Knowledge (XXG)

Genome skimming

Source 📝

163:, or plastome, has been used extensively in identification and evolutionary studies using genome skimming due to its high abundance within plants (~3-5% of cell DNA), small size, simple structure, greater conservation of gene structure than nuclear or mitochondrial genes. Plastids studies have previously been limited by the number of regions that could be assessed in traditional approaches. Using genome skimming, the sequencing of the entire plastid genome, or plastome, can be done at a fraction of the cost and time required for typical sequencing approaches like 998:
rare or extinct species. The preservation processes in ethanol often damage the genomic DNA, which hinders the success of standard PCR protocols and other amplicon-based approaches. This presents an opportunity to sequence samples with very low DNA concentrations, without the need for DNA enrichment or amplification. Library preparation for specific to genome skimming has been shown to work with as low as 37 ng of DNA (0.2 ng/ul), 135-fold less than recommended by Illumina.
3959: 20: 1030:
2016). Additionally, most library preparation protocols have not been fully automated with robotics yet. On the bioinformatics side, large complex databases and automated workflows need to be designed to handle the large amounts of data resulting from genome skimming. The automation of the following processes need to be implemented:
211:, and high mutation rate. It is often used for phylogenetic studies as it is very uniform across metazoan groups, with a circular, double-stranded DNA molecule structure, about 15 to 20 kilobases, with 37 ribosomal RNA genes, 13 protein-coding genes, and 22 transfer RNA genes. Mitochondrial barcode sequences, such as COI, 863:, referred to as a “baits pool”, which dynamically increases in size with each iteration. Due to the low sequencing coverage of genome skims, non-target reads, even those with high sequence similarity to target reads, are largely not recruited. Using the final recruited organellar-associated reads, GetOrganelle conducts a 269:, single‐copy conserved orthologous gene, and shared copy genes. Another method is looking for novel probes that target low-copy genes using transcriptomics via Hyb-Seq. While nuclear genomes assembled using genome skims are extremely fragmented, some low-copy single-copy nuclear genes can be successfully assembled. 248:
Nuclear repeats in the genome are an underused source of phylogenetic data. When the nuclear genome is sequenced at 5% of the genome, thousands of copies of the nuclear repeats will be present. Although the repeats sequenced will only be representative of those in the entire genome, it has been shown
886:
Skmer is an assembly-free and alignment-free tool to compute genomic distances between the query and reference genome skims. Skmer uses a 2 stage approach to compute these distances. First, it generates k-mer frequency profiling using a tool called JellyFish and then these k-mers are converted into
78:
at a lower cost and larger scale than traditional methods. Due to the small amount of DNA required for genome skimming, its methodology can be applied in other fields other than genomics. Tasks like this include determining the traceability of products in the food industry, enforcing international
997:
Genome skimming is an especially advantageous approach regarding cases where the genomic DNA may be old and degraded from chemical treatments, such as specimens from herbarium and museum collections, a largely untapped genomic resource. Genome skimming allows for the molecular characterization of
294:
In field studies, invertebrates are stored in ethanol which is usually discarded during DNA-based studies. Genome skimming has been shown to detect the low quantity of DNA from this ethanol-fraction and provide information about the biomass of the specimens in a fraction, the microbiota of outer
1411:
Malé, Pierre-Jean G.; Bardon, Léa; Besnard, Guillaume; Coissac, Eric; Delsuc, Frédéric; Engel, Julien; Lhuillier, Emeline; Scotti-Saintagne, Caroline; Tinaut, Alexandra; Chave, JérÎme (April 2014). "Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family".
1029:
Both the wet-lab and the bioinformatics parts of genome skimming have certain challenges with scalability. Although the cost of sequencing in genome skimming is affordable at $ 80 for 1 Gb in 2016, the library preparation for sequencing is still very expensive, at least ~$ 200 per sample (as of
1001:
Although genome skimming is mostly used to extract high-copy plastomes and mitogenomes, it can also provide partial sequences of low-copy nuclear sequences. These sequences may not be sufficiently complete for phylogenomic analysis, but can be sufficient for designing PCR primers and probes for
231:
When targeting mitogenomes, there are no specific suggestions for minimum final sequencing depth, as mitogenomes are more variable in size and more variable in complexity in plant species, increasing the difficulty of assembling repeated sequences. However, highly conserved coding sequences and
833:
Hyb-Seq is a new protocol for capturing low-copy nuclear genes that combines target enrichment and genome skimming. Target enrichment of the low-copy loci is achieved through designed enrichment probes for specific single-copy exons, but requires a nuclear draft genome and transcriptome of the
179:
barcode genes. Compared to the typical DNA barcode, genome skimming produces plastomes at a tenth of the cost per base. Recent uses of genome skims of plastomes have allowed greater resolution of phylogenies, higher differentiation of specific groups within taxa, and more accurate estimates of
227:
allows for inference of robust phylogenies across many taxonomic groups, and it can capture events such as gene rearrangements and positioning of mobile genetic elements. Using genome skimming to assemble complete mitogenomes, the phylogenetic history and biodiversity of many organisms can be
2887:
Grandjean, Frederic; Tan, Mun Hua; Gan, Han Ming; Lee, Yin Peng; Kawai, Tadashi; Distefano, Robert J.; Blaha, Martin; Roles, Angela J.; Austin, Christopher M. (November 2017). "Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish".
989:
Genome skimming is a cost-effective, rapid and reliable method to generate large shallow datasets, since several datasets (plastid, mitochondrial, nuclear) are generated per run. It is very simple to implement, requires less lab work and optimization, and does not require
379:
protocols will depend on a variety of factors: organism, tissue type, etc. In the cases of preserved specimens, specific library preparation protocols modifications may have to be made. The following library preparation protocols have been used in genome skimming:
976:
Other than the current uses listed above, genome skimming has also been applied to other tasks, such as quantifying pollen mixtures, monitoring and conservation of certain populations. Genome skimming can also be used for variant calling, to examine
586:
is used to identify genes in the genome assemblies. The annotation tool chosen will depend on the target genome and the target features of that genome. The following annotation tools have been used in genome skimming to annotate organellar genomes:
286:
and museums, where the DNA is often very degraded, and very little remains. Studies in plants show that DNA as old as 80 years and with as little as 500 pg of degraded DNA, can be used with genome skimming to infer genomic information. In
3453:
Lin, Diana; Coombe, Lauren; Jackman, Shaun D.; Gagalova, Kristina K.; Warren, René L.; Hammond, S. Austin; McDonald, Helen; Kirk, Heather; Pandoh, Pawan; Zhao, Yongjun; Moore, Richard A. (2019-06-13). Stajich, Jason E. (ed.).
3395:
Lin, Diana; Coombe, Lauren; Jackman, Shaun D.; Gagalova, Kristina K.; Warren, René L.; Hammond, S. Austin; Kirk, Heather; Pandoh, Pawan; Zhao, Yongjun; Moore, Richard A.; Mungall, Andrew J. (2019-06-06). Rokas, Antonis (ed.).
854:
to the target genome, using Bowtie2, are referred to as “seed reads”. The seed reads are used as “baits” to recruit more organelle-associated reads via multiple iterations of extension. The read extension algorithm uses a
1013:
Genome skimming scratches the surface of the genome, so it will not suffice for biological questions that require gene prediction and annotation. These downstream steps are required for deep and more meaningful analyses.
1020:
A combination of sequencing depth and read type, as well as genomic target (plastome, mitogenome, etc.), will influence the success of single-end and paired-end assemblies, so these parameters must be carefully chosen.
1159:
Straub, Shannon C. K.; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C.; Liston, Aaron (February 2012). "Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics".
3116:
Bankevich, Anton; Nurk, Sergey; Antipov, Dmitry; Gurevich, Alexey A.; Dvorkin, Mikhail; Kulikov, Alexander S.; Lesin, Valery M.; Nikolenko, Sergey I.; Pham, Son; Prjibelski, Andrey D.; Pyshkin, Alexey V. (May 2012).
281:
and relied on large intact DNA templates and were affected by contamination and method of preservation. Genome skimming, on the other hand, can be used to extract genetic information from preserved species in
253:
and their abundance is estimated. The distribution and occurrence of these repeat types can be phylogenetically informative and provide information about the evolutionary history of various species.
2523:
Dodsworth, Steven; Guignard, Maïté S.; Christenhusz, Maarten J. M.; Cowan, Robyn S.; Knapp, Sandra; Maurin, Olivier; Struebig, Monika; Leitch, Andrew R.; Chase, Mark W.; Forest, Félix (2018-10-29).
850:
GetOrganelle is a toolkit that assembles organellar genomes uses genome skimming reads. Organelle-associated reads are recruited using a modified “baiting and iterative mapping” approach. The reads
956:
if (deep) whole-genome sequencing data has already been obtained. Genome skimming has been demonstrated to simplify organellar genome assembly by subsampling the reads of the nuclear genome via
1017:
Although plastid genomic sequences are abundant in genome skims, the presence of mitochondrial and nuclear pseudogenes of plastid origin can potentially pose issues for plastome assemblies.
132:
are non-coding regions within the 18-5.8-28S rDNA in eukaryotes and are one feature of rDNA that has been used in genome skimming studies. ITS are used to detect different species within a
2274:"Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales)" 291:, even with low yield and low-quality DNA, one study was still able to produce "high-quality complete chloroplast and ribosomal DNA sequences" at a large scale for downstream analyses. 136:, due to their high inter-species variability. These have low individual variability, preventing the identification of distinct strains or individuals. They are also present in all 3797: 2719:"Exploring the potential of nuclear and mitochondrial sequencing data generated through genome‐skimming for plant phylogenetics: A case study from a clade of neotropical lianas" 964:
genome skimming essentially filters out nuclear sequences, leaving a higher organellar to nuclear sequence ratio for assembly, reducing the complexity of the assembly paradigm.
1899:
Berger, Brent A.; Han, Jiahong; Sessa, Emily B.; Gardner, Andrew G.; Shepherd, Kelly A.; Ricigliano, Vincent A.; Jabaily, Rachel S.; Howarth, Dianella G. (October 2017).
2051:
Nevill, Paul G.; Zhong, Xiao; Tonti-Filippini, Julian; Byrne, Margaret; Hislop, Michael; Thiele, Kevin; van Leeuwen, Stephen; Boykin, Laura M.; Small, Ian (2020-01-04).
474:. Assemblers chosen will depend on the target genome and whether short or long reads are used. The following tools have been used to assemble genomes from genome skims: 994:
knowledge of the organism nor its genome size. This provides a low-risk avenue for biological inquiry and hypothesis generation without a huge commitment of resources.
1284: 261:
Low-copy DNA can prove useful for evolution developmental and phylogenetic studies. It can be mined from high-copy fractions in a number of ways such as developing
1842:
Berger, Brent A.; Han, Jiahong; Sessa, Emily B.; Gardner, Andrew G.; Shepherd, Kelly A.; Ricigliano, Vincent A.; Jabaily, Rachel S.; Howarth, Dianella G. (2017).
315:
protocols will vary depending on the source of the sample (i.e. plants, animals, etc.). The following DNA extraction protocols have been used in genome skimming:
1618:"Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data" 183:
When targeting plastomes, it is suggested that a minimum final sequencing depth of 30X is achieved for single-copy regions to ensure high-quality assemblies.
1772:
Johri, Shaili; Solanki, Jitesh; Cantu, Vito Adrian; Fellows, Sam R.; Edwards, Robert A.; Moreno, Isabel; Vyas, Asit; Dinsdale, Elizabeth A. (December 2019).
834:
targeted organism. The target-enriched libraries are then sequenced, and the resulting reads processed, assembled, and identified. Using off-target reads,
216: 3822: 1331:"Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies" 180:
biodiversity. Additionally, the plastome has been used to compare species within a genus to look at evolutionary changes and diversity within a group.
295:
tissue layers and the gut contents (like prey) released by the vomit reflex. Thus, genome skimming can provide an additional method of understanding
2956:
Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron (September 2014).
3944: 859:, where the reads are cut into substrings of certain lengths, referred to as “words”. At each extension iteration, these “words” are added to a 3802: 878:
is filtered and untangled, producing all possible paths of the graph, and therefore all configurations of the circular organellar genomes.
3299:
Ondov, Brian D.; Treangen, Todd J.; Melsted, PĂĄll; Mallonee, Adam B.; Bergman, Nicholas H.; Koren, Sergey; Phillippy, Adam M. (Dec 2016).
42:. These genome skims contain information about the high-copy fraction of the genome. The high-copy fraction of the genome consists of the 887:
hashes. A random subset of these hashes are selected to form a so-called "sketch". For its second stage, Skmer uses Mash to estimate the
3646: 825:
Various protocols, pipelines, and bioinformatic tools have been developed to help automate the downstream processes of genome skimming.
3817: 3611: 2647:"Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species" 968:
genome skimming was first done as a proof-of-concept, optimizing the parameters for read type, read length, and sequencing coverage.
721: 716:
are inferred using phylogenetic reconstruction software. The software chosen for phylogeny reconstruction will depend on whether a
952:
Although genome skimming is usually chosen as a cost-effective method to sequence organellar genomes, genome skimming can be done
1094: 212: 3988: 2132: 725: 1971:
Zeng, Chun-Xia; Hollingsworth, Peter M.; Yang, Jing; He, Zheng-Shan; Zhang, Zhi-Rong; Li, De-Zhu; Yang, Jun-Bo (2018-06-05).
1109: 978: 184: 2819:"The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae)" 2338:"Geneious! Simplified Genome Skimming Methods for Phylogenetic Systematic Studies: A Case Study in Oreocarya (Boraginaceae)" 1702:"Plastome of Quercus xanthoclada and comparison of genomic diversity amongst selected Quercus species using genome skimming" 2767:"Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke" 3456:"Complete Chloroplast Genome Sequence of an Engelmann Spruce ( Picea engelmannii, Genotype Se404-851) from Western Canada" 926: 717: 1059:
Some of these scalability challenges have already been implemented, as shown above in the "Tools and Pipelines" section.
838:
and complete plastomes can also be assembled. Through this process, Hyb-Seq is able to produce genome-scale datasets for
3903: 71: 1774:"'Genome skimming' with the MinION hand-held sequencer identifies CITES-listed shark species in India's exports market" 1472:
Denver, Dee R.; Brown, Amanda M. V.; Howe, Dana K.; Peetz, Amy B.; Zasada, Inga A. (2016-08-04). Round, June L. (ed.).
1329:
Trevisan, Bruna; Alcantara, Daniel M.C.; Machado, Denis Jacob; Marques, Fernando P.L.; Lahr, Daniel J.G. (2019-09-13).
3013:
Jin, Jian-Jun; Yu, Wen-Bin; Yang, Jun-Bo; Song, Yu; dePamphilis, Claude W.; Yi, Ting-Shuang; Li, De-Zhu (2018-03-09).
1104: 1099: 709: 129: 91:
In addition to the assembly of the smaller organellar genomes, genome skimming can also be used to uncover conserved
3651: 2218:"Genome skimming provides new insight into the relationships in Ludwigia section Macrocarpon, a polyploid complex" 3807: 3792: 902:
is an integrative software platform that allows users to perform various steps in bioinformatic analysis such as
262: 204: 3812: 3631: 3183:
Sarmashghi, Shahab; Bohmann, Kristine; P. Gilbert, M. Thomas; Bafna, Vineet; Mirarab, Siavash (December 2019).
423:
in nuclear repeats require longer reads. The following sequencing platforms have been used in genome skimming:
208: 3398:"Complete Chloroplast Genome Sequence of a White Spruce ( Picea glauca, Genotype WS77111) from Eastern Canada" 728:
method is appropriate. The following phylogenetic reconstruction programs have been used in genome skimming:
454:
The Illumina MiSeq platform has been chosen by certain researchers for its long read length for short reads.
1616:
Liu, Luxian; Wang, Yuewen; He, Peizi; Li, Pan; Lee, Joongku; Soltis, Douglas E.; Fu, Chengxin (2018-04-04).
3513:"Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations" 1844:"The unexpected depths of genome-skimming data: A case study examining Goodeniaceae floral symmetry genes1" 891:
of two of these sketches. The combination of these 2 stages is used to estimate the evolutionary distance.
23:
Genome skimming allows for assembly of high-copy fractions of the genome into contiguous, complete genomes.
3604: 1901:"The Unexpected Depths of Genome-Skimming Data: A Case Study Examining Goodeniaceae Floral Symmetry Genes" 2817:
Richter, Sandy; Schwarz, Francine; Hering, Lars; Böggemann, Markus; Bleidorn, Christoph (December 2015).
2272:
Nauheimer, Lars; Cui, Lujing; Clarke, Charles; Crayn, Darren M.; Bourke, Greg; Nargar, Katharina (2019).
2053:"Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics" 1554:"A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming" 3939: 3773: 3738: 3032: 1005:
Genome skimming is not dependent on any specific primers and remains unaffected by gene rearrangements.
1474:"Genome Skimming: A Rapid Approach to Gaining Diverse Biological Insights into Multicellular Pathogens" 66:
technology to generate these skims. Although these skims are merely 'the tip of the genomic iceberg',
3838: 3656: 1785: 1055:
Identification of the different organisms from shotgun sequencing of environmental DNA (metagenomics)
241: 59: 2216:
Liu, Shih-Hui; Edwards, Christine E.; Hoch, Peter C.; Raven, Peter H.; Barber, Janet C. (May 2018).
249:
that these sequenced fractions accurately reflect genomic abundance. These repeats can be clustered
3918: 3908: 3868: 3768: 3748: 3641: 3636: 1084: 148: 3878: 3763: 3758: 3733: 2915: 2301: 2181: 1437: 1265: 1200:
Dodsworth, Steven (September 2015). "Genome skimming for next-generation biodiversity analysis".
1089: 907: 851: 104: 2936: 3015:"GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes" 3983: 3962: 3893: 3883: 3873: 3707: 3597: 3575: 3534: 3493: 3475: 3435: 3417: 3340: 3322: 3281: 3263: 3224: 3206: 3156: 3138: 3098: 3080: 2995: 2977: 2856: 2838: 2788: 2740: 2686: 2668: 2622: 2604: 2556: 2494: 2447: 2429: 2375: 2357: 2293: 2239: 2173: 2165: 2092: 2074: 2012: 1994: 1938: 1920: 1881: 1863: 1819: 1801: 1737: 1719: 1657: 1639: 1585: 1513: 1495: 1429: 1370: 1352: 1253: 1217: 1177: 1079: 1074: 929:. It uses built-in database or user specified reference to extract orthologous sequences from 903: 871: 867: 713: 463: 376: 278: 266: 233: 224: 196: 164: 112: 92: 51: 3923: 3898: 3565: 3552:
Coissac, Eric; Hollingsworth, Peter M.; Lavergne, SĂ©bastien; Taberlet, Pierre (April 2016).
3524: 3483: 3467: 3425: 3409: 3375: 3367: 3330: 3312: 3271: 3255: 3214: 3196: 3146: 3130: 3088: 3072: 3018: 2985: 2969: 2905: 2897: 2846: 2830: 2778: 2730: 2676: 2658: 2612: 2594: 2546: 2536: 2484: 2437: 2421: 2365: 2349: 2285: 2229: 2155: 2147: 2082: 2064: 2002: 1984: 1928: 1912: 1871: 1855: 1809: 1793: 1727: 1709: 1647: 1629: 1575: 1565: 1503: 1485: 1421: 1360: 1342: 1209: 1169: 200: 80: 3783: 3045: 2472:
Stoughton, Thomas R.; Kriebel, Ricardo; Jolles, Diana D.; O'Quinn, Robin L. (March 2018).
1277: 875: 47: 236:. Sequences should be masked similarly to targeting plastomes and nuclear ribosomal DNA. 3360:"PhyloHerb: A high‐throughput phylogenomic pipeline for processing genome skimming data" 3119:"SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing" 1789: 3913: 3853: 3753: 3488: 3455: 3430: 3397: 3380: 3359: 3335: 3300: 3276: 3243: 3219: 3184: 3151: 3118: 3093: 3060: 2990: 2957: 2851: 2818: 2681: 2646: 2617: 2582: 2442: 2409: 2370: 2337: 2087: 2052: 2007: 1972: 1933: 1900: 1876: 1843: 1814: 1773: 1732: 1701: 1652: 1617: 1580: 1553: 1508: 1473: 1365: 1330: 1069: 583: 420: 416: 312: 223:, can also be used for taxonomic identification. The increased publishing of complete 63: 55: 31: 1052:
Identification of unknown specimen from a small shotgun sequencing or any DNA fragment
3977: 3244:"A fast, lock-free approach for efficient parallel counting of occurrences of k-mers" 2765:
Bock, Dan G.; Kane, Nolan C.; Ebert, Daniel P.; Rieseberg, Loren H. (February 2014).
2305: 938: 934: 911: 888: 856: 839: 835: 168: 141: 96: 67: 43: 3259: 2919: 2185: 1441: 3863: 3743: 108: 75: 3185:"Skmer: assembly-free and alignment-free sample identification using genome skims" 2958:"Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics" 1213: 1552:
Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der (November 2017).
1490: 3843: 3511:
Johri, Shaili; Doane, Michael; Allen, Lauren; Dinsdale, Elizabeth (2019-03-29).
2131:
Linard, B.; Arribas, P.; AndĂșjar, C.; Crampton‐Platt, A.; Vogler, A. P. (2016).
1714: 2336:
Ripma, Lee A.; Simpson, Michael G.; Hasenstab-Lehman, Kristen (December 2014).
1797: 3848: 3717: 3697: 3672: 3317: 3201: 2663: 2069: 1989: 1634: 1257: 860: 19: 3538: 3479: 3421: 3326: 3267: 3210: 3142: 3084: 2981: 2842: 2744: 2672: 2645:
Xia, Yun; Luo, Wei; Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao (December 2018).
2608: 2560: 2433: 2361: 2297: 2273: 2169: 2078: 1998: 1924: 1867: 1805: 1723: 1643: 1499: 1356: 960:
genome skimming. Since the organellar genomes will be high-copy in the cell,
2541: 2524: 2425: 2151: 1425: 288: 283: 137: 3579: 3497: 3439: 3344: 3285: 3228: 3160: 3102: 2999: 2860: 2792: 2690: 2626: 2599: 2498: 2451: 2379: 2243: 2177: 2160: 2096: 2016: 1942: 1885: 1823: 1741: 1661: 1589: 1517: 1433: 1374: 1221: 1181: 3134: 2474:"Next-generation lineage discovery: A case study of tuberous Claytonia L." 419:
with short reads or long reads will depend on the target genome or genes.
3888: 3858: 3702: 3692: 3620: 3471: 3413: 2973: 2834: 2583:"Genome skimming identifies polymorphism in tern populations and species" 2353: 1973:"Genome skimming herbarium specimens for DNA barcoding and phylogenomics" 1916: 1859: 1570: 220: 100: 2910: 2551: 1173: 1037:
Assembly of organellar DNA (as well as nuclear ribosomal tandem repeats)
3371: 3076: 1347: 930: 296: 160: 151:
of 100X is achieved, and sequences with less than 5X depth are masked.
3570: 3553: 3529: 3512: 2901: 2783: 2766: 2735: 2718: 2525:"Potential of Herbariomics for Studying Repetitive DNA in Angiosperms" 2489: 2473: 2410:"Genome‐skimming provides accurate quantification for pollen mixtures" 2234: 2217: 3712: 3687: 922: 35: 3301:"Mash: fast genome and metagenome distance estimation using MinHash" 2289: 3023: 3014: 167:. Plastomes have been suggested as a method to replace traditional 3554:"From barcodes to genomes: extending the concept of DNA barcoding" 147:
When targeting nuclear rDNA, it is suggested that a minimum final
133: 277:
Previous methods of trying to recover degraded DNA were based on
79:
regulations regarding biodiversity and biological resources, and
2408:
Lang, Dandan; Tang, Min; Hu, Jiahui; Zhou, Xin (November 2019).
3593: 3682: 3677: 2133:"Lessons from genome skimming of arthropod-preserving ethanol" 2717:
Fonseca, Luiz Henrique M.; Lohmann, LĂșcia G. (January 2020).
2581:
Jackson, David; Emslie, Steven D; van Tuinen, Marcel (2012).
1700:
Hinsinger, Damien Daniel; Strijk, Joeri Sergej (2019-01-10).
731: 666: 590: 477: 318: 3589: 899: 914:
by incorporating other tools within a GUI based platform.
1046:
Estimation of sequencing coverage for single-copy genes
462:
After genome skimming, high-copy organellar DNA can be
1049:
Extraction of reads corresponding to single-copy genes
232:
nonrepetitive flanking regions can be assembled using
30:
is a sequencing approach that uses low-pass, shallow
3932: 3831: 3782: 3726: 3665: 38:(up to 5%), to generate fragments of DNA, known as 3242:Marçais, Guillaume; Kingsford, Carl (2011-03-15). 140:, have a high evolution rate and has been used in 1040:Annotation of the different assembled fragments 3466:(24): e00382–19, /mra/8/24/MRA.00382–19.atom. 3408:(23): e00381–19, /mra/8/23/MRA.00381–19.atom. 3059:Langmead, Ben; Salzberg, Steven L (Mar 2012). 3605: 470:. High-copy nuclear repeats can be clustered 353:Cetyl Trimethylammonium Bromide (CTAB) method 203:in a great variety of studies because of its 8: 2331: 2329: 2327: 2325: 2323: 2321: 2319: 2317: 2315: 1558:International Journal of Molecular Sciences 187:with less than 20X depth should be masked. 99:. In phylogenomic studies of multicellular 3612: 3598: 3590: 3061:"Fast gapped-read alignment with Bowtie 2" 1043:Removal of potential contaminant sequences 403:TruSeq Nano DNA LT Library Preparation kit 385:Illumina TruSeq DNA Sample Preparation kit 3569: 3528: 3487: 3429: 3379: 3358:Cai, L., Zhang, H., Davis, C. C. (2022). 3334: 3316: 3275: 3218: 3200: 3150: 3092: 3022: 2989: 2909: 2850: 2782: 2734: 2680: 2662: 2616: 2598: 2550: 2540: 2488: 2441: 2369: 2233: 2159: 2086: 2068: 2006: 1988: 1932: 1875: 1813: 1731: 1713: 1651: 1633: 1579: 1569: 1507: 1489: 1364: 1346: 1283:CS1 maint: multiple names: authors list ( 449:Oxford Nanopore Technologies (ONT) MinION 622:Dual Organellar GenoMe Annotator (DOGMA) 604:Dual Organellar GenoMe Annotator (DOGMA) 207:, high copy-number in the cell, lack of 18: 3945:List of genetics research organizations 2126: 2046: 1122: 3178: 3176: 3174: 3172: 3170: 3041: 3030: 2931: 2929: 2882: 2880: 2878: 2876: 2874: 2872: 2870: 2812: 2810: 2808: 2806: 2804: 2802: 2760: 2758: 2756: 2754: 2712: 2710: 2708: 2706: 2704: 2702: 2700: 2640: 2638: 2636: 2576: 2574: 2572: 2570: 2518: 2516: 2514: 2512: 2510: 2508: 2467: 2465: 2463: 2461: 2403: 2401: 2399: 2397: 2395: 2393: 2391: 2389: 2267: 2265: 2263: 2261: 2259: 2257: 2255: 2253: 2211: 2209: 2207: 2205: 2203: 2201: 2199: 2197: 2195: 2124: 2122: 2120: 2118: 2116: 2114: 2112: 2110: 2108: 2106: 2044: 2042: 2040: 2038: 2036: 2034: 2032: 2030: 2028: 2026: 1273: 1263: 925:is a bioinformatic pipeline write in 400:Nextera XT DNA Library Preparation kit 338:Invitrogen ChargeSwitch gDNA Plant kit 265:from databases that contain conserved 185:Single nucleotide polymorphisms (SNPs) 103:, genome skimming can be used to find 70:of them can still provide insights on 1966: 1964: 1962: 1960: 1958: 1956: 1954: 1952: 1837: 1835: 1833: 1767: 1765: 1763: 1761: 1759: 1757: 1755: 1753: 1751: 1695: 1693: 1691: 1611: 1609: 1607: 1605: 1603: 1601: 1599: 1547: 1406: 1404: 1324: 1322: 1320: 1318: 1316: 1314: 1195: 1193: 1191: 1154: 1152: 1150: 1148: 1146: 7: 2723:Journal of Systematics and Evolution 1689: 1687: 1685: 1683: 1681: 1679: 1677: 1675: 1673: 1671: 1545: 1543: 1541: 1539: 1537: 1535: 1533: 1531: 1529: 1527: 1467: 1465: 1463: 1461: 1459: 1457: 1455: 1453: 1451: 1402: 1400: 1398: 1396: 1394: 1392: 1390: 1388: 1386: 1384: 1312: 1310: 1308: 1306: 1304: 1302: 1300: 1298: 1296: 1294: 1243: 1241: 1239: 1237: 1235: 1233: 1231: 1144: 1142: 1140: 1138: 1136: 1134: 1132: 1130: 1128: 1126: 466:with a reference guide or assembled 3460:Microbiology Resource Announcements 3402:Microbiology Resource Announcements 356:Qiagen DNeasy Tissue Extraction kit 2529:Frontiers in Ecology and Evolution 1248:Dodsworth, Steven Andrew, author. 359:Qiagen DNeasy Blood and Tissue kit 130:Internal transcribed spacers (ITS) 14: 1250:Genome skimming for phylogenomics 1034:Assembly of the standard barcodes 3958: 3957: 3123:Journal of Computational Biology 1095:Alignment-free sequence analysis 1002:hybridization-based approaches. 979:single nucleotide polymorphisms 240:Nuclear repeats (satellites or 62:. It employs high-throughput, 54:), and nuclear repeats such as 3364:Applications in Plant Sciences 2962:Applications in Plant Sciences 2342:Applications in Plant Sciences 1905:Applications in Plant Sciences 1848:Applications in Plant Sciences 1110:List of phylogenetics software 199:, or mitogenome, is used as a 1: 3260:10.1093/bioinformatics/btr011 1214:10.1016/j.tplants.2015.06.012 443:Illumina NextSeq 550 platform 437:Illumina HiSeq X Ten platform 350:Quick-DNA Plus Extraction kit 3904:Missing heritability problem 2823:Genome Biology and Evolution 2278:Australian Systematic Botany 1491:10.1371/journal.ppat.1005713 708:The assembled sequences are 434:Illumina HiSeq 4000 platform 431:Illumina HiSeq 2500 platform 428:Illumina HiSeq 2000 platform 388:Illumina TruSeq PCR-free kit 332:Qiagen DNeasy Plant Mini kit 144:between and across species. 2414:Molecular Ecology Resources 2140:Molecular Ecology Resources 1715:10.3897/phytokeys.132.36365 1414:Molecular Ecology Resources 1105:List of sequenced plastomes 1100:Computational phylogenetics 704:Phylogenetic reconstruction 391:NEXTFlex DNA Sequencing kit 335:Tiangen DNAsecure Plant kit 16:Method of genome sequencing 4005: 2477:American Journal of Botany 2222:American Journal of Botany 1798:10.1038/s41598-019-40940-9 1162:American Journal of Botany 64:next generation sequencing 3953: 3627: 3318:10.1186/s13059-016-0997-x 3202:10.1186/s13059-019-1632-4 2664:10.1186/s12864-018-5329-y 2070:10.1186/s13007-019-0534-5 1990:10.1186/s13007-018-0300-0 1635:10.1186/s12864-018-4633-x 939:nuclear ribosomal regions 273:Low-quantity degraded DNA 234:reference-guided assembly 50:), mitochondrial genome ( 397:NEBNext Multiplex Oligos 2542:10.3389/fevo.2018.00174 2426:10.1111/1755-0998.13061 2152:10.1111/1755-0998.12539 1426:10.1111/1755-0998.12246 1202:Trends in Plant Science 776:Bayesian Inference (BI) 737:Maximum Likelihood (ML) 726:Bayesian Inference (BI) 718:Maximum Likelihood (ML) 446:Illumina GAIIx platform 440:Illumina MiSeq platform 171:in plants, such as the 3989:DNA sequencing methods 3040:Cite journal requires 2600:10.1186/1756-0500-5-94 941:using a BLAST search. 761:Maximum Parsimony (MP) 722:Maximum Parsimony (MP) 24: 3940:List of genetic codes 3135:10.1089/cmb.2012.0021 242:transposable elements 142:phylogenetic analysis 68:phylogenomic analysis 60:transposable elements 22: 3839:Behavioural genetics 3472:10.1128/MRA.00382-19 3414:10.1128/MRA.00381-19 2974:10.3732/apps.1400042 2354:10.3732/apps.1400062 1917:10.3732/apps.1700042 1860:10.3732/apps.1700042 1571:10.3390/ijms18112341 406:Rapid Sequencing kit 394:NEBNext Ultra II DNA 329:Plant DNAzol Reagent 205:maternal inheritance 197:mitochondrial genome 97:phylogenomic studies 72:evolutionary history 3919:Population genomics 3909:Molecular evolution 3869:Genetic engineering 1790:2019NatSR...9.4476J 1174:10.3732/ajb.1100335 1085:Coverage (genetics) 821:Tools and Pipelines 377:Library preparation 372:Library preparation 3879:Genetic monitoring 3372:10.1002/aps3.11475 3077:10.1038/nmeth.1923 2835:10.1093/gbe/evv224 2587:BMC Research Notes 1778:Scientific Reports 1348:10.7717/peerj.7543 1276:has generic name ( 1090:Taxonomy (biology) 981:across a species. 972:Other Applications 714:phylogenetic trees 299:via low copy DNA. 46:, plastid genome ( 25: 3971: 3970: 3894:He Jiankui affair 3884:Genetic genealogy 3874:Genetic diversity 3803:the British Isles 3708:Genetic variation 3571:10.1111/mec.13549 3558:Molecular Ecology 3530:10.3390/d11040049 2937:"Geneious – OSTR" 2902:10.1111/zsc.12247 2890:Zoologica Scripta 2829:(12): 3443–3462. 2784:10.1111/nph.12560 2736:10.1111/jse.12533 2490:10.1002/ajb2.1061 2235:10.1002/ajb2.1086 1080:Sequence assembly 1075:Sequence analysis 817: 816: 700: 699: 658: 657: 524: 523: 368: 367: 279:Sanger sequencing 267:orthologous genes 165:Sanger sequencing 113:genomic variation 111:and characterize 3996: 3961: 3960: 3924:Reverse genetics 3899:Medical genetics 3614: 3607: 3600: 3591: 3584: 3583: 3573: 3564:(7): 1423–1428. 3549: 3543: 3542: 3532: 3508: 3502: 3501: 3491: 3450: 3444: 3443: 3433: 3392: 3386: 3385: 3383: 3355: 3349: 3348: 3338: 3320: 3296: 3290: 3289: 3279: 3239: 3233: 3232: 3222: 3204: 3180: 3165: 3164: 3154: 3113: 3107: 3106: 3096: 3056: 3050: 3049: 3043: 3038: 3036: 3028: 3026: 3010: 3004: 3003: 2993: 2953: 2947: 2946: 2944: 2943: 2933: 2924: 2923: 2913: 2884: 2865: 2864: 2854: 2814: 2797: 2796: 2786: 2777:(3): 1021–1030. 2762: 2749: 2748: 2738: 2714: 2695: 2694: 2684: 2666: 2642: 2631: 2630: 2620: 2602: 2578: 2565: 2564: 2554: 2544: 2520: 2503: 2502: 2492: 2469: 2456: 2455: 2445: 2420:(6): 1433–1446. 2405: 2384: 2383: 2373: 2333: 2310: 2309: 2269: 2248: 2247: 2237: 2213: 2190: 2189: 2163: 2146:(6): 1365–1377. 2137: 2128: 2101: 2100: 2090: 2072: 2048: 2021: 2020: 2010: 1992: 1968: 1947: 1946: 1936: 1896: 1890: 1889: 1879: 1839: 1828: 1827: 1817: 1769: 1746: 1745: 1735: 1717: 1697: 1666: 1665: 1655: 1637: 1613: 1594: 1593: 1583: 1573: 1549: 1522: 1521: 1511: 1493: 1469: 1446: 1445: 1408: 1379: 1378: 1368: 1350: 1326: 1289: 1288: 1281: 1275: 1271: 1269: 1261: 1245: 1226: 1225: 1197: 1186: 1185: 1156: 857:hashing approach 732: 710:globally aligned 667: 591: 555:SOAPdenovo-Trans 478: 319: 201:molecular marker 149:sequencing depth 4004: 4003: 3999: 3998: 3997: 3995: 3994: 3993: 3974: 3973: 3972: 3967: 3949: 3928: 3827: 3818:the Middle East 3784:Archaeogenetics 3778: 3722: 3661: 3623: 3618: 3588: 3587: 3551: 3550: 3546: 3510: 3509: 3505: 3452: 3451: 3447: 3394: 3393: 3389: 3357: 3356: 3352: 3298: 3297: 3293: 3241: 3240: 3236: 3182: 3181: 3168: 3115: 3114: 3110: 3058: 3057: 3053: 3039: 3029: 3012: 3011: 3007: 2955: 2954: 2950: 2941: 2939: 2935: 2934: 2927: 2886: 2885: 2868: 2816: 2815: 2800: 2771:New Phytologist 2764: 2763: 2752: 2716: 2715: 2698: 2644: 2643: 2634: 2580: 2579: 2568: 2522: 2521: 2506: 2471: 2470: 2459: 2407: 2406: 2387: 2348:(12): 1400062. 2335: 2334: 2313: 2290:10.1071/SB18057 2271: 2270: 2251: 2215: 2214: 2193: 2135: 2130: 2129: 2104: 2050: 2049: 2024: 1970: 1969: 1950: 1911:(10): 1700042. 1898: 1897: 1893: 1854:(10): 1700042. 1841: 1840: 1831: 1771: 1770: 1749: 1699: 1698: 1669: 1615: 1614: 1597: 1551: 1550: 1525: 1484:(8): e1005713. 1471: 1470: 1449: 1410: 1409: 1382: 1328: 1327: 1292: 1282: 1272: 1262: 1247: 1246: 1229: 1199: 1198: 1189: 1158: 1157: 1124: 1119: 1114: 1065: 1027: 1011: 987: 974: 950: 948:Genome skimming 920: 897: 884: 848: 831: 823: 818: 799: 778: 763: 739: 706: 701: 664: 659: 646: 631: 613: 598: 581: 576: 530: 525: 503: 485: 460: 452: 421:Microsatellites 414: 409: 374: 369: 347: 326: 310: 305: 275: 259: 246: 193: 157: 126: 121: 89: 56:microsatellites 28:Genome skimming 17: 12: 11: 5: 4002: 4000: 3992: 3991: 3986: 3976: 3975: 3969: 3968: 3966: 3965: 3954: 3951: 3950: 3948: 3947: 3942: 3936: 3934: 3930: 3929: 3927: 3926: 3921: 3916: 3914:Plant genetics 3911: 3906: 3901: 3896: 3891: 3886: 3881: 3876: 3871: 3866: 3861: 3856: 3854:Genome editing 3851: 3846: 3841: 3835: 3833: 3832:Related topics 3829: 3828: 3826: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3789: 3787: 3780: 3779: 3777: 3776: 3771: 3766: 3761: 3756: 3754:Immunogenetics 3751: 3746: 3741: 3736: 3730: 3728: 3724: 3723: 3721: 3720: 3715: 3710: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3669: 3667: 3666:Key components 3663: 3662: 3660: 3659: 3654: 3649: 3644: 3639: 3634: 3628: 3625: 3624: 3619: 3617: 3616: 3609: 3602: 3594: 3586: 3585: 3544: 3503: 3445: 3387: 3350: 3305:Genome Biology 3291: 3254:(6): 764–770. 3248:Bioinformatics 3234: 3189:Genome Biology 3166: 3129:(5): 455–477. 3108: 3071:(4): 357–359. 3065:Nature Methods 3051: 3042:|journal= 3024:10.1101/256479 3005: 2968:(9): 1400042. 2948: 2925: 2896:(6): 718–728. 2866: 2798: 2750: 2696: 2632: 2566: 2504: 2483:(3): 536–548. 2457: 2385: 2311: 2284:(3): 243–254. 2249: 2228:(5): 875–887. 2191: 2102: 2022: 1948: 1891: 1829: 1747: 1708:(132): 75–89. 1667: 1595: 1523: 1478:PLOS Pathogens 1447: 1380: 1290: 1227: 1208:(9): 525–527. 1187: 1168:(2): 349–364. 1121: 1120: 1118: 1115: 1113: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1070:DNA sequencing 1066: 1064: 1061: 1057: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1026: 1023: 1010: 1007: 986: 983: 973: 970: 949: 943: 919: 916: 896: 893: 883: 880: 876:assembly graph 847: 844: 830: 827: 822: 819: 815: 814: 810: 809: 806: 803: 798: 795: 793: 792: 791: 788: 785: 782: 777: 774: 772: 771: 770: 767: 762: 759: 757: 756: 755: 752: 749: 746: 743: 738: 735: 730: 705: 702: 698: 697: 693: 692: 691:EMBOSS Transeq 689: 686: 681: 680: 679: 676: 673: 665: 663: 660: 656: 655: 651: 650: 645: 642: 640: 639: 638: 635: 630: 627: 625: 624: 623: 620: 617: 612: 609: 607: 606: 605: 602: 597: 594: 589: 580: 577: 575: 574: 571: 568: 565: 562: 559: 556: 553: 550: 547: 544: 541: 538: 535: 531: 529: 526: 522: 521: 517: 516: 513: 510: 507: 502: 499: 497: 496: 495: 492: 489: 484: 481: 476: 459: 456: 451: 450: 447: 444: 441: 438: 435: 432: 429: 425: 413: 410: 408: 407: 404: 401: 398: 395: 392: 389: 386: 382: 373: 370: 366: 365: 361: 360: 357: 354: 351: 346: 343: 341: 340: 339: 336: 333: 330: 325: 322: 317: 313:DNA extraction 309: 308:DNA extraction 306: 304: 301: 274: 271: 258: 255: 245: 238: 192: 189: 161:plastid genome 156: 153: 125: 122: 120: 117: 105:effector genes 95:sequences for 88: 85: 15: 13: 10: 9: 6: 4: 3: 2: 4001: 3990: 3987: 3985: 3982: 3981: 3979: 3964: 3956: 3955: 3952: 3946: 3943: 3941: 3938: 3937: 3935: 3931: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3836: 3834: 3830: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3790: 3788: 3785: 3781: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3731: 3729: 3725: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3670: 3668: 3664: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3629: 3626: 3622: 3615: 3610: 3608: 3603: 3601: 3596: 3595: 3592: 3581: 3577: 3572: 3567: 3563: 3559: 3555: 3548: 3545: 3540: 3536: 3531: 3526: 3522: 3518: 3514: 3507: 3504: 3499: 3495: 3490: 3485: 3481: 3477: 3473: 3469: 3465: 3461: 3457: 3449: 3446: 3441: 3437: 3432: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3391: 3388: 3382: 3377: 3373: 3369: 3365: 3361: 3354: 3351: 3346: 3342: 3337: 3332: 3328: 3324: 3319: 3314: 3310: 3306: 3302: 3295: 3292: 3287: 3283: 3278: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3238: 3235: 3230: 3226: 3221: 3216: 3212: 3208: 3203: 3198: 3194: 3190: 3186: 3179: 3177: 3175: 3173: 3171: 3167: 3162: 3158: 3153: 3148: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3112: 3109: 3104: 3100: 3095: 3090: 3086: 3082: 3078: 3074: 3070: 3066: 3062: 3055: 3052: 3047: 3034: 3025: 3020: 3016: 3009: 3006: 3001: 2997: 2992: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2952: 2949: 2938: 2932: 2930: 2926: 2921: 2917: 2912: 2907: 2903: 2899: 2895: 2891: 2883: 2881: 2879: 2877: 2875: 2873: 2871: 2867: 2862: 2858: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2813: 2811: 2809: 2807: 2805: 2803: 2799: 2794: 2790: 2785: 2780: 2776: 2772: 2768: 2761: 2759: 2757: 2755: 2751: 2746: 2742: 2737: 2732: 2728: 2724: 2720: 2713: 2711: 2709: 2707: 2705: 2703: 2701: 2697: 2692: 2688: 2683: 2678: 2674: 2670: 2665: 2660: 2656: 2652: 2648: 2641: 2639: 2637: 2633: 2628: 2624: 2619: 2614: 2610: 2606: 2601: 2596: 2592: 2588: 2584: 2577: 2575: 2573: 2571: 2567: 2562: 2558: 2553: 2548: 2543: 2538: 2534: 2530: 2526: 2519: 2517: 2515: 2513: 2511: 2509: 2505: 2500: 2496: 2491: 2486: 2482: 2478: 2475: 2468: 2466: 2464: 2462: 2458: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2402: 2400: 2398: 2396: 2394: 2392: 2390: 2386: 2381: 2377: 2372: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2332: 2330: 2328: 2326: 2324: 2322: 2320: 2318: 2316: 2312: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2266: 2264: 2262: 2260: 2258: 2256: 2254: 2250: 2245: 2241: 2236: 2231: 2227: 2223: 2219: 2212: 2210: 2208: 2206: 2204: 2202: 2200: 2198: 2196: 2192: 2187: 2183: 2179: 2175: 2171: 2167: 2162: 2161:10044/1/49937 2157: 2153: 2149: 2145: 2141: 2134: 2127: 2125: 2123: 2121: 2119: 2117: 2115: 2113: 2111: 2109: 2107: 2103: 2098: 2094: 2089: 2084: 2080: 2076: 2071: 2066: 2062: 2058: 2057:Plant Methods 2054: 2047: 2045: 2043: 2041: 2039: 2037: 2035: 2033: 2031: 2029: 2027: 2023: 2018: 2014: 2009: 2004: 2000: 1996: 1991: 1986: 1982: 1978: 1977:Plant Methods 1974: 1967: 1965: 1963: 1961: 1959: 1957: 1955: 1953: 1949: 1944: 1940: 1935: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1895: 1892: 1887: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1838: 1836: 1834: 1830: 1825: 1821: 1816: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1766: 1764: 1762: 1760: 1758: 1756: 1754: 1752: 1748: 1743: 1739: 1734: 1729: 1725: 1721: 1716: 1711: 1707: 1703: 1696: 1694: 1692: 1690: 1688: 1686: 1684: 1682: 1680: 1678: 1676: 1674: 1672: 1668: 1663: 1659: 1654: 1649: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1612: 1610: 1608: 1606: 1604: 1602: 1600: 1596: 1591: 1587: 1582: 1577: 1572: 1567: 1563: 1559: 1555: 1548: 1546: 1544: 1542: 1540: 1538: 1536: 1534: 1532: 1530: 1528: 1524: 1519: 1515: 1510: 1505: 1501: 1497: 1492: 1487: 1483: 1479: 1475: 1468: 1466: 1464: 1462: 1460: 1458: 1456: 1454: 1452: 1448: 1443: 1439: 1435: 1431: 1427: 1423: 1420:(5): 966–75. 1419: 1415: 1407: 1405: 1403: 1401: 1399: 1397: 1395: 1393: 1391: 1389: 1387: 1385: 1381: 1376: 1372: 1367: 1362: 1358: 1354: 1349: 1344: 1340: 1336: 1332: 1325: 1323: 1321: 1319: 1317: 1315: 1313: 1311: 1309: 1307: 1305: 1303: 1301: 1299: 1297: 1295: 1291: 1286: 1279: 1267: 1259: 1255: 1251: 1244: 1242: 1240: 1238: 1236: 1234: 1232: 1228: 1223: 1219: 1215: 1211: 1207: 1203: 1196: 1194: 1192: 1188: 1183: 1179: 1175: 1171: 1167: 1163: 1155: 1153: 1151: 1149: 1147: 1145: 1143: 1141: 1139: 1137: 1135: 1133: 1131: 1129: 1127: 1123: 1116: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1067: 1062: 1060: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1032: 1031: 1024: 1022: 1018: 1015: 1008: 1006: 1003: 999: 995: 993: 984: 982: 980: 971: 969: 967: 963: 959: 955: 947: 944: 942: 940: 936: 935:mitochondrial 932: 928: 924: 917: 915: 913: 912:phylogenetics 909: 905: 901: 894: 892: 890: 889:Jaccard index 881: 879: 877: 873: 869: 866: 862: 858: 853: 845: 843: 841: 840:phylogenomics 837: 836:rDNA cistrons 828: 826: 820: 813: 807: 804: 801: 800: 796: 794: 789: 786: 783: 780: 779: 775: 773: 768: 765: 764: 760: 758: 753: 750: 747: 744: 741: 740: 736: 734: 733: 729: 727: 723: 719: 715: 711: 703: 696: 690: 687: 684: 683: 682: 677: 674: 671: 670: 669: 668: 661: 654: 648: 647: 643: 641: 636: 633: 632: 628: 626: 621: 618: 615: 614: 610: 608: 603: 600: 599: 595: 593: 592: 588: 585: 578: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 539: 536: 533: 532: 527: 520: 514: 511: 508: 505: 504: 500: 498: 493: 490: 487: 486: 482: 480: 479: 475: 473: 469: 465: 457: 455: 448: 445: 442: 439: 436: 433: 430: 427: 426: 424: 422: 418: 411: 405: 402: 399: 396: 393: 390: 387: 384: 383: 381: 378: 371: 364: 358: 355: 352: 349: 348: 344: 342: 337: 334: 331: 328: 327: 323: 321: 320: 316: 314: 307: 302: 300: 298: 292: 290: 285: 280: 272: 270: 268: 264: 256: 254: 252: 243: 239: 237: 235: 229: 226: 222: 218: 214: 210: 209:recombination 206: 202: 198: 190: 188: 186: 181: 178: 174: 170: 166: 162: 154: 152: 150: 145: 143: 139: 135: 131: 124:Ribosomal DNA 123: 119:High-copy DNA 118: 116: 114: 110: 109:endosymbionts 106: 102: 98: 94: 86: 84: 82: 77: 73: 69: 65: 61: 57: 53: 49: 45: 44:ribosomal DNA 41: 37: 33: 29: 21: 3864:Genetic code 3798:the Americas 3774:Quantitative 3744:Cytogenetics 3739:Conservation 3632:Introduction 3561: 3557: 3547: 3520: 3516: 3506: 3463: 3459: 3448: 3405: 3401: 3390: 3363: 3353: 3308: 3304: 3294: 3251: 3247: 3237: 3192: 3188: 3126: 3122: 3111: 3068: 3064: 3054: 3033:cite journal 3008: 2965: 2961: 2951: 2940:. Retrieved 2911:11343/292783 2893: 2889: 2826: 2822: 2774: 2770: 2729:(1): 18–32. 2726: 2722: 2654: 2651:BMC Genomics 2650: 2590: 2586: 2552:10547/623134 2532: 2528: 2480: 2476: 2417: 2413: 2345: 2341: 2281: 2277: 2225: 2221: 2143: 2139: 2060: 2056: 1980: 1976: 1908: 1904: 1894: 1851: 1847: 1781: 1777: 1705: 1625: 1622:BMC Genomics 1621: 1564:(11): 2341. 1561: 1557: 1481: 1477: 1417: 1413: 1338: 1334: 1249: 1205: 1201: 1165: 1161: 1058: 1028: 1019: 1016: 1012: 1004: 1000: 996: 991: 988: 975: 965: 961: 957: 953: 951: 945: 921: 898: 885: 864: 849: 846:GetOrganelle 832: 824: 811: 707: 694: 688:TransDecoder 652: 582: 518: 471: 467: 461: 453: 415: 375: 362: 311: 293: 276: 260: 257:Low-copy DNA 250: 247: 230: 194: 182: 176: 172: 169:DNA barcodes 158: 146: 127: 90: 87:Current Uses 76:biodiversity 40:genome skims 39: 27: 26: 3844:Epigenetics 1784:(1): 4476. 1274:|last= 1025:Scalability 1009:Limitations 712:, and then 637:tRNAscan-SE 611:Mitogenomes 552:SOAPdenovo2 501:Mitogenomes 225:mitogenomes 191:Mitogenomes 107:, discover 3978:Categories 3849:Geneticist 3823:South Asia 3769:Population 3749:Ecological 3718:Amino acid 3698:Nucleotide 3673:Chromosome 3311:(1): 132. 2942:2020-02-28 2657:(1): 886. 1628:(1): 235. 1258:1108700470 1117:References 985:Advantages 861:hash table 790:PhyloBayes 678:ORF Finder 584:Annotation 579:Annotation 573:Alignreads 509:NOVOPlasty 506:Fast-Plast 491:NOVOPlasty 488:Fast-Plast 417:Sequencing 412:Sequencing 284:herbariums 228:resolved. 138:eukaryotes 52:mitogenome 32:sequencing 3764:Molecular 3759:Microbial 3734:Classical 3539:1424-2818 3523:(4): 49. 3517:Diversity 3480:2576-098X 3422:2576-098X 3327:1474-760X 3268:1460-2059 3211:1474-760X 3195:(1): 34. 3143:1066-5277 3085:1548-7091 2982:2168-0450 2843:1759-6653 2745:1674-4918 2673:1471-2164 2609:1756-0500 2593:(1): 94. 2561:2296-701X 2434:1755-098X 2362:2168-0450 2306:196680739 2298:1030-1887 2170:1755-0998 2079:1746-4811 1999:1746-4811 1983:(1): 43. 1925:2168-0450 1868:2168-0450 1806:2045-2322 1724:1314-2003 1706:PhytoKeys 1644:1471-2164 1500:1553-7374 1357:2167-8359 1341:: e7543. 1266:cite book 966:In silico 962:in silico 958:in silico 954:in silico 946:In silico 923:PhyloHerb 918:PhyloHerb 908:alignment 745:RAxML-HPC 596:Plastomes 512:ORGanelle 494:ORGanelle 483:Plastomes 464:assembled 155:Plastomes 101:pathogens 81:forensics 3984:Genomics 3963:Category 3889:Heredity 3859:Genomics 3703:Mutation 3693:Heredity 3657:Glossary 3647:Timeline 3621:Genetics 3580:26821259 3498:31196920 3440:31171622 3345:27323842 3286:21217122 3229:30760303 3161:22506599 3103:22388286 3000:25225629 2920:90266891 2861:26590213 2793:24245977 2691:30526480 2627:22333071 2499:29672830 2452:31325909 2380:25506521 2244:29791715 2186:22534026 2178:27235167 2097:31911810 2063:(1): 1. 2017:29928291 1943:29109919 1886:29109919 1824:30872700 1742:31607787 1662:29618324 1590:29113146 1518:27490201 1442:26777683 1434:24606032 1375:31565556 1222:26205170 1182:22174336 1063:See also 992:a priori 904:assembly 900:Geneious 895:Geneious 870:, using 868:assembly 852:aligning 787:ExaBayes 751:Geneious 685:GeneWise 675:Geneious 570:ASeMbler 567:Ray-Meta 534:Geneious 458:Assembly 303:Workflow 289:herbaria 221:12S rRNA 217:16S rRNA 93:ortholog 48:plastome 3642:History 3637:Outline 3489:6588038 3431:6554609 3381:9215275 3336:4915045 3277:3051319 3220:6374904 3152:3342519 3094:3322381 2991:4162667 2852:4700955 2682:6286531 2618:3292991 2535:: 174. 2443:6900181 2371:4259456 2088:6942304 2008:5987614 1934:5664964 1877:5664964 1815:6418218 1786:Bibcode 1733:6783484 1653:5885378 1581:5713310 1509:4973915 1366:6746217 931:plastid 865:de novo 829:Hyb-Seq 781:MrBayes 766:PAUPRat 754:IG-TREE 649:RNAmmer 601:cpGAVAS 564:Newbler 561:IDBA-UD 515:MITObim 472:de novo 468:de novo 297:ecology 263:primers 251:de novo 3808:Europe 3793:Africa 3727:Fields 3713:Allele 3688:Genome 3578:  3537:  3496:  3486:  3478:  3438:  3428:  3420:  3378:  3343:  3333:  3325:  3284:  3274:  3266:  3227:  3217:  3209:  3159:  3149:  3141:  3101:  3091:  3083:  2998:  2988:  2980:  2918:  2859:  2849:  2841:  2791:  2743:  2689:  2679:  2671:  2625:  2615:  2607:  2559:  2497:  2450:  2440:  2432:  2378:  2368:  2360:  2304:  2296:  2242:  2184:  2176:  2168:  2095:  2085:  2077:  2015:  2005:  1997:  1941:  1931:  1923:  1884:  1874:  1866:  1822:  1812:  1804:  1740:  1730:  1722:  1660:  1650:  1642:  1588:  1578:  1516:  1506:  1498:  1440:  1432:  1373:  1363:  1355:  1256:  1220:  1180:  927:python 910:, and 874:. The 872:SPAdes 812: 695: 653: 619:MITOS2 558:Celera 546:Velvet 543:SPAdes 519: 363: 324:Plants 219:, and 36:genome 3933:Lists 3813:Italy 3652:Index 2916:S2CID 2302:S2CID 2182:S2CID 2136:(PDF) 1438:S2CID 1335:PeerJ 882:Skmer 808:MEGA7 805:MEGA6 802:MEGA4 797:Other 784:BEAST 769:PAUP* 748:PhyML 742:RAxML 724:, or 672:BLAST 662:Other 644:rRNAs 634:ARWEN 629:tRNAs 616:MITOS 528:Other 345:Other 213:NADH2 134:genus 34:of a 3576:PMID 3535:ISSN 3494:PMID 3476:ISSN 3436:PMID 3418:ISSN 3341:PMID 3323:ISSN 3282:PMID 3264:ISSN 3225:PMID 3207:ISSN 3157:PMID 3139:ISSN 3099:PMID 3081:ISSN 3046:help 2996:PMID 2978:ISSN 2857:PMID 2839:ISSN 2789:PMID 2741:ISSN 2687:PMID 2669:ISSN 2623:PMID 2605:ISSN 2557:ISSN 2495:PMID 2448:PMID 2430:ISSN 2376:PMID 2358:ISSN 2294:ISSN 2240:PMID 2174:PMID 2166:ISSN 2093:PMID 2075:ISSN 2013:PMID 1995:ISSN 1939:PMID 1921:ISSN 1882:PMID 1864:ISSN 1820:PMID 1802:ISSN 1738:PMID 1720:ISSN 1658:PMID 1640:ISSN 1586:PMID 1514:PMID 1496:ISSN 1430:PMID 1371:PMID 1353:ISSN 1285:link 1278:help 1254:OCLC 1218:PMID 1178:PMID 937:and 549:MIRA 537:Canu 195:The 177:matK 175:and 173:rbcL 159:The 128:The 74:and 58:and 3683:RNA 3678:DNA 3566:doi 3525:doi 3484:PMC 3468:doi 3426:PMC 3410:doi 3376:PMC 3368:doi 3331:PMC 3313:doi 3272:PMC 3256:doi 3215:PMC 3197:doi 3147:PMC 3131:doi 3089:PMC 3073:doi 3019:doi 2986:PMC 2970:doi 2906:hdl 2898:doi 2847:PMC 2831:doi 2779:doi 2775:201 2731:doi 2677:PMC 2659:doi 2613:PMC 2595:doi 2547:hdl 2537:doi 2485:doi 2481:105 2438:PMC 2422:doi 2366:PMC 2350:doi 2286:doi 2230:doi 2226:105 2156:hdl 2148:doi 2083:PMC 2065:doi 2003:PMC 1985:doi 1929:PMC 1913:doi 1872:PMC 1856:doi 1810:PMC 1794:doi 1728:PMC 1710:doi 1648:PMC 1630:doi 1576:PMC 1566:doi 1504:PMC 1486:doi 1422:doi 1361:PMC 1343:doi 1210:doi 1170:doi 540:CLC 3980:: 3786:of 3574:. 3562:25 3560:. 3556:. 3533:. 3521:11 3519:. 3515:. 3492:. 3482:. 3474:. 3462:. 3458:. 3434:. 3424:. 3416:. 3404:. 3400:. 3374:. 3366:. 3362:. 3339:. 3329:. 3321:. 3309:17 3307:. 3303:. 3280:. 3270:. 3262:. 3252:27 3250:. 3246:. 3223:. 3213:. 3205:. 3193:20 3191:. 3187:. 3169:^ 3155:. 3145:. 3137:. 3127:19 3125:. 3121:. 3097:. 3087:. 3079:. 3067:. 3063:. 3037:: 3035:}} 3031:{{ 3017:. 2994:. 2984:. 2976:. 2964:. 2960:. 2928:^ 2914:. 2904:. 2894:46 2892:. 2869:^ 2855:. 2845:. 2837:. 2825:. 2821:. 2801:^ 2787:. 2773:. 2769:. 2753:^ 2739:. 2727:58 2725:. 2721:. 2699:^ 2685:. 2675:. 2667:. 2655:19 2653:. 2649:. 2635:^ 2621:. 2611:. 2603:. 2589:. 2585:. 2569:^ 2555:. 2545:. 2531:. 2527:. 2507:^ 2493:. 2479:. 2460:^ 2446:. 2436:. 2428:. 2418:19 2416:. 2412:. 2388:^ 2374:. 2364:. 2356:. 2344:. 2340:. 2314:^ 2300:. 2292:. 2282:32 2280:. 2276:. 2252:^ 2238:. 2224:. 2220:. 2194:^ 2180:. 2172:. 2164:. 2154:. 2144:16 2142:. 2138:. 2105:^ 2091:. 2081:. 2073:. 2061:16 2059:. 2055:. 2025:^ 2011:. 2001:. 1993:. 1981:14 1979:. 1975:. 1951:^ 1937:. 1927:. 1919:. 1907:. 1903:. 1880:. 1870:. 1862:. 1850:. 1846:. 1832:^ 1818:. 1808:. 1800:. 1792:. 1780:. 1776:. 1750:^ 1736:. 1726:. 1718:. 1704:. 1670:^ 1656:. 1646:. 1638:. 1626:19 1624:. 1620:. 1598:^ 1584:. 1574:. 1562:18 1560:. 1556:. 1526:^ 1512:. 1502:. 1494:. 1482:12 1480:. 1476:. 1450:^ 1436:. 1428:. 1418:14 1416:. 1383:^ 1369:. 1359:. 1351:. 1337:. 1333:. 1293:^ 1270:: 1268:}} 1264:{{ 1252:. 1230:^ 1216:. 1206:20 1204:. 1190:^ 1176:. 1166:99 1164:. 1125:^ 933:, 906:, 842:. 720:, 215:, 115:. 83:. 3613:e 3606:t 3599:v 3582:. 3568:: 3541:. 3527:: 3500:. 3470:: 3464:8 3442:. 3412:: 3406:8 3384:. 3370:: 3347:. 3315:: 3288:. 3258:: 3231:. 3199:: 3163:. 3133:: 3105:. 3075:: 3069:9 3048:) 3044:( 3027:. 3021:: 3002:. 2972:: 2966:2 2945:. 2922:. 2908:: 2900:: 2863:. 2833:: 2827:7 2795:. 2781:: 2747:. 2733:: 2693:. 2661:: 2629:. 2597:: 2591:5 2563:. 2549:: 2539:: 2533:6 2501:. 2487:: 2454:. 2424:: 2382:. 2352:: 2346:2 2308:. 2288:: 2246:. 2232:: 2188:. 2158:: 2150:: 2099:. 2067:: 2019:. 1987:: 1945:. 1915:: 1909:5 1888:. 1858:: 1852:5 1826:. 1796:: 1788:: 1782:9 1744:. 1712:: 1664:. 1632:: 1592:. 1568:: 1520:. 1488:: 1444:. 1424:: 1377:. 1345:: 1339:7 1287:) 1280:) 1260:. 1224:. 1212:: 1184:. 1172:: 244:)

Index


sequencing
genome
ribosomal DNA
plastome
mitogenome
microsatellites
transposable elements
next generation sequencing
phylogenomic analysis
evolutionary history
biodiversity
forensics
ortholog
phylogenomic studies
pathogens
effector genes
endosymbionts
genomic variation
Internal transcribed spacers (ITS)
genus
eukaryotes
phylogenetic analysis
sequencing depth
plastid genome
Sanger sequencing
DNA barcodes
Single nucleotide polymorphisms (SNPs)
mitochondrial genome
molecular marker

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑