Knowledge (XXG)

Ground-penetrating radar

Source 📝

187: 323: 606:
material composition. While it can identify items such as pipes, voids, and soil, it cannot identify the specific materials, such as gold and precious gems. It can, however, be useful in providing subsurface mapping of potential gem-bearing pockets, or "vugs". The readings can be confused by moisture in the ground and they can't separate gem-bearing pockets from non-gem-bearing ones.
123:, and the radiated power all may limit the effective depth range of GPR investigation. Increases in electrical conductivity attenuate the introduced electromagnetic wave, and thus the penetration depth decreases. Because of frequency-dependent attenuation mechanisms, higher frequencies do not penetrate as far as lower frequencies. However, higher frequencies may provide improved 427: 372:, Lawrence Conyers, one of the first archaeological specialists in GPR, described the process. Conyers published research using GPR in El Salvador in 1996, in the Four Corners region Chaco period in southern Arizona in 1997, and in a medieval site in Ireland in 2018. Informed by Conyer's research, the Institute of Prairie and Indigenous Archaeology at the 195: 332: 295:
demonstrated in 2012 for autonomous vehicle steering and fielded for military operation in 2013. Highway speed centimeter-level localization during a night-time snow-storm was demonstrated in 2016. This technology was exclusively licensed and commercialized for vehicle safety in ADAS and Autonomous Vehicle positioning and lane-keeping systems by
31: 96:, and detects the reflected signals from subsurface structures. GPR can have applications in a variety of media, including rock, soil, ice, fresh water, pavements and structures. In the right conditions, practitioners can use GPR to detect subsurface objects, changes in material properties, and voids and cracks. 127:. Thus operating frequency is always a trade-off between resolution and penetration. Optimal depth of subsurface penetration is achieved in ice where the depth of penetration can achieve several thousand metres (to bedrock in Greenland) at low GPR frequencies. Dry sandy soils or massive dry materials such as 557:
for over half a century. Its most widespread uses have been the measurement of ice thickness, subglacial topography, and ice sheet stratigraphy. It has also been used to observe the subglacial and conditions of ice sheets and glaciers, including hydrology, thermal state, accumulation, flow history,
294:
A recent novel approach to vehicle localization using prior map based images from ground penetrating radar has been demonstrated. Termed "Localizing Ground Penetrating Radar" (LGPR), centimeter level accuracies at speeds up to 100 km/h (60 mph) have been demonstrated. Closed-loop operation was first
166:
The first patent for a system designed to use continuous-wave radar to locate buried objects was submitted by Gotthelf Leimbach and Heinrich Löwy in 1910, six years after the first patent for radar itself (patent DE 237 944). A patent for a system using radar pulses rather than a continuous wave was
646:
A special kind of GPR uses unmodulated continuous-wave signals. This holographic subsurface radar differs from other GPR types in that it records plan-view subsurface holograms. Depth penetration of this kind of radar is rather small (20–30 cm), but lateral resolution is enough to discriminate
2701:
Jaufer, Rakeeb M., Amine Ihamouten, Yann Goyat, Shreedhar S. Todkar, David Guilbert, Ali Assaf, and Xavier Dérobert. 2022. "A Preliminary Numerical Study to Compare the Physical Method and Machine Learning Methods Applied to GPR Data for Underground Utility Network Characterization" Remote Sensing
339:
The concept of radar is familiar to most people. With ground penetrating radar, the radar signal – an electromagnetic pulse – is directed into the ground. Subsurface objects and stratigraphy (layering) will cause reflections that are picked up by a receiver. The travel time of the reflected signal
326:
GPR depth slices showing a crypt in a historic cemetery. These planview maps show subsurface structures at different depths. Sixty lines of data – individually representing vertical profiles – were collected and assembled as a 3-dimensional data array that can be horizontally "sliced" at different
248:
One of the other main applications for ground-penetrating radars is for locating underground utilities. Standard electromagnetic induction utility locating tools require utilities to be conductive. These tools are ineffective for locating plastic conduits or concrete storm and sanitary sewers.
609:
When determining depth capabilities, the frequency range of the antenna dictates the size of the antenna and the depth capability. The grid spacing which is scanned is based on the size of the targets that need to be identified and the results required. Typical grid spacings can be 1 meter,
355:
The principal disadvantage of GPR is that it is severely limited by less-than-ideal environmental conditions. Fine-grained sediments (clays and silts) are often problematic because their high electrical conductivity causes loss of signal strength; rocky or heterogeneous sediments scatter the GPR
613:
The speed at which a radar signal travels is dependent upon the composition of the material being penetrated. The depth to a target is determined based on the amount of time it takes for the radar signal to reflect back to the unit’s antenna. Radar signals travel at different velocities through
605:
is sensitive to changes in material composition; detecting changes requires movement. When looking through stationary items using surface-penetrating or ground-penetrating radar, the equipment needs to be moved in order for the radar to examine the specified area by looking for differences in
99:
GPR uses high-frequency (usually polarized) radio waves, usually in the range 10 MHz to 2.6 GHz. A GPR transmitter and antenna emits electromagnetic energy into the ground. When the energy encounters a buried object or a boundary between materials having different
270:
Military applications of ground-penetrating radar include detection of unexploded ordnance and detecting tunnels. In military applications and other common GPR applications, practitioners often use GPR in conjunction with other available geophysical techniques such as
626:
introduced legislation to regulate GPR equipment and GPR operators to control excess emissions of electromagnetic radiation. The European GPR association (EuroGPR) was formed as a trade association to represent and protect the legitimate use of GPR in Europe.
571:
images. Data may be presented as three-dimensional blocks, or as horizontal or vertical slices. Horizontal slices (known as "depth slices" or "time slices") are essentially planview maps isolating specific depths. Time-slicing has become standard practice in
672:
SewerVUE Technology, an advanced pipe condition assessment company utilizes Pipe Penetrating Radar (PPR) as an in pipe GPR application to see remaining wall thickness, rebar cover, delamination, and detect the presence of voids developing outside the pipe.
384:. By June 2021, the Institute had used GPR to locate suspected unmarked graves in areas near historic cemeteries and Indian Residential Schools. On May 27, 2021, it was reported that the remains of 215 children were found using GPR at a burial site at the 139:
tend to be resistive rather than conductive, and the depth of penetration could be up to 15 metres (49 ft). However, in moist or clay-laden soils and materials with high electrical conductivity, penetration may be as little as a few centimetres.
653:
In Pipe-Penetrating Radar (IPPR) and In Sewer GPR (ISGPR) are applications of GPR technologies applied in non-metallic-pipes where the signals are directed through pipe and conduit walls to detect pipe wall thickness and voids behind the pipe walls.
403:
Advancements in GPR technology integrated with various 3D software modelling platforms generate three-dimensional reconstructions of subsurface "shapes and their spatial relationships". By 2021, this has been "emerging as the new standard".
244:
Borehole radars utilizing GPR are used to map the structures from a borehole in underground mining applications. Modern directional borehole radar systems are able to produce three-dimensional images from measurements in a single borehole.
584:
The most significant performance limitation of GPR is in high-conductivity materials such as clay soils and soils that are salt contaminated. Performance is also limited by signal scattering in heterogeneous conditions (e.g. rocky soils).
351:
without any risk of damaging them. Among methods used in archaeological geophysics, it is unique both in its ability to detect some small objects at relatively great depths, and in its ability to distinguish the depth of anomaly sources.
1108:
Lowe, Kelsey M; Wallis, Lynley A.; Pardoe, Colin; Marwick, Benjamin; Clarkson, Christopher J; Manne, Tiina; Smith, M.A.; Fullagar, Richard (2014). "Ground-penetrating radar and burial practices in western Arnhem Land, Australia".
218:. It is of some utility in prospecting for gold nuggets and for diamonds in alluvial gravel beds, by finding natural traps in buried stream beds that have the potential for accumulating heavier particles. The Chinese lunar rover 558:
ice fabric, and bed geology. In planetary science, ice penetrating radar has also been used to explore the subsurface of the Polar Ice Caps on Mars and comets. Missions are planned to explore the icy moons of Jupiter.
2283:
Seu, Roberto; Phillips, Roger J.; Biccari, Daniela; Orosei, Roberto; Masdea, Arturo; Picardi, Giovanni; Safaeinili, Ali; Campbell, Bruce A.; Plaut, Jeffrey J.; Marinangeli, Lucia; Smrekar, Suzanne E. (18 May 2007).
170:
Further developments in the field remained sparse until the 1970s, when military applications began driving research. Commercial applications followed and the first affordable consumer equipment was sold in 1975.
669:. Police showed how to watch people up to two rooms away laterally and through floors vertically, could see metal lumps that might be weapons; GPR can even act as a motion sensor for military guards and police. 1577:
Schroeder, Dustin M.; Bingham, Robert G.; Blankenship, Donald D.; Christianson, Knut; Eisen, Olaf; Flowers, Gwenn E.; Karlsson, Nanna B.; Koutnik, Michelle R.; Paden, John D.; Siegert, Martin J. (April 2020).
178:(Apollo Lunar Sounder Experiment) in orbit around the Moon. It was able to record depth information up to 1.3 km and recorded the results on film due to the lack of suitable computer storage at the time. 549:. This allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4 km. The subsurface observation of ice masses using radio waves has been an integral and evolving 359:
In the field of cultural heritage GPR with high frequency antenna is also used for investigating historical masonry structures, detecting cracks and decay patterns of columns and detachment of frescoes.
676:
EU Detect Force Technology, an advanced soil research company, design utilizes X6 Plus Grounding Radar (XGR) as an hybrid GPR application for military mine detection and also police bomb detection.
567:
Individual lines of GPR data represent a sectional (profile) view of the subsurface. Multiple lines of data systematically collected over an area may be used to construct three-dimensional or
335:
GPR depth section (profile) showing a single line of data from the survey of the historic crypt shown above. The domed roof of the crypt can be seen between 1 and 2.5 meters below surface.
46:
arrivals (arrows) indicate the presence of diffractors buried beneath the surface, possibly associated with human burials. Reflections from soil layering are also present (dashed lines).
104:, it may be reflected or refracted or scattered back to the surface. A receiving antenna can then record the variations in the return signal. The principles involved are similar to 1747:
Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.; Dowdeswell, J. A.; Gogineni, S. P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; Steinhage, D. (22 March 2013).
112:
energy, and energy may be reflected at boundaries where subsurface electrical properties change rather than subsurface mechanical properties as is the case with seismic energy.
69:
the subsurface. It is a non-intrusive method of surveying the sub-surface to investigate underground utilities such as concrete, asphalt, metals, pipes, cables or masonry. This
241:
and cemeteries. GPR is used in law enforcement for locating clandestine graves and buried evidence. Military uses include detection of mines, unexploded ordnance, and tunnels.
343:
GPR can be a powerful tool in favorable conditions (uniform sandy soils are ideal). Like other geophysical methods used in archaeology (and unlike excavation) it can locate
1078: 167:
filed in 1926 by Dr. Hülsenbeck (DE 489 434), leading to improved depth resolution. A glacier's depth was measured using ground penetrating radar in 1929 by W. Stern.
2429: 623: 2226:
Kofman, W.; Herique, A.; Barbin, Y.; Barriot, J.-P.; Ciarletti, V.; Clifford, S.; Edenhofer, P.; Elachi, C.; Eyraud, C.; Goutail, J.-P.; Heggy, E. (31 July 2015).
635:
Ground-penetrating radar uses a variety of technologies to generate the radar signal: these are impulse, stepped frequency, frequency-modulated continuous-wave (
1491: 377: 614:
different types of materials. It is possible to use the depth to a known object to determine a specific velocity and then calibrate the depth calculations.
258:
which used the technology to determine a suitable area for examination by means of excavations. GPR was also used to recover £150,000 in cash ransom that
1629:"Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls" 1466: 381: 2428:. Code of Practice in respect of the control, use and application of Ground Probing Radar (GPR) and Wall Probing Radar (WPR) systems and equipment. 647:
different types of landmines in the soil, or cavities, defects, bugging devices, or other hidden objects in walls, floors, and structural elements.
911: 820: 1519:"A novel approach to 3D modelling ground-penetrating radar (GPR) data – a case study of a cemetery and applications for criminal investigation" 1235: 2760: 2642: 2499: 1720: 1414: 1369: 797: 147:
are generally in contact with the ground for the strongest signal strength; however, GPR air-launched antennas can be used above the ground.
249:
Since GPR detects variations in dielectric properties in the subsurface, it can be highly effective for locating non-conductive utilities.
2603: 2403: 2834: 282:
In May 2020, the U.S. military ordered ground-penetrating radar system from Chemring Sensors and Electronics Systems (CSES), to detect
397: 385: 1289: 1079:"MIT Lincoln Laboratory: News: Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions" 1245: 711: 988: 389: 340:
indicates the depth. Data may be plotted as profiles, as planview maps isolating specific depths, or as three-dimensional models.
886: 308: 1086: 2056: 1056: 2878: 1268:
Conyers, Lawrence (1 October 1996). "Archaeological evidence for dating the Loma Caldera eruption, Ceren, El Salvador".
283: 936:
Hofinghoff, Jan-Florian (2013). "Resistive Loaded Antenna for Ground Penetrating Radar Inside a Bottom Hole Assembly".
666: 2570: 2505: 229:(NDT) of structures and pavements, locating buried structures and utility lines, and studying soils and bedrock. In 2692: 650:
GPR is used on vehicles for close-in high-speed road survey and landmine detection as well as in stand-off mode.
640: 610:
3 ft, 5 ft, 10 ft, 20 ft for ground surveys, and for walls and floors 1 inch–1 ft.
573: 276: 234: 230: 74: 2450: 1806:
Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.; Bamber, J. L.; Barrand, N. E.; et al. (28 February 2013).
687: 519:. This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)". 851: 522: 116: 2666: 393: 368:
GPR is used by criminologists, historians, and archaeologists to search burial sites. In his publication,
344: 312: 272: 226: 70: 1858: 989:"Army orders ground-penetrating radar system from CSES for detecting hidden IEDs in $ 200.2 million deal" 2530:
Ivashov, S. I.; Razevig, V. V.; Vasiliev, I. A.; Zhuravlev, A. V.; Bechtel, T. D.; Capineri, L. (2011).
1441: 878: 816: 373: 348: 316: 238: 657:
Wall-penetrating radar can read through non-metallic structures as demonstrated for the first time by
2546: 2297: 2239: 2182: 2125: 1888: 1822: 1760: 1640: 1591: 1277: 1149: 945: 895: 754: 512: 85: 879:"A review of the alluvial diamond industry and the gravels of the North West Province, South Africa" 1492:"Saskatchewan First Nation discovers hundreds of unmarked graves at former residential school site" 508: 186: 66: 1517:
Kelly, T. B.; Angel, M. N.; O’Connor, D. E.; Huff, C. C.; Morris, L.; Wach, G. D. (22 June 2021).
1394: 1011:"Localizing ground penetrating RADAR: A step toward robust autonomous ground vehicle localization" 437: 2826: 2814: 2648: 2562: 2381: 2094: 1966: 1912: 1876: 1726: 1556: 1332: 1206: 1179:"Application of Neural Network Enhanced Ground-Penetrating Radar to Localization of Burial Sites" 961: 770: 538: 124: 1704:
Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers
2595: 2475:
Zhuravlev, A.V.; Ivashov, S.I.; Razevig, V.V.; Vasiliev, I.A.; Türk, A.S.; Kizilay, A. (2013).
2399: 2766: 2756: 2737:
A general overview of geophysical methods in archaeology can be found in the following works:
2638: 2495: 2373: 2315: 2265: 2257: 2208: 2200: 2151: 2113: 2086: 2007: 1904: 1788: 1716: 1668: 1609: 1548: 1540: 1410: 1375: 1365: 1324: 1241: 1198: 1032: 793: 662: 595:
Considerable expertise is necessary to effectively design, conduct, and interpret GPR surveys.
576:, because horizontal patterning is often the most important indicator of cultural activities. 2838: 1807: 233:, GPR is used to define landfills, contaminant plumes, and other remediation sites, while in 2630: 2554: 2487: 2365: 2305: 2247: 2190: 2141: 2133: 2076: 2068: 1997: 1958: 1896: 1830: 1778: 1768: 1708: 1658: 1648: 1599: 1530: 1402: 1316: 1285: 1190: 1157: 1118: 1022: 953: 903: 762: 500: 2057:"Accidents and opportunities: a history of the radio echo-sounding of Antarctica, 1958–79" 1877:"Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding" 1052:
Enabling autonomous vehicles to drive in the snow with localizing ground penetrating radar
534: 516: 468: 414: 215: 151: 144: 719: 2550: 2301: 2243: 2186: 2129: 1892: 1826: 1764: 1644: 1595: 1401:. SpringerBriefs in Geography. Cham: Springer International Publishing. pp. 75–90. 1281: 1177:
Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia (20 October 2016).
1153: 949: 899: 758: 2873: 684: 504: 93: 2042:
Principles, methods and results of electrodynamic thickness measurement of glacier ice
1900: 1009:
Cornick, Matthew; Koechling, Jeffrey; Stanley, Byron; Zhang, Beijia (1 January 2016).
392:
First Nation land in British Columbia. In June 2021, GPR technology was used by the
2867: 1916: 1730: 1560: 774: 203: 39: 2652: 2566: 2385: 2098: 1702: 1535: 1518: 1336: 1210: 1162: 1137: 965: 741:
Srivastav, A.; Nguyen, P.; McConnell, M.; Loparo, K. N.; Mandal, S. (October 2020).
322: 2055:
Turchetti, Simone; Dean, Katrina; Naylor, Simon; Siegert, Martin (September 2008).
530: 526: 400:
site, which had been in operation for a century until it was closed down in 1996.
259: 219: 101: 81: 1194: 792:(2nd ed.). Knoval (Institution of Engineering and Technology). pp. 1–4. 598:
Relatively high energy consumption can be problematic for extensive field surveys.
1748: 2730:
Introduction to ground penetrating radar: inverse scattering and data processing
2558: 2539:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2352:
Bruzzone, L; Alberti, G; Catallo, C; Ferro, A; Kofman, W; Orosei, R (May 2011).
2228:"Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar" 1406: 1178: 546: 542: 211: 2634: 2369: 2353: 2822: 2810: 2072: 2002: 1985: 1050: 568: 554: 550: 492: 448: 331: 105: 58: 2377: 2319: 2261: 2204: 2155: 2090: 2011: 1908: 1792: 1672: 1613: 1544: 1328: 1202: 1036: 957: 907: 766: 2770: 2627:
Proceedings of the 15th International Conference on Ground Penetrating Radar
2477:"Holographic subsurface imaging radar for applications in civil engineering" 2285: 2252: 2227: 2195: 2170: 1379: 1138:"Some examples of GPR prospecting for monitoring of the monumental heritage" 841:"The Apollo Lunar Sounder Radar System" - Proceedings of the IEEE, June 1974 680: 521:
Glaciers are particularly well suited to investigation by radar because the
496: 476: 254: 132: 120: 109: 78: 43: 2269: 2212: 1552: 742: 426: 2811:"Short movie showing acquisition, processing and accuracy of GPR readings" 2667:"International No-Dig Meets in Singapore - Trenchless Technology Magazine" 2532:"Holographic Subsurface Radar of RASCAN Type: Development and Application" 2531: 2476: 1835: 1808:"Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" 1773: 222:
has a GPR on its underside to investigate the soil and crust of the Moon.
2491: 2310: 1653: 1628: 1627:
Kulessa, B.; Booth, A. D.; Hobbs, A.; Hubbard, A. L. (18 December 2008).
1305:"Ground-Penetrating Radar Techniques to Discover and Map Historic Graves" 484: 262:
had buried in a field, following his 1992 kidnapping of an estate agent.
174:
In 1972, the Apollo 17 mission carried a ground penetrating radar called
136: 2714:
An overview of scientific and engineering applications can be found in:
2693:"Receiver Design for a Directional Borehole Radar System (dissertation)" 2137: 1604: 1579: 1290:
10.1002/(SICI)1520-6548(199610)11:5<377::AID-GEA1>3.0.CO;2-5
194: 17: 2486:. IET International Radar Conference. Xi'an, China: IET. p. 0065. 1970: 1946: 1399:
Ground-penetrating Radar and Magnetometry for Buried Landscape Analysis
1320: 679:
The "Mineseeker Project" seeks to design a system to determine whether
592:
Interpretation of radar-grams is generally non-intuitive to the novice.
480: 472: 356:
signal, weakening the useful signal while increasing extraneous noise.
207: 128: 35: 2146: 1783: 1442:"Geophysics and Unmarked Graves: a Short Introduction for Communities" 1122: 1027: 1010: 190:
Ground penetrating radar in use near Stillwater, Oklahoma, USA in 2010
2703: 2081: 1986:"Radio-Echo Sounding: Glaciological Interpretations and Applications" 1663: 1304: 495:
method similar to ground-penetrating radar and typically operates at
2443: 1962: 1934:. University of Cambridge, Scott Polar Research Institute Cambridge. 1467:"Remains of 215 children found at former residential school in B.C." 1712: 643:(DSP) to process the data during survey work rather than off-line. 198:
Ground penetrating radar survey of an archaeological site in Jordan
34:
A ground-penetrating radargram collected on a historic cemetery in
691: 602: 488: 330: 321: 193: 185: 108:, except GPR methods implement electromagnetic energy rather than 62: 30: 27:
Geophysical method that uses radar pulses to image the subsurface
658: 636: 588:
Other disadvantages of currently available GPR systems include:
175: 155: 2854: 743:"A Highly Digital Multiantenna Ground-Penetrating Radar System" 154:
to be a valuable means of assessing the presence and amount of
2426:
Electromagnetic compatibility and Radio spectrum Matters (ERM)
420: 311:. GPR can be used to detect and map subsurface archaeological 252:
GPR was often used on the Channel 4 television programme
89: 2753:
Ground-penetrating radar: an introduction for archaeologists
1362:
Ground-penetrating radar: an introduction for archaeologists
2803:"GprMax – GPR numerical simulator based on the FDTD method" 2744:
Seeing Beneath the Soil. Prospecting Methods in Archaeology
1701:
Pellikka, Petri; Rees, W. Gareth, eds. (16 December 2009).
1229: 1227: 2829:
from the original on 22 December 2021 – via YouTube.
2817:
from the original on 22 December 2021 – via YouTube.
2286:"SHARAD sounding radar on the Mars Reconnaissance Orbiter" 2794: 1947:"Airborne Radio Echo Sounding of the Greenland Ice Sheet" 396:
in Saskatchewan to locate 751 unmarked gravesites on the
2802: 2780:
Revealing the Buried Past: Geophysics for Archaeologists
202:
GPR has many applications in a number of fields. In the
2596:"Ground Penetrating Radar(GPR) Systems – Murphysurveys" 2444:"An impulse generator for the ground penetrating radar" 2354:"Subsurface Radar Sounding of the Jovian Moon Ganymede" 1932:
Antarctica: Glaciological and Geophysical Folio, Vol. 2
444: 307:
Ground penetrating radar survey is one method used in
2118:
Journal of Environmental & Engineering Geophysics
1870: 1868: 1742: 1740: 1572: 1570: 1435: 1433: 1237:
Interpreting Ground-penetrating Radar for Archaeology
877:
Wilson, M. G. C.; Henry, G.; Marshall, T. R. (2006).
639:), and noise. Systems on the market in 2009 also use 370:
Interpreting Ground-penetrating Radar for Archaeology
150:
Cross borehole GPR has developed within the field of
1686:
Bogorodsky, VV; Bentley, CR; Gudmandsen, PE (1985).
747:
IEEE Transactions on Instrumentation and Measurement
286:(IEDs) buried in roadways, in $ 200.2 million deal. 2835:"GPR Electromagnetic Emissions Safety Information" 296: 1859:"A Brief History Of Radio – Echo Sounding Of Ice" 2721:Ground Penetrating Radar Theory and Applications 817:"History of Ground Penetrating Radar Technology" 2430:European Telecommunications Standards Institute 2112:Bingham, R. G.; Siegert, M. J. (1 March 2007). 1355: 1353: 1055:(video). MIT Lincoln Laboratory. 24 June 2016. 624:European Telecommunications Standards Institute 2333:Blankenship, DD (2018). "Reasons for Europa". 2061:The British Journal for the History of Science 299:and marketed as Ground Positioning Radar(tm). 2027:Radar Methods for the Exploration of Glaciers 938:IEEE Transactions on Antennas and Propagation 8: 2795:"EUROGPR – The European GPR regulatory body" 2746:. London, United Kingdom: B.T. Batsford Ltd. 1875:Dowdeswell, J A; Evans, S (1 October 2004). 378:National Centre for Truth and Reconciliation 2751:Conyers, Lawrence B; Goodman, Dean (1997). 2171:"Radar Soundings of the Subsurface of Mars" 2114:"Radio-Echo Sounding Over Polar Ice Masses" 1749:"A new bed elevation dataset for Greenland" 1360:Conyers, Lawrence B; Goodman, Dean (1997). 451:to it so that it can be better illustrated. 2823:"FDTD Animation of sample GPR propagation" 2625:Ékes, C.; Neducza, B.; Takacs, P. (2014). 2400:"Gems and Technology – Vision Underground" 2029:(PhD). California Institute of Technology. 1240:. Routledge & CRC Press. p. 220. 2432:. September 2009. ETSI EG 202 730 V1.1.1. 2309: 2251: 2194: 2145: 2080: 2001: 1834: 1782: 1772: 1662: 1652: 1603: 1534: 1440:Wadsworth, William T. D. (22 July 2020). 1303:Conyers, Lawrence B. (1 September 2006). 1161: 1026: 380:, have been using GPR in their survey of 2044:. Zeitschrift für Gletscherkunde 18, 24. 1857:Allen, Christopher (26 September 2008). 1136:Masini, N; Persico, R; Rizzo, E (2010). 811: 809: 29: 2484:IET International Radar Conference 2013 703: 2606:from the original on 10 September 2017 2576:from the original on 29 September 2013 2511:from the original on 29 September 2013 1234:Conyers, Lawrence B. (1 April 2014) . 119:of the ground, the transmitted center 2406:from the original on 22 February 2014 1142:Journal of Geophysics and Engineering 1004: 1002: 7: 2755:. Walnut Creek, CA: AltaMira Press. 1364:. Walnut Creek, CA: AltaMira Press. 1059:from the original on 19 January 2017 993:Military & Aerospace Electronics 823:from the original on 2 February 2017 712:"How Ground Penetrating Radar Works" 382:Indian Residential Schools in Canada 2778:Gaffney, Chris; John Gater (2003). 856:Lunar and Planetary Institute (LPI) 2704:https://doi.org/10.3390/rs14041047 2456:from the original on 18 April 2015 436:needs additional or more specific 398:Marieval Indian Residential School 386:Kamloops Indian Residential School 25: 2782:. Stroud, United Kingdom: Tempus. 1580:"Five decades of radioglaciology" 225:Engineering applications include 2169:Picardi, G. (23 December 2005). 1945:Gudmandsen, P. (December 1969). 1470:The Canadian Press via APTN News 917:from the original on 5 July 2013 887:South African Journal of Geology 425: 413:This section is an excerpt from 2335:42nd COSPAR Scientific Assembly 2290:Journal of Geophysical Research 1536:10.1016/j.forsciint.2021.110882 1183:Applied Artificial Intelligence 2671:Trenchless Technology Magazine 1881:Reports on Progress in Physics 1523:Forensic Science International 665:in 1984 while surveying an ex 1: 2855:"Utility mapping with 3D GPR" 2837:. 17 May 2016. Archived from 1393:Conyers, Lawrence B. (2018). 1195:10.1080/08839514.2016.1274250 1633:Geophysical Research Letters 376:, in collaboration with the 284:improvised explosive devices 2559:10.1109/JSTARS.2011.2161755 1901:10.1088/0034-4885/67/10/R03 1407:10.1007/978-3-319-70890-4_7 683:are present in areas using 667:Russian Embassy in Canberra 574:archaeological applications 2895: 2742:Clark, Anthony J. (1996). 2728:Persico, Raffaele (2014). 2695:. University of Wuppertal. 2635:10.1109/ICGPR.2014.6970448 2370:10.1109/JPROC.2011.2108990 1395:"Medieval Site in Ireland" 852:"Lunar Sounder Experiment" 412: 2073:10.1017/S0007087408000903 2003:10.3189/S0022143000034262 1707:(0 ed.). CRC Press. 1163:10.1088/1742-2132/7/2/S05 1015:Journal of Field Robotics 641:Digital signal processing 563:Three-dimensional imaging 309:archaeological geophysics 277:electromagnetic induction 231:environmental remediation 143:Ground-penetrating radar 75:electromagnetic radiation 2732:. John Wiley & Sons. 2719:Jol, H. M., ed. (2008). 2402:. The Ganoksin Project. 1984:Robin, G. de Q. (1975). 1951:The Geographical Journal 958:10.1109/TAP.2013.2283604 908:10.2113/gssajg.109.3.301 819:. Ingenieurbüro obonic. 790:Ground Penetrating Radar 767:10.1109/TIM.2020.2984415 688:synthetic aperture radar 525:, imaginary part of the 51:Ground-penetrating radar 2691:Borchert, Olaf (2008). 2600:www.murphysurveys.co.uk 2358:Proceedings of the IEEE 2253:10.1126/science.aab0639 2196:10.1126/science.1122165 1690:. D. Reidel Publishing. 858:. Apollo 17 Experiments 239:archaeological features 237:it is used for mapping 117:electrical conductivity 1309:Historical Archaeology 1111:Archaeology in Oceania 537:resulting in low loss 394:Cowessess First Nation 390:Tk’emlúps te Secwépemc 336: 328: 273:electrical resistivity 227:nondestructive testing 199: 191: 47: 2025:Steenson, BO (1951). 1990:Journal of Glaciology 1836:10.5194/tc-7-375-2013 1774:10.5194/tc-7-499-2013 531:dielectric absorption 489:ice penetrating radar 374:University of Alberta 334: 325: 197: 189: 33: 2841:on 13 September 2018 2825:. 22 November 2011. 2629:. pp. 368–371. 2492:10.1049/cp.2013.0111 2311:10.1029/2006JE002745 1654:10.1029/2008GL035855 1584:Annals of Glaciology 1067:– via YouTube. 631:Similar technologies 533:of ice are small at 290:Vehicle localization 206:it is used to study 92:frequencies) of the 2879:Geophysical imaging 2551:2011IJSTA...4..763I 2302:2007JGRE..112.5S05S 2244:2015Sci...349b0639K 2187:2005Sci...310.1925P 2181:(5756): 1925–1928. 2138:10.2113/JEEG12.1.47 2130:2007JEEG...12...47B 1930:Drewry, DJ (1983). 1893:2004RPPh...67.1821D 1827:2013TCry....7..375F 1765:2013TCry....7..499B 1645:2008GeoRL..3524502K 1605:10.1017/aog.2020.11 1596:2020AnGla..61....1S 1282:1996Gearc..11..377C 1154:2010JGE.....7..190M 950:2013ITAP...61.6201H 900:2006SAJG..109..301W 788:Daniels DJ (2004). 759:2020ITIM...69.7422S 722:on 23 November 2021 2813:. 24 August 2009. 2673:. 30 December 2010 1321:10.1007/BF03376733 547:attenuation values 337: 329: 319:, and patterning. 200: 192: 48: 2762:978-0-7619-8927-1 2702:14, no. 4: 1047. 2644:978-1-4799-6789-6 2501:978-1-84919-603-1 2238:(6247): aab0639. 2040:Stern, W (1930). 1887:(10): 1821–1861. 1722:978-0-429-20642-9 1416:978-3-319-70890-4 1371:978-0-7619-8927-1 1123:10.1002/arco.5039 1028:10.1002/rob.21605 944:(12): 6201–6205. 799:978-0-86341-360-5 753:(10): 7422–7436. 690:units mounted on 663:Australian Police 535:radio frequencies 466: 465: 61:method that uses 16:(Redirected from 2886: 2858: 2857:. 28 April 2021. 2850: 2848: 2846: 2830: 2818: 2806: 2798: 2783: 2774: 2747: 2733: 2724: 2696: 2683: 2682: 2680: 2678: 2663: 2657: 2656: 2622: 2616: 2615: 2613: 2611: 2592: 2586: 2585: 2583: 2581: 2575: 2536: 2527: 2521: 2520: 2518: 2516: 2510: 2481: 2472: 2466: 2465: 2463: 2461: 2455: 2448: 2440: 2434: 2433: 2422: 2416: 2415: 2413: 2411: 2396: 2390: 2389: 2349: 2343: 2342: 2330: 2324: 2323: 2313: 2280: 2274: 2273: 2255: 2223: 2217: 2216: 2198: 2166: 2160: 2159: 2149: 2109: 2103: 2102: 2084: 2052: 2046: 2045: 2037: 2031: 2030: 2022: 2016: 2015: 2005: 1981: 1975: 1974: 1942: 1936: 1935: 1927: 1921: 1920: 1872: 1863: 1862: 1854: 1848: 1847: 1845: 1843: 1838: 1812: 1803: 1797: 1796: 1786: 1776: 1744: 1735: 1734: 1698: 1692: 1691: 1683: 1677: 1676: 1666: 1656: 1624: 1618: 1617: 1607: 1574: 1565: 1564: 1538: 1514: 1508: 1507: 1505: 1503: 1488: 1482: 1481: 1479: 1477: 1463: 1457: 1456: 1454: 1452: 1446:ArcGIS StoryMaps 1437: 1428: 1427: 1425: 1423: 1390: 1384: 1383: 1357: 1348: 1347: 1345: 1343: 1300: 1294: 1293: 1265: 1259: 1258: 1256: 1254: 1231: 1222: 1221: 1219: 1217: 1174: 1168: 1167: 1165: 1133: 1127: 1126: 1105: 1099: 1098: 1096: 1094: 1085:. Archived from 1075: 1069: 1068: 1066: 1064: 1047: 1041: 1040: 1030: 1006: 997: 996: 985: 979: 976: 970: 969: 933: 927: 926: 924: 922: 916: 883: 874: 868: 867: 865: 863: 848: 842: 839: 833: 832: 830: 828: 813: 804: 803: 785: 779: 778: 738: 732: 731: 729: 727: 718:. Archived from 708: 618:Power regulation 515:portions of the 491:. It employs a 471:is the study of 461: 458: 452: 429: 421: 21: 2894: 2893: 2889: 2888: 2887: 2885: 2884: 2883: 2864: 2863: 2853: 2844: 2842: 2833: 2821: 2809: 2801: 2793: 2790: 2777: 2763: 2750: 2741: 2727: 2718: 2712: 2710:Further reading 2690: 2687: 2686: 2676: 2674: 2665: 2664: 2660: 2645: 2624: 2623: 2619: 2609: 2607: 2594: 2593: 2589: 2579: 2577: 2573: 2534: 2529: 2528: 2524: 2514: 2512: 2508: 2502: 2479: 2474: 2473: 2469: 2459: 2457: 2453: 2446: 2442: 2441: 2437: 2424: 2423: 2419: 2409: 2407: 2398: 2397: 2393: 2351: 2350: 2346: 2341:. and 5 others. 2332: 2331: 2327: 2282: 2281: 2277: 2225: 2224: 2220: 2168: 2167: 2163: 2111: 2110: 2106: 2054: 2053: 2049: 2039: 2038: 2034: 2024: 2023: 2019: 1983: 1982: 1978: 1963:10.2307/1795099 1944: 1943: 1939: 1929: 1928: 1924: 1874: 1873: 1866: 1856: 1855: 1851: 1841: 1839: 1810: 1805: 1804: 1800: 1746: 1745: 1738: 1723: 1700: 1699: 1695: 1688:Radioglaciology 1685: 1684: 1680: 1626: 1625: 1621: 1576: 1575: 1568: 1516: 1515: 1511: 1501: 1499: 1490: 1489: 1485: 1475: 1473: 1465: 1464: 1460: 1450: 1448: 1439: 1438: 1431: 1421: 1419: 1417: 1392: 1391: 1387: 1372: 1359: 1358: 1351: 1341: 1339: 1302: 1301: 1297: 1267: 1266: 1262: 1252: 1250: 1248: 1233: 1232: 1225: 1215: 1213: 1176: 1175: 1171: 1135: 1134: 1130: 1107: 1106: 1102: 1092: 1090: 1077: 1076: 1072: 1062: 1060: 1049: 1048: 1044: 1008: 1007: 1000: 987: 986: 982: 978:Birmingham Mail 977: 973: 935: 934: 930: 920: 918: 914: 881: 876: 875: 871: 861: 859: 850: 849: 845: 840: 836: 826: 824: 815: 814: 807: 800: 787: 786: 782: 740: 739: 735: 725: 723: 710: 709: 705: 700: 633: 620: 582: 565: 560: 559: 469:Radioglaciology 462: 456: 453: 442: 430: 418: 415:Radioglaciology 410: 366: 305: 292: 268: 184: 164: 152:hydrogeophysics 28: 23: 22: 15: 12: 11: 5: 2892: 2890: 2882: 2881: 2876: 2866: 2865: 2860: 2859: 2851: 2831: 2819: 2807: 2799: 2789: 2788:External links 2786: 2785: 2784: 2775: 2761: 2748: 2735: 2734: 2725: 2711: 2708: 2707: 2706: 2698: 2697: 2685: 2684: 2658: 2643: 2617: 2587: 2545:(4): 763–778. 2522: 2500: 2467: 2435: 2417: 2391: 2364:(5): 837–857. 2344: 2325: 2296:(E5): E05S05. 2275: 2218: 2161: 2104: 2067:(3): 417–444. 2047: 2032: 2017: 1976: 1957:(4): 548–551. 1937: 1922: 1864: 1849: 1815:The Cryosphere 1798: 1759:(2): 499–510. 1753:The Cryosphere 1736: 1721: 1713:10.1201/b10155 1693: 1678: 1639:(24): L24502. 1619: 1566: 1509: 1498:. 23 June 2021 1483: 1458: 1429: 1415: 1385: 1370: 1349: 1295: 1276:(5): 377–391. 1270:Geoarchaeology 1260: 1246: 1223: 1189:(9): 844–860. 1169: 1128: 1117:(3): 148–157. 1100: 1089:on 31 May 2017 1083:www.ll.mit.edu 1070: 1042: 998: 995:. 13 May 2020. 980: 971: 928: 894:(3): 301–314. 869: 843: 834: 805: 798: 780: 733: 702: 701: 699: 696: 685:ultra wideband 632: 629: 619: 616: 600: 599: 596: 593: 581: 578: 564: 561: 517:radio spectrum 464: 463: 433: 431: 424: 419: 411: 409: 406: 365: 362: 304: 301: 291: 288: 267: 264: 204:Earth sciences 183: 180: 163: 160: 102:permittivities 94:radio spectrum 71:nondestructive 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2891: 2880: 2877: 2875: 2872: 2871: 2869: 2862: 2856: 2852: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2791: 2787: 2781: 2776: 2772: 2768: 2764: 2758: 2754: 2749: 2745: 2740: 2739: 2738: 2731: 2726: 2722: 2717: 2716: 2715: 2709: 2705: 2700: 2699: 2694: 2689: 2688: 2672: 2668: 2662: 2659: 2654: 2650: 2646: 2640: 2636: 2632: 2628: 2621: 2618: 2605: 2601: 2597: 2591: 2588: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2526: 2523: 2507: 2503: 2497: 2493: 2489: 2485: 2478: 2471: 2468: 2452: 2445: 2439: 2436: 2431: 2427: 2421: 2418: 2405: 2401: 2395: 2392: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2348: 2345: 2340: 2336: 2329: 2326: 2321: 2317: 2312: 2307: 2303: 2299: 2295: 2291: 2287: 2279: 2276: 2271: 2267: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2214: 2210: 2206: 2202: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2165: 2162: 2157: 2153: 2148: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2108: 2105: 2100: 2096: 2092: 2088: 2083: 2078: 2074: 2070: 2066: 2062: 2058: 2051: 2048: 2043: 2036: 2033: 2028: 2021: 2018: 2013: 2009: 2004: 1999: 1996:(73): 49–64. 1995: 1991: 1987: 1980: 1977: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1941: 1938: 1933: 1926: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1871: 1869: 1865: 1860: 1853: 1850: 1837: 1832: 1828: 1824: 1820: 1816: 1809: 1802: 1799: 1794: 1790: 1785: 1780: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1741: 1737: 1732: 1728: 1724: 1718: 1714: 1710: 1706: 1705: 1697: 1694: 1689: 1682: 1679: 1674: 1670: 1665: 1660: 1655: 1650: 1646: 1642: 1638: 1634: 1630: 1623: 1620: 1615: 1611: 1606: 1601: 1597: 1593: 1589: 1585: 1581: 1573: 1571: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1537: 1532: 1528: 1524: 1520: 1513: 1510: 1497: 1493: 1487: 1484: 1472:. 28 May 2021 1471: 1468: 1462: 1459: 1447: 1443: 1436: 1434: 1430: 1418: 1412: 1408: 1404: 1400: 1396: 1389: 1386: 1381: 1377: 1373: 1367: 1363: 1356: 1354: 1350: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1299: 1296: 1291: 1287: 1283: 1279: 1275: 1271: 1264: 1261: 1249: 1247:9781611322170 1243: 1239: 1238: 1230: 1228: 1224: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1170: 1164: 1159: 1155: 1151: 1147: 1143: 1139: 1132: 1129: 1124: 1120: 1116: 1112: 1104: 1101: 1088: 1084: 1080: 1074: 1071: 1058: 1054: 1053: 1046: 1043: 1038: 1034: 1029: 1024: 1021:(1): 82–102. 1020: 1016: 1012: 1005: 1003: 999: 994: 990: 984: 981: 975: 972: 967: 963: 959: 955: 951: 947: 943: 939: 932: 929: 913: 909: 905: 901: 897: 893: 889: 888: 880: 873: 870: 857: 853: 847: 844: 838: 835: 822: 818: 812: 810: 806: 801: 795: 791: 784: 781: 776: 772: 768: 764: 760: 756: 752: 748: 744: 737: 734: 721: 717: 713: 707: 704: 697: 695: 693: 689: 686: 682: 677: 674: 670: 668: 664: 660: 655: 651: 648: 644: 642: 638: 630: 628: 625: 622:In 2005, the 617: 615: 611: 607: 604: 597: 594: 591: 590: 589: 586: 579: 577: 575: 570: 562: 556: 553:technique in 552: 548: 544: 540: 536: 532: 528: 524: 520: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 460: 450: 449:adding images 446: 440: 439: 434:This article 432: 428: 423: 422: 416: 407: 405: 401: 399: 395: 391: 387: 383: 379: 375: 371: 363: 361: 357: 353: 350: 346: 341: 333: 324: 320: 318: 314: 310: 302: 300: 298: 289: 287: 285: 280: 278: 274: 265: 263: 261: 257: 256: 250: 246: 242: 240: 236: 232: 228: 223: 221: 217: 213: 209: 205: 196: 188: 181: 179: 177: 172: 168: 161: 159: 157: 153: 148: 146: 141: 138: 134: 130: 126: 122: 118: 113: 111: 107: 103: 97: 95: 91: 87: 83: 80: 76: 72: 68: 64: 60: 56: 52: 45: 41: 37: 32: 19: 2861: 2843:. Retrieved 2839:the original 2779: 2752: 2743: 2736: 2729: 2720: 2713: 2677:10 September 2675:. Retrieved 2670: 2661: 2626: 2620: 2610:10 September 2608:. Retrieved 2599: 2590: 2580:26 September 2578:. Retrieved 2542: 2538: 2525: 2515:26 September 2513:. Retrieved 2483: 2470: 2458:. Retrieved 2438: 2425: 2420: 2408:. Retrieved 2394: 2361: 2357: 2347: 2338: 2334: 2328: 2293: 2289: 2278: 2235: 2231: 2221: 2178: 2174: 2164: 2124:(1): 47–62. 2121: 2117: 2107: 2064: 2060: 2050: 2041: 2035: 2026: 2020: 1993: 1989: 1979: 1954: 1950: 1940: 1931: 1925: 1884: 1880: 1852: 1840:. Retrieved 1818: 1814: 1801: 1756: 1752: 1703: 1696: 1687: 1681: 1636: 1632: 1622: 1590:(81): 1–13. 1587: 1583: 1526: 1522: 1512: 1500:. Retrieved 1495: 1486: 1474:. Retrieved 1469: 1461: 1449:. Retrieved 1445: 1420:. Retrieved 1398: 1388: 1361: 1340:. Retrieved 1315:(3): 64–73. 1312: 1308: 1298: 1273: 1269: 1263: 1251:. Retrieved 1236: 1214:. Retrieved 1186: 1182: 1172: 1145: 1141: 1131: 1114: 1110: 1103: 1091:. Retrieved 1087:the original 1082: 1073: 1061:. Retrieved 1051: 1045: 1018: 1014: 992: 983: 974: 941: 937: 931: 919:. Retrieved 891: 885: 872: 860:. Retrieved 855: 846: 837: 825:. Retrieved 789: 783: 750: 746: 736: 726:24 September 724:. Retrieved 720:the original 715: 706: 678: 675: 671: 656: 652: 649: 645: 634: 621: 612: 608: 601: 587: 583: 566: 527:permittivity 523:conductivity 467: 454: 435: 402: 369: 367: 364:Burial sites 358: 354: 342: 338: 306: 293: 281: 269: 260:Michael Sams 253: 251: 247: 243: 224: 201: 182:Applications 173: 169: 165: 149: 142: 114: 98: 73:method uses 54: 50: 49: 2845:15 February 2723:. Elsevier. 827:13 February 580:Limitations 569:tomographic 551:geophysical 497:frequencies 493:geophysical 303:Archaeology 235:archaeology 212:groundwater 59:geophysical 2868:Categories 2410:5 February 2147:2164/11013 1821:(1): 390. 1784:1808/18762 1529:: 110882. 1148:(2): 190. 921:9 December 698:References 555:glaciology 543:skin depth 529:, and the 477:ice sheets 408:Glaciology 156:soil water 125:resolution 106:seismology 65:pulses to 44:Hyperbolic 2378:0018-9219 2320:0148-0227 2262:0036-8075 2205:0036-8075 2156:1083-1363 2091:0007-0874 2082:1842/2975 2012:0022-1430 1917:250845954 1909:0034-4885 1842:6 January 1793:1994-0424 1731:129205832 1673:0094-8276 1664:2160/7032 1614:0260-3055 1561:235673352 1545:0379-0738 1329:2328-1103 1203:0883-9514 1037:1556-4967 775:216338273 681:landmines 485:icy moons 345:artifacts 313:artifacts 279:methods. 255:Time Team 210:, soils, 133:limestone 121:frequency 79:microwave 2827:Archived 2815:Archived 2771:36817059 2653:22956188 2604:Archived 2571:Archived 2567:12663279 2506:Archived 2460:25 March 2451:Archived 2404:Archived 2386:12738030 2270:26228153 2213:16319122 2099:55339188 1553:34182205 1496:CTV News 1380:36817059 1337:31432686 1211:36779388 1057:Archived 966:43083872 912:Archived 821:Archived 481:ice caps 473:glaciers 457:May 2023 445:help out 349:features 347:and map 327:depths.) 317:features 297:GPR Inc. 266:Military 145:antennas 137:concrete 110:acoustic 18:Georadar 2547:Bibcode 2298:Bibcode 2240:Bibcode 2232:Science 2183:Bibcode 2175:Science 2126:Bibcode 1971:1795099 1889:Bibcode 1823:Bibcode 1761:Bibcode 1641:Bibcode 1592:Bibcode 1502:24 June 1451:24 June 1422:24 June 1342:24 June 1278:Bibcode 1253:24 June 1216:24 June 1150:Bibcode 946:Bibcode 896:Bibcode 862:24 June 755:Bibcode 539:tangent 499:in the 443:Please 208:bedrock 162:History 129:granite 77:in the 57:) is a 36:Alabama 2769:  2759:  2651:  2641:  2565:  2498:  2384:  2376:  2318:  2268:  2260:  2211:  2203:  2154:  2097:  2089:  2010:  1969:  1915:  1907:  1791:  1729:  1719:  1671:  1612:  1559:  1551:  1543:  1476:4 June 1413:  1378:  1368:  1335:  1327:  1244:  1209:  1201:  1093:31 May 1063:31 May 1035:  964:  796:  773:  716:Tech27 692:blimps 545:, and 487:using 438:images 214:, and 135:, and 2874:Radar 2649:S2CID 2574:(PDF) 2563:S2CID 2535:(PDF) 2509:(PDF) 2480:(PDF) 2454:(PDF) 2447:(PDF) 2382:S2CID 2095:S2CID 1967:JSTOR 1913:S2CID 1811:(PDF) 1727:S2CID 1557:S2CID 1333:S2CID 1207:S2CID 962:S2CID 915:(PDF) 882:(PDF) 771:S2CID 603:Radar 67:image 63:radar 2847:2017 2767:OCLC 2757:ISBN 2679:2017 2639:ISBN 2612:2017 2582:2013 2517:2013 2496:ISBN 2462:2013 2412:2014 2374:ISSN 2316:ISSN 2266:PMID 2258:ISSN 2209:PMID 2201:ISSN 2152:ISSN 2087:ISSN 2008:ISSN 1905:ISSN 1844:2014 1789:ISSN 1717:ISBN 1669:ISSN 1610:ISSN 1549:PMID 1541:ISSN 1504:2021 1478:2021 1453:2021 1424:2021 1411:ISBN 1376:OCLC 1366:ISBN 1344:2021 1325:ISSN 1255:2021 1242:ISBN 1218:2021 1199:ISSN 1095:2017 1065:2017 1033:ISSN 923:2012 864:2021 829:2016 794:ISBN 728:2020 661:and 659:ASIO 637:FMCW 511:and 483:and 275:and 220:Yutu 176:ALSE 115:The 82:band 2631:doi 2555:doi 2488:doi 2366:doi 2306:doi 2294:112 2248:doi 2236:349 2191:doi 2179:310 2142:hdl 2134:doi 2077:hdl 2069:doi 1998:doi 1959:doi 1955:135 1897:doi 1831:doi 1779:hdl 1769:doi 1709:doi 1659:hdl 1649:doi 1600:doi 1531:doi 1527:325 1403:doi 1317:doi 1286:doi 1191:doi 1158:doi 1119:doi 1023:doi 954:doi 904:doi 892:109 763:doi 513:UHF 509:VHF 447:by 388:on 216:ice 90:VHF 86:UHF 55:GPR 2870:: 2765:. 2669:. 2647:. 2637:. 2602:. 2598:. 2569:. 2561:. 2553:. 2541:. 2537:. 2504:. 2494:. 2482:. 2449:. 2380:. 2372:. 2362:99 2360:. 2356:. 2339:42 2337:. 2314:. 2304:. 2292:. 2288:. 2264:. 2256:. 2246:. 2234:. 2230:. 2207:. 2199:. 2189:. 2177:. 2173:. 2150:. 2140:. 2132:. 2122:12 2120:. 2116:. 2093:. 2085:. 2075:. 2065:41 2063:. 2059:. 2006:. 1994:15 1992:. 1988:. 1965:. 1953:. 1949:. 1911:. 1903:. 1895:. 1885:67 1883:. 1879:. 1867:^ 1829:. 1817:. 1813:. 1787:. 1777:. 1767:. 1755:. 1751:. 1739:^ 1725:. 1715:. 1667:. 1657:. 1647:. 1637:35 1635:. 1631:. 1608:. 1598:. 1588:61 1586:. 1582:. 1569:^ 1555:. 1547:. 1539:. 1525:. 1521:. 1494:. 1444:. 1432:^ 1409:. 1397:. 1374:. 1352:^ 1331:. 1323:. 1313:40 1311:. 1307:. 1284:. 1274:11 1272:. 1226:^ 1205:. 1197:. 1187:30 1185:. 1181:. 1156:. 1144:. 1140:. 1115:49 1113:. 1081:. 1031:. 1019:33 1017:. 1013:. 1001:^ 991:. 960:. 952:. 942:61 940:. 910:. 902:. 890:. 884:. 854:. 808:^ 769:. 761:. 751:69 749:. 745:. 714:. 694:. 541:, 507:, 505:HF 503:, 501:MF 479:, 475:, 315:, 158:. 131:, 42:. 40:US 38:, 2849:. 2805:. 2797:. 2773:. 2681:. 2655:. 2633:: 2614:. 2584:. 2557:: 2549:: 2543:4 2519:. 2490:: 2464:. 2414:. 2388:. 2368:: 2322:. 2308:: 2300:: 2272:. 2250:: 2242:: 2215:. 2193:: 2185:: 2158:. 2144:: 2136:: 2128:: 2101:. 2079:: 2071:: 2014:. 2000:: 1973:. 1961:: 1919:. 1899:: 1891:: 1861:. 1846:. 1833:: 1825:: 1819:7 1795:. 1781:: 1771:: 1763:: 1757:7 1733:. 1711:: 1675:. 1661:: 1651:: 1643:: 1616:. 1602:: 1594:: 1563:. 1533:: 1506:. 1480:. 1455:. 1426:. 1405:: 1382:. 1346:. 1319:: 1292:. 1288:: 1280:: 1257:. 1220:. 1193:: 1166:. 1160:: 1152:: 1146:7 1125:. 1121:: 1097:. 1039:. 1025:: 968:. 956:: 948:: 925:. 906:: 898:: 866:. 831:. 802:. 777:. 765:: 757:: 730:. 459:) 455:( 441:. 417:. 88:/ 84:( 53:( 20:)

Index

Georadar

Alabama
US
Hyperbolic
geophysical
radar
image
nondestructive
electromagnetic radiation
microwave
band
UHF
VHF
radio spectrum
permittivities
seismology
acoustic
electrical conductivity
frequency
resolution
granite
limestone
concrete
antennas
hydrogeophysics
soil water
ALSE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.