Knowledge (XXG)

Grünbaum–Rigby configuration

Source 📝

17: 114:). However, the notation does not specify the configuration itself, only its type (the numbers of points, lines, and incidences). It also does not specify whether the configuration is purely combinatorial (an abstract incidence pattern of lines and points) or whether the points and lines of the configuration are realizable in the Euclidean plane or another standard geometry. The type (21 135:
smaller heptagons, one for each of the two lengths of diagonal; the sides of these smaller heptagons are the diagonals of the outer heptagon. Each of the two smaller heptagons has 14 diagonals, seven of which are shared with the other smaller heptagon. The seven shared diagonals are the remaining seven lines of the configuration.
134:
and its 14 interior diagonals. To complete the 21 points and lines of the configuration, these must be augmented by 14 more points and seven more lines. The remaining 14 points of the configuration are the points where pairs of equal-length diagonals of the heptagon cross each other. These form two
76:. Its original description by Klein in 1879 marked the first appearance in the mathematical literature of a 4-configuration, a system of points and lines with four points per line and four lines per point. In Klein's description, these points and lines belong to the 273:, and 21 interior points that do not belong to any tangent line. The 21 nonsecant lines and 21 interior points form an instance of the Grünbaum–Rigby configuration, meaning that again these points and lines have the same pattern of intersections. 290:
of the configuration includes symmetries that take any incident pair of points and lines to any other incident pair. The Grünbaum–Rigby configuration is an example of a polycyclic configuration, that is, a configuration with
285:
of this configuration, a system of points and lines with a point for every line of the configuration and a line for every point, and with the same point-line incidences, is the same configuration. The
926: 192: 107:). Their paper on it became the first of a series of works on configurations by Grünbaum, and contained the first published graphical depiction of a 4-configuration. 734: 522: 489: 271: 251: 219: 633: 603: 941: 118:) is highly ambiguous: there is an unknown but large number of (combinatorial) configurations of this type, 200 of which were listed by 885: 855: 983: 727: 701:, Mathematical Sciences Research Institute Publications, vol. 35, Cambridge, UK: Cambridge University Press, pp. 287–331, 444: 110:
In the notation of configurations, configurations with 21 points, 21 lines, 4 points per line and 4 lines per point are denoted (21
931: 962: 583: 517: 73: 32:
consisting of 21 points and 21 lines, with four points on each line and four lines through each point. Originally studied by
16: 905: 720: 587: 921: 936: 138:
The original construction of the Grünbaum–Rigby configuration by Klein viewed its points and lines as belonging to the
142:, rather than the Euclidean plane. In this space, the points and lines form the perspective centers and axes of the 624: 296: 143: 100: 53: 837: 139: 77: 37: 29: 870: 154: 880: 957: 825: 670: 150:. They have the same pattern of point-line intersections as the Euclidean version of the configuration. 890: 860: 800: 778: 900: 865: 845: 743: 875: 795: 687: 222: 195: 620: 575: 96: 49: 599: 461: 439: 159: 805: 757: 679: 642: 591: 531: 498: 480: 453: 69: 706: 654: 613: 563: 543: 510: 485:"On the Hessian configuration and its connection with the group of 360 plane collineations" 473: 702: 650: 609: 559: 539: 506: 469: 292: 282: 88: 45: 788: 287: 256: 236: 204: 130:
The Grünbaum–Rigby configuration can be constructed from the seven points of a regular
81: 457: 977: 691: 550:
Di Paola, Jane W.; Gropp, Harald (1989), "Hyperbolic graphs from hyperbolic planes",
147: 41: 783: 230: 697:
Klein, Felix (1999), "On the order-seven transformation of elliptic functions",
661: 226: 65: 33: 646: 535: 194:
has 57 points and 57 lines, and can be given coordinates based on the integers
850: 815: 762: 502: 465: 253:. Dually, there are 28 points where pairs of tangent lines meet, 8 points on 92: 87:
The geometric realisation of this configuration as points and lines in the
131: 666:"Ueber die Transformation siebenter Ordnung der elliptischen Functionen" 712: 683: 595: 233:
through a single point, and 21 nonsecant lines that are disjoint from
484: 199: 15: 84:
rather than the real-number coordinates of the Euclidean plane.
716: 665: 259: 239: 207: 162: 299:
of points or lines has the same number of elements.
950: 914: 836: 771: 750: 265: 245: 213: 186: 523:Proceedings of the London Mathematical Society 490:Proceedings of the London Mathematical Society 64:The Grünbaum–Rigby configuration was known to 728: 422: 374: 119: 104: 8: 695:. Translated into English by Silvio Levy as 735: 721: 713: 634:Journal of the London Mathematical Society 258: 238: 206: 161: 568: 410: 362: 350: 338: 322: 314: 221:(the set of solutions to a two-variable 398: 326: 307: 95:, was only established much later, by 442:(2003), "Polycyclic configurations", 386: 318: 7: 91:, based on overlaying three regular 627:(1990), "The real configuration (21 586:, vol. 103, Providence, R.I.: 580:Configurations of points and lines 14: 445:European Journal of Combinatorics 80:, a space whose coordinates are 20:The Grünbaum-Rigby configuration 584:Graduate Studies in Mathematics 229:through pairs of its points, 8 44:, it was first realized in the 886:Cremona–Richmond configuration 181: 169: 1: 588:American Mathematical Society 458:10.1016/S0195-6698(03)00031-3 963:Kirkman's schoolgirl problem 896:Grünbaum–Rigby configuration 26:Grünbaum–Rigby configuration 856:Möbius–Kantor configuration 423:Boben & Pisanski (2003) 375:Grünbaum & Rigby (1990) 144:perspective transformations 120:Di Paola & Gropp (1989) 1000: 942:Bruck–Ryser–Chowla theorem 389:. See transl. p. 297. 984:Configurations (geometry) 932:Szemerédi–Trotter theorem 922:Sylvester–Gallai theorem 647:10.1112/jlms/s2-41.2.336 536:10.1112/plms/s3-46.1.117 198:7. In this space, every 140:complex projective plane 78:complex projective plane 38:complex projective plane 927:De Bruijn–Erdős theorem 871:Desargues configuration 187:{\displaystyle PG(2,7)} 155:finite projective plane 40:in connection with the 552:Congressus Numerantium 503:10.1112/plms/s2-4.1.54 267: 247: 215: 188: 21: 958:Design of experiments 671:Mathematische Annalen 268: 248: 216: 189: 19: 891:Kummer configuration 861:Pappus configuration 744:Incidence structures 520:(1983), "My graph", 257: 237: 205: 160: 60:History and notation 901:Klein configuration 881:Schläfli double six 866:Hesse configuration 846:Complete quadrangle 97:Branko Grünbaum 876:Reye configuration 684:10.1007/BF01677143 263: 243: 223:quadratic equation 211: 184: 22: 971: 970: 699:The Eightfold Way 637:, Second Series, 605:978-0-8218-4308-6 518:Coxeter, H. S. M. 493:, Second Series, 295:, such that each 266:{\displaystyle C} 246:{\displaystyle C} 225:modulo 7) has 28 214:{\displaystyle C} 24:In geometry, the 991: 806:Projective plane 758:Incidence matrix 737: 730: 723: 714: 709: 694: 657: 621:Grünbaum, Branko 616: 576:Grünbaum, Branko 566: 546: 526:, Third Series, 513: 476: 426: 420: 414: 408: 402: 396: 390: 384: 378: 372: 366: 360: 354: 348: 342: 336: 330: 317:, p. 156); 312: 272: 270: 269: 264: 252: 250: 249: 244: 220: 218: 217: 212: 193: 191: 190: 185: 74:H. S. M. Coxeter 70:William Burnside 999: 998: 994: 993: 992: 990: 989: 988: 974: 973: 972: 967: 946: 910: 832: 767: 763:Incidence graph 746: 741: 696: 660: 630: 619: 606: 596:10.1090/gsm/103 574: 569:Grünbaum (2009) 549: 516: 479: 440:Pisanski, Tomaž 437: 434: 429: 421: 417: 411:Grünbaum (2009) 409: 405: 397: 393: 385: 381: 373: 369: 363:Grünbaum (2009) 361: 357: 351:Grünbaum (2009) 349: 345: 339:Grünbaum (2009) 337: 333: 323:Burnside (1907) 313: 309: 305: 293:cyclic symmetry 283:projective dual 279: 255: 254: 235: 234: 203: 202: 158: 157: 128: 117: 113: 89:Euclidean plane 82:complex numbers 62: 50:Branko Grünbaum 46:Euclidean plane 28:is a symmetric 12: 11: 5: 997: 995: 987: 986: 976: 975: 969: 968: 966: 965: 960: 954: 952: 948: 947: 945: 944: 939: 937:Beck's theorem 934: 929: 924: 918: 916: 912: 911: 909: 908: 903: 898: 893: 888: 883: 878: 873: 868: 863: 858: 853: 848: 842: 840: 838:Configurations 834: 833: 831: 830: 829: 828: 820: 819: 818: 810: 809: 808: 803: 793: 792: 791: 789:Steiner system 786: 775: 773: 769: 768: 766: 765: 760: 754: 752: 751:Representation 748: 747: 742: 740: 739: 732: 725: 717: 711: 710: 678:(3): 428–471, 658: 641:(2): 336–346, 628: 617: 604: 572: 567:. As cited by 547: 530:(1): 117–136, 514: 477: 452:(4): 431–457, 438:Boben, Marko; 433: 430: 428: 427: 415: 413:, p. 363. 403: 399:Coxeter (1983) 391: 379: 367: 355: 343: 341:, p. 156. 331: 327:Coxeter (1983) 315:Grünbaum (2009 306: 304: 301: 288:symmetry group 278: 275: 262: 242: 210: 183: 180: 177: 174: 171: 168: 165: 127: 124: 115: 111: 61: 58: 13: 10: 9: 6: 4: 3: 2: 996: 985: 982: 981: 979: 964: 961: 959: 956: 955: 953: 949: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 919: 917: 913: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 843: 841: 839: 835: 827: 824: 823: 821: 817: 814: 813: 812:Graph theory 811: 807: 804: 802: 799: 798: 797: 794: 790: 787: 785: 782: 781: 780: 779:Combinatorics 777: 776: 774: 770: 764: 761: 759: 756: 755: 753: 749: 745: 738: 733: 731: 726: 724: 719: 718: 715: 708: 704: 700: 693: 689: 685: 681: 677: 673: 672: 667: 663: 659: 656: 652: 648: 644: 640: 636: 635: 626: 622: 618: 615: 611: 607: 601: 597: 593: 589: 585: 581: 577: 573: 570: 565: 561: 557: 553: 548: 545: 541: 537: 533: 529: 525: 524: 519: 515: 512: 508: 504: 500: 496: 492: 491: 486: 482: 478: 475: 471: 467: 463: 459: 455: 451: 447: 446: 441: 436: 435: 431: 424: 419: 416: 412: 407: 404: 400: 395: 392: 388: 383: 380: 376: 371: 368: 365:, p. 53. 364: 359: 356: 353:, p. 13. 352: 347: 344: 340: 335: 332: 328: 324: 320: 316: 311: 308: 302: 300: 298: 294: 289: 284: 276: 274: 260: 240: 232: 231:tangent lines 228: 224: 208: 201: 197: 178: 175: 172: 166: 163: 156: 151: 149: 148:Klein quartic 145: 141: 136: 133: 125: 123: 121: 108: 106: 102: 99: and 98: 94: 90: 85: 83: 79: 75: 71: 67: 59: 57: 55: 54:John F. Rigby 51: 47: 43: 42:Klein quartic 39: 35: 31: 30:configuration 27: 18: 951:Applications 895: 784:Block design 698: 675: 669: 662:Klein, Felix 638: 632: 625:Rigby, J. F. 579: 555: 551: 527: 521: 494: 488: 481:Burnside, W. 449: 443: 418: 406: 394: 387:Klein (1879) 382: 370: 358: 346: 334: 319:Klein (1879) 310: 280: 227:secant lines 152: 137: 129: 126:Construction 109: 86: 63: 25: 23: 822:Statistics 101:J. F. Rigby 66:Felix Klein 34:Felix Klein 851:Fano plane 816:Hypergraph 432:References 277:Properties 93:heptagrams 801:Incidence 692:121407539 558:: 23–43, 497:: 54–71, 466:0195-6698 978:Category 915:Theorems 826:Blocking 796:Geometry 664:(1879), 578:(2009), 483:(1907), 132:heptagon 707:1722419 655:1067273 614:2510707 564:0995852 544:0684825 511:1576105 474:1975946 146:of the 103: ( 36:in the 772:Fields 705:  690:  653:  612:  602:  562:  542:  509:  472:  464:  196:modulo 72:, and 688:S2CID 303:Notes 297:orbit 200:conic 906:Dual 631:)", 600:ISBN 462:ISSN 281:The 153:The 105:1990 52:and 680:doi 643:doi 592:doi 532:doi 499:doi 454:doi 48:by 980:: 703:MR 686:, 676:14 674:, 668:, 651:MR 649:, 639:41 623:; 610:MR 608:, 598:, 590:, 582:, 560:MR 556:68 554:, 540:MR 538:, 528:46 507:MR 505:, 487:, 470:MR 468:, 460:, 450:24 448:, 325:; 321:; 122:. 68:, 56:. 736:e 729:t 722:v 682:: 645:: 629:4 594:: 571:. 534:: 501:: 495:4 456:: 425:. 401:. 377:. 329:. 261:C 241:C 209:C 182:) 179:7 176:, 173:2 170:( 167:G 164:P 116:4 112:4

Index


configuration
Felix Klein
complex projective plane
Klein quartic
Euclidean plane
Branko Grünbaum
John F. Rigby
Felix Klein
William Burnside
H. S. M. Coxeter
complex projective plane
complex numbers
Euclidean plane
heptagrams
Branko Grünbaum
J. F. Rigby
1990
Di Paola & Gropp (1989)
heptagon
complex projective plane
perspective transformations
Klein quartic
finite projective plane
modulo
conic
quadratic equation
secant lines
tangent lines
projective dual

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.