which 81:, and for 782:Origamics 661:Polyhedra 839:Tom Hull 809:Yan Chen 692:Blooming 596:Flexagon 322:27821925 481:0935432 36:origami 792:People 647:Sonobe 479:  400:  393:zbMATH 320:  57:Topics 34:using 441:(PDF) 428:(PDF) 350:(PDF) 318:JSTOR 193:-gons 114:-gons 47:] 195:for 687:Net 469:doi 398:Zbl 390:", 310:doi 298:", 73:or 906:: 679:, 477:MR 475:, 465:95 463:, 430:, 409:^ 396:, 368:^ 360:35 358:, 352:, 329:^ 316:, 306:94 304:, 282:^ 273:, 269:, 251:^ 45:de 683:) 675:( 513:e 506:t 499:v 471:: 425:" 347:" 312:: 267:" 203:n 181:n 152:n 124:n 102:n

Index

mathematics of paper folding
straightedge and compass constructions
origami
Robert Geretschläger
de
Mathematical Association of America
Huzita–Hatori axioms
straightedge and compass construction
cubic equation
quartic equation
trisect angles
doubling the cube
regular polygons
power of two
Fermat primes
constructible polygons
Pierpont primes
abstract algebra



"Review of Geometric Origami"
Mathematical Association of America




The Mathematical Gazette
doi
10.1017/s002555720000752x

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑