Knowledge (XXG)

Glycosidic bond

Source 📝

337: 462: 449: 405: 1524: 2509: 196: 1518: 50: 314: 121: 1530: 470:
thereof the active peptide beyond increasing CNS penetration. The innate utilization of sugars as solubilizing moieties in Phase II and III metabolism (glucuronic acids) has remarkably allowed an evolutionary advantage in that mammalian enzymes are not directly evolved to degrade O glycosylated products on larger moieties.
474:
of the plasma membrane. "Hop diffusion" notably combines free diffusion and intercomparmental transitions. Recent examples notably include high permeability of met-enkephalin analogs amongst other peptides. The full mOR agonist pentapeptide DAMGO is also CNS penetrant upon introduction of glycosylation.
513:
nucelobase gets to act like a leaving group. The intermediate produced is a similar oxacarbenium ion where both the hydroxy groups and the nucleobase are still attached to the anomeric carbon. Both mechanisms theoretically yield the same product. Most ribonucleotides are hydrolyzed via the concerted S
512:
ion intermediate. This intermediate rapidly reacts with the nearby water molecule to substitute the N-glycosidic bond of the ribose and the nucleobase with an O-glycosidic bond with a hydroxy group. The concerted mechanism, the water acts as a nucleophile and attacks at the anomeric carbon before the
520:
These reactions are practically irreversible. Due to the fact that the cleavage of the N-glycosidic bond from the DNA backbone can lead to detrimental mutagenic and cytotoxic responses in an organism, have the ability to also catalyze the synthesis of N-glycosidic bonds by way of an abasic DNA site
487:
carbon of the ribose sugar structure through an N-glycosidic bond. Occasionally, the nucleobases attached to the ribose undergo deamination, alkylation, or oxidation which results in cytotoxic lesions along the DNA backbone. These modifications severely threaten the cohesiveness of the DNA molecule,
473:
The peculiar nature of O-linked glycopeptides is that there are numerous examples which are CNS penetrant. The fundamental basis of this effect is thought to involve "membrane hopping" or "hop diffusion". The non-brownian motion driven "hop diffusion" process is thought to occur due to discontinuity
416:
Different biocatalytic approaches have been developed toward the synthesis of glycosides in the past decades, which using "glycosyltransferases" and "glycoside hydrolases" are among the most common catalysis. The former often needs expensive materials and the later often shows low yields, De Winter
441:
Fluorine directed glycosylations represent an encouraging handle for both B selectivity and introduction of a non-natural biomimetic C2 functionality on the carbohydrate. One innovative example provided by Bucher et al. provides a way to utilize a fluoro oxonium ion and the trichloroacetimidate to
437:
The highly substrate specific nature of the selectivity and the overall activity of the pyranoside can provide major synthetic difficulties. The overall specificity of the glycosylation can be improved by utilizing approaches which take into account the relative transition states that the anomeric
304:
which brominates at the 5-position. On addition of the alcohol ROH and lithium carbonate, the OR replaces the bromine and on deprotecting the acetylated hydroxyls the product is synthesized in relatively high purity. It was suggested by Joshi et al. (2001) that lithium acts as the nucleophile that
438:
carbon can undergo during a typical glycosylation. Most notably, recognition and incorporation of Felkin-Ahn-Eisenstein models into rationale chemical design can generally provide reliable results provided the transformation can undergo this type of conformational control in the transition state.
332:
that break glycosidic bonds. Glycoside hydrolases typically can act either on α- or on β-glycosidic bonds, but not on both. This specificity allows researchers to obtain glycosides in high epimeric excess, one example being Wen-Ya Lu's conversion of D-Glucose to Ethyl β-D-glucopyranoside using
469:
O-linked glycopeptides recently have been shown to exhibit excellent CNS permeability and efficacy in multiple animal models with disease states. In addition one of the most intriguing aspects thereof is the capability of O-glycosylation to extend half life, decrease clearance, and improve PK/PD
107:
The term 'glycoside' is now extended to also cover compounds with bonds formed between hemiacetal (or hemiketal) groups of sugars and several chemical groups other than hydroxyls, such as -SR (thioglycosides), -SeR (selenoglycosides), -NRR (N-glycosides), or even -CRRR (C-glycosides).
309:
the alcohol is substituted for the bromine group. Advantages of this method as well as its stereoselectivity and low cost of the lithium salt include that it can be done at room temperature and its yield compares relatively well with the conventional Koenigs-Knorr
482:
DNA molecules contain 5-membered carbon rings called riboses that are directly attached to two phosphate groups and a nucleobase that contains amino groups. The nitrogen atoms from the amino group in the nucleotides are covalently linked to the
982:
Egleton, Richard D.; Bilsky, Edward J.; Tollin, Gordon; Dhanasekaran, Muthu; Lowery, John; Alves, Isabel; Davis, Peg; Porreca, Frank; Yamamura, Henry I. (2005-01-10). "Biousian glycopeptides penetrate the blood–brain barrier".
111:
Particularly in naturally occurring glycosides, the compound ROH from which the carbohydrate residue has been removed is often termed the aglycone, and the carbohydrate residue itself is sometimes referred to as the 'glycone'.
492:
are enzymes that catalyze the hydrolysis the N-glycosidic bond to free the damaged or modified nucleobase from the DNA, by cleaving the carbon-nitrogen glycosidic bond at the 2' carbon, subsequently initiating the
813:
De Winter K, Van Renterghem L, Wuyts K, Pelantová H, Křen V, Soetaert W, Desmet T (2015). "Chemoenzymatic Synthesis of β-D Glucosides using Cellobiose Phosphorylase from Clostridium thermocellum".
187:
and is discouraged. All of these modified glycosidic bonds have different susceptibility to hydrolysis, and in the case of C-glycosyl structures, they are typically more resistant to hydrolysis.
508:
2 like mechanism. The stepwise function, the nucleobase acts as a leaving group before the anomeric carbon gets attacked by the water molecule, producing a short-lived unstable
442:
encourage B stereoselectivity through the gauche effect. This reasonable stereoselectivity is clear through visualization of the Felkin-Ahn models of the possible chair forms.
896:
Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, et al. (October 2000). "Improved bioavailability to the brain of glycosylated Met-enkephalin analogs".
1617: 336: 591: 421:(CP) toward synthesis of alpha-glycosides in ionic liquids. The best condition for use of CP was found to be in the presence of IL AMMOENG 101 and ethyl acetate. 333:
naturally-derived glucosidase. It is worth noting that Wen-Ya Lu utilized glucosidase in a reverse manner opposite to the enzyme's biological functionality:
445:
This method represents an encouraging way to selectivity incorporate B-ethyl, isopropyl and other glycosides with typical trichloroacetimidate chemistry.
1735: 1662: 1343: 1773: 203:
molecule showing how carbons are numbered. The terminal saccharide is linked via a β-1,6 glycosidic bond. The remaining linkages are all β-1,3.
762: 569: 1112: 264:, Nüchter et al. (2001) were able to achieve 100% yield of α- and β-D-glucosides. This method can be performed on a multi-kilogram scale. 1597: 1082: 461: 448: 1582: 389:
or sugar donors. Many biosynthetic pathways use mono- or oligosaccharides activated by a diphosphate linkage to lipids, such as
2543: 1406: 1433: 1394: 1384: 939:
Polt R, Dhanasekaran M, Keyari CM (September 2005). "Glycosylated neuropeptides: a new vista for neuropsychopharmacology?".
1389: 657:
Nüchter, Matthias; Ondruschka, Bernd; Lautenschläger, Werner (2001). "Microwave-Assisted Synthesis of Alkyl Glycosides".
1336: 1766: 213:
When an anomeric center is involved in a glycosidic bond (as is common in nature) then one can distinguish between
1657: 1652: 221:
by the relative stereochemistry of the anomeric position and the stereocenter furthest from C1 in the saccharide.
2548: 1642: 1632: 1607: 1577: 1833: 1423: 1105: 418: 850: 2326: 1684: 1587: 1559: 1329: 276:
in the stereoselective synthesis of alkyl D-glucopyranosides via glycosylation, with the exception of using
1057:
Marco Brito-Arias, "Synthesis and Characterization of Glycosides", second edition, Editorial Springer 2016.
2538: 2512: 2320: 1759: 382: 273: 2314: 1728: 1689: 378: 374: 249: 139:
via the formation of an N-glycosidic bond (shown as the vertical line between the N and the sugar cycle)
1723: 361:
in living organisms, they are typically first "activated" by being joined via a glycosidic bond to the
2453: 1647: 1538: 1401: 1360: 500:
Monofunctional glycosylases catalyze the hydrolysis of the N-glycosidic bond via either a stepwise, S
494: 325: 2533: 1549: 1413: 1379: 1098: 404: 394: 370: 97: 1713: 1468: 964: 921: 682: 517:
2 like mechanism, while most deoxyribonucleotides proceed through the stepwise like mechanism.
151:
that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers
1699: 1488: 1448: 1438: 1305: 1251: 1041: 956: 913: 871: 851:"Fluorine-Directed β-Galactosylation: Chemical Glycosylation Development by Molecular Editing" 830: 795: 758: 700:
Joshi VY, Sawant MR (2006). "A convenient stereoselective synthesis of β-D-glucopyranosides".
674: 639: 565: 285: 277: 1906: 1740: 1523: 1480: 1453: 1031: 1023: 992: 948: 905: 863: 822: 787: 732: 666: 631: 600: 386: 306: 301: 293: 2355: 2301: 2281: 2172: 1592: 1463: 489: 484: 233: 225: 73: 1718: 2342: 2139: 1896: 1873: 1853: 1627: 1428: 1036: 1011: 557: 93: 909: 2527: 2448: 2365: 2253: 2144: 1676: 1636: 1569: 1498: 1371: 1352: 1273: 1256: 357:
Before monosaccharide units are incorporated into glycoproteins, polysaccharides, or
261: 172: 968: 925: 686: 2332: 2213: 2195: 1843: 1783: 1622: 509: 72:. The reaction often favors formation of the α-glycosidic bond as shown due to the 43: 996: 753:
Lu WY, Lin GQ, Yu HL, Tong AM, Xu JH (2009-12-09). Whittall J, Sutton PW (eds.).
538: 46:(sugar) molecule to another group, which may or may not be another carbohydrate. 2490: 2478: 2350: 2261: 2009: 2004: 1944: 1708: 1458: 1261: 1218: 1208: 398: 297: 200: 62: 1517: 195: 2266: 2208: 2203: 2076: 2029: 1223: 1203: 736: 635: 366: 289: 229: 89: 81: 49: 39: 834: 678: 643: 604: 2424: 2420: 2375: 2289: 2271: 2238: 2223: 2044: 1967: 1929: 1443: 1418: 1310: 1293: 1288: 1283: 1278: 1268: 1246: 1213: 1195: 1121: 1075: 362: 253: 237: 124: 101: 85: 65: 1045: 960: 917: 875: 867: 826: 799: 791: 670: 313: 17: 2441: 2402: 2387: 2360: 2309: 2243: 2116: 2111: 2096: 2081: 1997: 1992: 1812: 1807: 1751: 1238: 1228: 397:, which transfer the sugar unit from the activated donor to an accepting 390: 168: 1067: 778:
Bucher C, Gilmour R (November 2010). "Fluorine-directed glycosylation".
280:
which is less expensive and toxic than the conventional method of using
2483: 2463: 2431: 2406: 2396: 2392: 2370: 2233: 2228: 2218: 2128: 2091: 2086: 2064: 2049: 2039: 1956: 1934: 1918: 1300: 1185: 1180: 1175: 1170: 1027: 136: 58: 54: 952: 457:
O-linked glycopeptides; pharmaceutical uses of O-glycosylated peptides
2473: 2468: 2458: 2435: 2412: 2380: 2167: 2162: 2106: 2069: 2054: 2034: 2021: 1982: 1977: 1972: 1885: 1838: 1828: 1802: 1797: 1162: 329: 281: 257: 208: 180: 160: 148: 132: 720: 619: 586: 120: 1529: 1012:"Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA" 848:
Durantie, Estelle; Bucher, Christoph; Gilmour, Ryan (16 May 2012).
2059: 1862: 1071: 460: 447: 393:. These activated donors are then substrates for enzymes known as 358: 335: 312: 194: 184: 69: 1321: 620:"Ueber die Verbindungen der Zucker mit den Alkoholen und Ketonen" 465:
Control of oxonium ion – Felkin-Ahn stereoselectivity chair forms
1755: 1325: 1094: 429:
Multiple chemical approaches exist to encourage selectivity of
385:(CMP). These activated biochemical intermediates are known as 159:), where the oxygen of the glycosidic bond is replaced with a 128: 1090: 171:. Substances containing N-glycosidic bonds are also known as 1087:
Cold Spring Harbor Laboratory Press; 1999. Searchable online
721:"Ueber einige Derivate des Traubenzuckers und der Galactose" 143:
Glycosidic bonds of the form discussed above are known as
755:
Practical Methods for Biocatalysis and Biotransformations
342:
Practical methods for Biocatalysis and Biotransformations
560:. In Varki A, Cummings RD, Esko JD, et al. (eds.). 543:
Department of Chemistry, Queen Mary University of London
1152: 1147: 1142: 1137: 488:
leading to the development of diseases such as cancer.
27:
Covalent bond joining a sugar molecule to another group
539:"Nomenclature of Carbohydrates (Recommendations 1996)" 228:
via glycosidic bonds in order to increase their water
564:(2nd ed.). Cold Spring Harbor Laboratory Press. 452:
Control of Oxonium ion – Felkin-Ahn stereoselectivity
183:; the term "C-glycoside" is considered a misnomer by 2341: 2298: 2280: 2252: 2194: 2187: 2155: 2127: 2020: 1955: 1917: 1884: 1861: 1852: 1821: 1790: 1698: 1675: 1606: 1568: 1548: 1537: 1497: 1479: 1370: 1359: 1237: 1194: 1161: 1128: 305:attacks the carbon at the 5-position and through a 288:salts. D-glucose is first protected by forming the 248:Nüchter et al. (2001) have shown a new approach to 849: 191:Numbering, and α/β distinction of glycosidic bonds 92:(or a molecule derived from a saccharide) and the 167:, have the glycosidic bond oxygen replaced with 100:. A substance containing a glycosidic bond is a 179:bonds have the glycosidic oxygen replaced by a 725:Berichte der Deutschen Chemischen Gesellschaft 624:Berichte der Deutschen Chemischen Gesellschaft 592:Berichte der deutschen chemischen Gesellschaft 1767: 1337: 1106: 8: 757:. John Wiley & Sons. pp. 236–239. 2191: 1858: 1774: 1760: 1752: 1545: 1367: 1344: 1330: 1322: 1113: 1099: 1091: 1074:Compendium of Chemical Terminology, the " 1035: 224:Pharmacologists often join substances to 1736:Polyhedral skeletal electron pair theory 403: 240:have important physiological functions. 119: 80:A glycosidic bond is formed between the 48: 780:Angewandte Chemie International Edition 530: 558:"Structural Basis of Glycan Diversity" 7: 1016:Organic & Biomolecular Chemistry 1010:Drohat AC, Maiti A (November 2014). 748: 746: 504:1 like mechanism, or a concerted, S 815:Advanced Synthesis & Catalysis 587:"Ueber die Glucoside der Alkohole" 116:S-, N-, C-, and O-glycosidic bonds 25: 147:, in reference to the glycosidic 2508: 2507: 1528: 1522: 1516: 987:. Carbohydrate Science. Part 1. 272:Joshi et al. (2006) propose the 856:Chemistry – A European Journal 53:Formation of ethyl glucoside: 1: 910:10.1016/S0006-8993(00)02794-3 556:Bertozzi C, Rabuka D (2009). 997:10.1016/j.tetasy.2004.11.038 96:of some compound such as an 1084:Essentials of Glycobiology. 719:Koenigs W, Knorr E (1901). 702:Indian Journal of Chemistry 521:and a specific nucleobase. 417:et al. investigated use of 412:Disaccharide phosphorylases 2565: 1434:Metal–ligand multiple bond 941:Medicinal Research Reviews 562:Essentials of Glycobiology 401:(the acceptor substrate). 206: 131:, results from the sugar 2503: 1514: 737:10.1002/cber.190103401162 636:10.1002/cber.189502801248 478:N-Glycosidic bonds in DNA 1834:Cyclohexane conformation 1068:Definition of glycosides 659:Synthetic Communications 605:10.1002/cber.18930260327 419:cellobiose phosphorylase 260:in a rotor reactor with 2327:Isomaltooligosaccharide 1284:Anthraquinone glycoside 425:Directed glycosylations 328:(or glycosidases), are 300:, and then addition of 268:Vishal Y Joshi's method 163:atom. In the same way, 2544:Carbohydrate chemistry 2321:Galactooligosaccharide 985:Tetrahedron: Asymmetry 868:10.1002/chem.201200468 827:10.1002/adsc.201500077 792:10.1002/anie.201004467 618:Fischer, Emil (1895). 585:Fischer, Emil (1893). 466: 453: 408: 383:cytidine monophosphate 349: 317: 274:Koenigs-Knorr reaction 267: 204: 140: 77: 2315:Fructooligosaccharide 671:10.1081/scc-100104035 464: 451: 407: 379:thymidine diphosphate 375:guanosine diphosphate 339: 316: 250:Fischer glycosidation 198: 123: 52: 1424:Coordinate (dipolar) 1269:Cyanogenic glycoside 495:base excision repair 395:glycosyltransferases 353:Glycosyltransferases 326:Glycoside hydrolases 321:Glycoside hydrolases 1598:C–H···O interaction 1380:Electron deficiency 1294:Flavonoid glycoside 1247:Alcoholic glycoside 435:β-glycosidic bonds. 371:uridine diphosphate 258:refluxing apparatus 256:oven equipped with 244:Chemical approaches 232:; this is known as 1583:Resonance-assisted 1289:Coumarin glycoside 1279:Phenolic glycoside 1028:10.1039/c4ob01063a 467: 454: 409: 350: 340:Lu, Wen-Ya et al. 318: 219:β-glycosidic bonds 205: 165:N-glycosidic bonds 153:S-glycosidic bonds 145:O-glycosidic bonds 141: 78: 36:glycosidic linkage 2521: 2520: 2499: 2498: 2183: 2182: 1749: 1748: 1700:Electron counting 1671: 1670: 1560:London dispersion 1512: 1511: 1489:Metal aromaticity 1319: 1318: 1306:Steviol glycoside 1252:Cardiac glycoside 1153:C-glycosidic bond 1148:S-glycosidic bond 1143:N-glycosidic bond 1138:O-glycosidic bond 1022:(42): 8367–8378. 953:10.1002/med.20039 862:(26): 8208–8215. 764:978-0-470-74859-6 571:978-0-87969-770-9 387:sugar nucleotides 278:lithium carbonate 127:, a component of 16:(Redirected from 2556: 2549:Chemical bonding 2511: 2510: 2302:oligosaccharides 2282:Tetrasaccharides 2192: 1907:Dihydroxyacetone 1859: 1776: 1769: 1762: 1753: 1741:Jemmis mno rules 1593:Dihydrogen bonds 1546: 1532: 1526: 1520: 1454:Hyperconjugation 1368: 1346: 1339: 1332: 1323: 1115: 1108: 1101: 1092: 1050: 1049: 1039: 1007: 1001: 1000: 979: 973: 972: 936: 930: 929: 893: 887: 886: 884: 882: 853: 845: 839: 838: 821:(8): 1961–1969. 810: 804: 803: 775: 769: 768: 750: 741: 740: 716: 710: 709: 697: 691: 690: 665:(9): 1277–1283. 654: 648: 647: 630:(1): 1145–1167. 615: 609: 608: 599:(3): 2400–2412. 582: 576: 575: 553: 547: 546: 535: 490:DNA glycosylases 307:transition state 302:hydrogen bromide 294:acetic anhydride 61:combine to form 21: 2564: 2563: 2559: 2558: 2557: 2555: 2554: 2553: 2524: 2523: 2522: 2517: 2495: 2356:Oat beta-glucan 2343:Polysaccharides 2337: 2300: 2294: 2276: 2248: 2179: 2173:Neuraminic acid 2151: 2123: 2016: 1951: 1913: 1880: 1854:Monosaccharides 1848: 1817: 1786: 1780: 1750: 1745: 1694: 1667: 1610: 1602: 1564: 1551: 1541: 1533: 1527: 1521: 1508: 1493: 1475: 1363: 1355: 1350: 1320: 1315: 1233: 1190: 1157: 1124: 1119: 1081:Varki A et al. 1064: 1054: 1053: 1009: 1008: 1004: 981: 980: 976: 938: 937: 933: 895: 894: 890: 880: 878: 847: 846: 842: 812: 811: 807: 777: 776: 772: 765: 752: 751: 744: 718: 717: 713: 699: 698: 694: 656: 655: 651: 617: 616: 612: 584: 583: 579: 572: 555: 554: 550: 537: 536: 532: 527: 516: 507: 503: 497:(BER) pathway. 480: 459: 427: 414: 355: 323: 292:by addition of 270: 246: 234:glucuronidation 226:glucuronic acid 211: 193: 118: 74:anomeric effect 32:glycosidic bond 28: 23: 22: 15: 12: 11: 5: 2562: 2560: 2552: 2551: 2546: 2541: 2536: 2526: 2525: 2519: 2518: 2516: 2515: 2504: 2501: 2500: 2497: 2496: 2494: 2493: 2488: 2487: 2486: 2481: 2471: 2466: 2461: 2456: 2454:Levan beta 2→6 2451: 2446: 2445: 2444: 2428: 2417: 2416: 2415: 2399: 2390: 2385: 2384: 2383: 2378: 2373: 2368: 2363: 2358: 2347: 2345: 2339: 2338: 2336: 2335: 2330: 2324: 2318: 2312: 2306: 2304: 2296: 2295: 2293: 2292: 2286: 2284: 2278: 2277: 2275: 2274: 2269: 2264: 2258: 2256: 2254:Trisaccharides 2250: 2249: 2247: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2206: 2200: 2198: 2189: 2185: 2184: 2181: 2180: 2178: 2177: 2176: 2175: 2165: 2159: 2157: 2153: 2152: 2150: 2149: 2148: 2147: 2142: 2140:Mannoheptulose 2133: 2131: 2125: 2124: 2122: 2121: 2120: 2119: 2114: 2109: 2101: 2100: 2099: 2094: 2089: 2084: 2074: 2073: 2072: 2067: 2062: 2057: 2052: 2047: 2042: 2037: 2026: 2024: 2018: 2017: 2015: 2014: 2013: 2012: 2002: 2001: 2000: 1995: 1987: 1986: 1985: 1980: 1975: 1970: 1961: 1959: 1953: 1952: 1950: 1949: 1948: 1947: 1939: 1938: 1937: 1932: 1923: 1921: 1915: 1914: 1912: 1911: 1910: 1909: 1901: 1900: 1899: 1897:Glyceraldehyde 1890: 1888: 1882: 1881: 1879: 1878: 1877: 1876: 1874:Glycolaldehyde 1867: 1865: 1856: 1850: 1849: 1847: 1846: 1841: 1836: 1831: 1825: 1823: 1819: 1818: 1816: 1815: 1810: 1805: 1800: 1794: 1792: 1788: 1787: 1781: 1779: 1778: 1771: 1764: 1756: 1747: 1746: 1744: 1743: 1738: 1733: 1732: 1731: 1726: 1721: 1716: 1705: 1703: 1696: 1695: 1693: 1692: 1687: 1681: 1679: 1673: 1672: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1645: 1640: 1630: 1625: 1620: 1614: 1612: 1604: 1603: 1601: 1600: 1595: 1590: 1585: 1580: 1574: 1572: 1566: 1565: 1563: 1562: 1556: 1554: 1543: 1539:Intermolecular 1535: 1534: 1515: 1513: 1510: 1509: 1507: 1506: 1503: 1501: 1495: 1494: 1492: 1491: 1485: 1483: 1477: 1476: 1474: 1473: 1472: 1471: 1466: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1421: 1416: 1411: 1410: 1409: 1399: 1398: 1397: 1392: 1387: 1376: 1374: 1365: 1361:Intramolecular 1357: 1356: 1353:Chemical bonds 1351: 1349: 1348: 1341: 1334: 1326: 1317: 1316: 1314: 1313: 1308: 1303: 1298: 1297: 1296: 1291: 1286: 1276: 1271: 1266: 1265: 1264: 1259: 1249: 1243: 1241: 1235: 1234: 1232: 1231: 1226: 1221: 1216: 1211: 1206: 1200: 1198: 1192: 1191: 1189: 1188: 1183: 1178: 1173: 1167: 1165: 1159: 1158: 1156: 1155: 1150: 1145: 1140: 1134: 1132: 1126: 1125: 1120: 1118: 1117: 1110: 1103: 1095: 1089: 1088: 1079: 1063: 1062:External links 1060: 1059: 1058: 1052: 1051: 1002: 974: 947:(5): 557–585. 931: 898:Brain Research 888: 840: 805: 786:(46): 8724–8. 770: 763: 742: 731:(1): 957–981. 711: 692: 649: 610: 577: 570: 548: 529: 528: 526: 523: 514: 505: 501: 479: 476: 458: 455: 426: 423: 413: 410: 354: 351: 322: 319: 269: 266: 262:pressure bombs 252:. Employing a 245: 242: 207:Main article: 192: 189: 173:glycosylamines 157:thioglycosides 117: 114: 94:hydroxyl group 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2561: 2550: 2547: 2545: 2542: 2540: 2539:Carbohydrates 2537: 2535: 2532: 2531: 2529: 2514: 2506: 2505: 2502: 2492: 2489: 2485: 2482: 2480: 2477: 2476: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2449:Hemicellulose 2447: 2443: 2440: 2439: 2438: 2437: 2433: 2429: 2427: 2426: 2422: 2418: 2414: 2411: 2410: 2409: 2408: 2404: 2400: 2398: 2394: 2391: 2389: 2386: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2353: 2352: 2349: 2348: 2346: 2344: 2340: 2334: 2331: 2328: 2325: 2322: 2319: 2316: 2313: 2311: 2308: 2307: 2305: 2303: 2297: 2291: 2288: 2287: 2285: 2283: 2279: 2273: 2270: 2268: 2265: 2263: 2260: 2259: 2257: 2255: 2251: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2201: 2199: 2197: 2196:Disaccharides 2193: 2190: 2186: 2174: 2171: 2170: 2169: 2166: 2164: 2161: 2160: 2158: 2154: 2146: 2145:Sedoheptulose 2143: 2141: 2138: 2137: 2136:Ketoheptoses 2135: 2134: 2132: 2130: 2126: 2118: 2115: 2113: 2110: 2108: 2105: 2104: 2103:Deoxy sugars 2102: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2079: 2078: 2075: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2032: 2031: 2028: 2027: 2025: 2023: 2019: 2011: 2008: 2007: 2006: 2003: 1999: 1996: 1994: 1991: 1990: 1989:Ketopentoses 1988: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1965: 1964:Aldopentoses 1963: 1962: 1960: 1958: 1954: 1946: 1943: 1942: 1940: 1936: 1933: 1931: 1928: 1927: 1926:Aldotetroses 1925: 1924: 1922: 1920: 1916: 1908: 1905: 1904: 1902: 1898: 1895: 1894: 1892: 1891: 1889: 1887: 1883: 1875: 1872: 1871: 1869: 1868: 1866: 1864: 1860: 1857: 1855: 1851: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1826: 1824: 1820: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1795: 1793: 1789: 1785: 1784:carbohydrates 1777: 1772: 1770: 1765: 1763: 1758: 1757: 1754: 1742: 1739: 1737: 1734: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1714:Hückel's rule 1712: 1711: 1710: 1707: 1706: 1704: 1701: 1697: 1691: 1688: 1686: 1683: 1682: 1680: 1678: 1677:Bond cleavage 1674: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1643:Intercalation 1641: 1638: 1634: 1633:Metallophilic 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1613: 1609: 1605: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1573: 1571: 1567: 1561: 1558: 1557: 1555: 1553: 1550:Van der Waals 1547: 1544: 1540: 1536: 1531: 1525: 1519: 1505: 1504: 1502: 1500: 1496: 1490: 1487: 1486: 1484: 1482: 1478: 1470: 1467: 1465: 1462: 1461: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1408: 1405: 1404: 1403: 1400: 1396: 1393: 1391: 1388: 1386: 1383: 1382: 1381: 1378: 1377: 1375: 1373: 1369: 1366: 1362: 1358: 1354: 1347: 1342: 1340: 1335: 1333: 1328: 1327: 1324: 1312: 1311:Thioglycoside 1309: 1307: 1304: 1302: 1299: 1295: 1292: 1290: 1287: 1285: 1282: 1281: 1280: 1277: 1275: 1274:Glycosylamine 1272: 1270: 1267: 1263: 1260: 1258: 1257:Bufadienolide 1255: 1254: 1253: 1250: 1248: 1245: 1244: 1242: 1240: 1236: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1197: 1193: 1187: 1186:1,6-Glycoside 1184: 1182: 1181:1,4-Glycoside 1179: 1177: 1174: 1172: 1169: 1168: 1166: 1164: 1160: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1135: 1133: 1131: 1127: 1123: 1116: 1111: 1109: 1104: 1102: 1097: 1096: 1093: 1086: 1085: 1080: 1077: 1073: 1069: 1066: 1065: 1061: 1056: 1055: 1047: 1043: 1038: 1033: 1029: 1025: 1021: 1017: 1013: 1006: 1003: 998: 994: 990: 986: 978: 975: 970: 966: 962: 958: 954: 950: 946: 942: 935: 932: 927: 923: 919: 915: 911: 907: 903: 899: 892: 889: 877: 873: 869: 865: 861: 857: 852: 844: 841: 836: 832: 828: 824: 820: 816: 809: 806: 801: 797: 793: 789: 785: 781: 774: 771: 766: 760: 756: 749: 747: 743: 738: 734: 730: 726: 722: 715: 712: 707: 703: 696: 693: 688: 684: 680: 676: 672: 668: 664: 660: 653: 650: 645: 641: 637: 633: 629: 625: 621: 614: 611: 606: 602: 598: 594: 593: 588: 581: 578: 573: 567: 563: 559: 552: 549: 544: 540: 534: 531: 524: 522: 518: 511: 498: 496: 491: 486: 477: 475: 471: 463: 456: 450: 446: 443: 439: 436: 432: 424: 422: 420: 411: 406: 402: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 352: 347: 343: 338: 334: 331: 327: 320: 315: 311: 308: 303: 299: 295: 291: 287: 283: 279: 275: 265: 263: 259: 255: 251: 243: 241: 239: 236:. Many other 235: 231: 227: 222: 220: 216: 210: 202: 197: 190: 188: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 138: 134: 130: 126: 122: 115: 113: 109: 105: 103: 99: 95: 91: 87: 83: 75: 71: 67: 64: 60: 56: 51: 47: 45: 42:that joins a 41: 38:is a type of 37: 33: 19: 2430: 2419: 2401: 2333:Maltodextrin 2214:Isomaltulose 2005:Deoxy sugars 1941:Ketotetrose 1844:Mutarotation 1719:Baird's rule 1439:Charge-shift 1402:Hypervalence 1129: 1083: 1019: 1015: 1005: 991:(1): 65–75. 988: 984: 977: 944: 940: 934: 904:(1): 37–46. 901: 897: 891: 879:. Retrieved 859: 855: 843: 818: 814: 808: 783: 779: 773: 754: 728: 724: 714: 705: 701: 695: 662: 658: 652: 627: 623: 613: 596: 590: 580: 561: 551: 542: 533: 519: 510:oxacarbenium 499: 481: 472: 468: 444: 440: 434: 430: 428: 415: 356: 345: 341: 324: 271: 247: 223: 218: 214: 212: 176: 164: 156: 155:(which form 152: 144: 142: 110: 106: 79: 44:carbohydrate 35: 31: 29: 2491:Xanthan gum 2479:Amylopectin 2351:Beta-glucan 2262:Maltotriose 2077:Ketohexoses 2030:Aldohexoses 2010:Deoxyribose 1945:Erythrulose 1903:Ketotriose 1893:Aldotriose 1709:Aromaticity 1685:Heterolysis 1663:Salt bridge 1608:Noncovalent 1578:Low-barrier 1459:Aromaticity 1449:Conjugation 1429:Pi backbond 1262:Cardenolide 1219:Glucuronide 1209:Galactoside 1176:β-Glycoside 1171:α-Glycoside 1070:, from the 399:nucleophile 365:group of a 298:acetic acid 88:group of a 2534:Glycosides 2528:Categories 2267:Melezitose 2209:Isomaltose 2204:Cellobiose 1870:Aldodiose 1637:aurophilic 1618:Mechanical 1224:Rhamnoside 1204:Fructoside 1122:Glycosides 708:: 461–465. 525:References 381:(TDP), or 367:nucleotide 348:, 236–239. 290:peracetate 238:glycosides 230:solubility 177:C-glycosyl 90:saccharide 82:hemiacetal 40:ether bond 18:Glycosidic 2421:Galactose 2376:Cellulose 2366:Sizofiran 2290:Stachyose 2272:Raffinose 2239:Trehalose 2224:Lactulose 2045:Galactose 1968:Arabinose 1930:Erythrose 1782:Types of 1729:spherical 1690:Homolysis 1653:Cation–pi 1628:Chalcogen 1588:Symmetric 1444:Hapticity 1214:Glucoside 1076:Gold Book 835:1615-4150 679:0039-7911 644:1099-0682 363:phosphate 254:microwave 125:Adenosine 102:glycoside 86:hemiketal 66:glucoside 2513:Category 2442:Glycogen 2425:Galactan 2403:Fructose 2388:Chitosan 2361:Lentinan 2310:Acarbose 2244:Turanose 2188:Multiple 2129:Heptoses 2117:Rhamnose 2112:Fuculose 2097:Tagatose 2082:Fructose 1998:Xylulose 1993:Ribulose 1957:Pentoses 1919:Tetroses 1822:Geometry 1813:Pyranose 1808:Furanose 1658:Anion–pi 1648:Stacking 1570:Hydrogen 1481:Metallic 1372:Covalent 1364:(strong) 1239:Aglycone 1229:Riboside 1163:Geometry 1046:25181003 969:38798797 961:16075406 926:18102579 918:11033091 881:24 April 876:22592962 800:20886497 687:93986043 485:anomeric 391:dolichol 369:such as 199:A β-1,6 169:nitrogen 2484:Amylose 2432:Glucose 2407:Fructan 2397:Dextran 2393:Dextrin 2371:Zymosan 2234:Sucrose 2229:Maltose 2219:Lactose 2168:Nonoses 2163:Octoses 2156:Above 7 2092:Sorbose 2087:Psicose 2065:Mannose 2050:Glucose 2040:Altrose 2022:Hexoses 1935:Threose 1886:Trioses 1791:General 1623:Halogen 1469:bicyclo 1414:Agostic 1301:Saponin 1196:Glycone 1037:4238931 377:(GDP), 373:(UDP), 330:enzymes 310:method. 286:mercury 137:adenine 98:alcohol 59:ethanol 55:Glucose 2474:Starch 2469:Pectin 2464:Mannan 2459:Lignin 2436:Glucan 2413:Inulin 2381:Chitin 2107:Fucose 2070:Talose 2055:Gulose 2035:Allose 1983:Xylose 1978:Ribose 1973:Lyxose 1863:Dioses 1839:Epimer 1829:Anomer 1803:Ketose 1798:Aldose 1724:Möbius 1552:forces 1542:(weak) 1044:  1034:  967:  959:  924:  916:  874:  833:  798:  761:  685:  677:  642:  568:  359:lipids 282:silver 209:Anomer 201:glucan 181:carbon 161:sulfur 149:oxygen 133:ribose 2329:(IMO) 2323:(GOS) 2317:(FOS) 2299:Other 2060:Idose 1702:rules 1611:other 1499:Ionic 1407:3c–4e 1395:8c–2e 1390:4c–2e 1385:3c–2e 1072:IUPAC 965:S2CID 922:S2CID 683:S2CID 185:IUPAC 70:water 63:ethyl 1464:homo 1419:Bent 1130:Bond 1042:PMID 957:PMID 914:PMID 883:2022 872:PMID 831:ISSN 796:PMID 759:ISBN 675:ISSN 640:ISSN 566:ISBN 433:and 346:2010 217:and 135:and 68:and 57:and 1032:PMC 1024:doi 993:doi 949:doi 906:doi 902:881 864:doi 823:doi 819:357 788:doi 733:doi 706:45B 667:doi 632:doi 601:doi 296:in 284:or 129:RNA 84:or 34:or 2530:: 2434:/ 2423:/ 2405:/ 2395:/ 1040:. 1030:. 1020:12 1018:. 1014:. 989:16 963:. 955:. 945:25 943:. 920:. 912:. 900:. 870:. 860:18 858:. 854:. 829:. 817:. 794:. 784:49 782:. 745:^ 729:34 727:. 723:. 704:. 681:. 673:. 663:31 661:. 638:. 628:28 626:. 622:. 597:26 595:. 589:. 541:. 431:α- 344:. 215:α- 175:. 104:. 30:A 1775:e 1768:t 1761:v 1639:) 1635:( 1345:e 1338:t 1331:v 1114:e 1107:t 1100:v 1078:" 1048:. 1026:: 999:. 995:: 971:. 951:: 928:. 908:: 885:. 866:: 837:. 825:: 802:. 790:: 767:. 739:. 735:: 689:. 669:: 646:. 634:: 607:. 603:: 574:. 545:. 515:N 506:N 502:N 76:. 20:)

Index

Glycosidic
ether bond
carbohydrate

Glucose
ethanol
ethyl
glucoside
water
anomeric effect
hemiacetal
hemiketal
saccharide
hydroxyl group
alcohol
glycoside

Adenosine
RNA
ribose
adenine
oxygen
sulfur
nitrogen
glycosylamines
carbon
IUPAC

glucan
Anomer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.